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Introduction

In this paper, we will consider a class of piecewise linear transforma-
tions defined on the unit interval [0, 1]. We will show that under some
suitable conditions the transformations belonging to this class exhibit
mixing properties, and we derive estimates for the decay rate of corre-
lation for them. Specifically, we will prove:

THEOREM 0-1. Let F be a transformation on the unit interval [0, 1]
satisfying conditions i), ii), iii) given in §1. Suppose that the mfimum
of the lower Lyapunov mnumber is positive and the second Fredholm
eigenvalue 7 is less than 1. Then F has a unique invariant probability
measure tt absolutely continuous with respect to the Lebesgue measure on
[0, 1] and the dynamical system ([0, 1], Y, F') is mixing, and the following
estimate for the decay rate of correlation holds for any pair of functions
JeBV and ge L

0.1) lim(y+)~{| feg = @)ap— fap | odn} =0,
Jor any €>0.

This result extends the results obtained by the author in [8], and we will
discuss in [9] some further results for more general cases. Some related
topics have appeared in [2], [6], [10], [13] and [14]. Precise definitions of
the lower Lyapunov number ¢ and the second Fredholm eigenvalue 7 will
be stated in §1.

Certain critical phenomena appear as £)0, which indicates that the
state of the system approaches the so-called window state. Concerning
window states, we refer the readers to [3]. For the case where £<0,
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we also prove the following:

THEOREM 0-2. Assume that £<0. Then, there exists an attractive
periodic orbit (cf. [1]).

We summarize notations in §1. In §2, we will derive a renewal
equation for admissible words, which is one of our main tools for proving
the theorems stated above. In §3, we will prove Theorem 0-1 and
Theorem 0-2.

§1. Notations.

In this paper, we will treat piecewise linear mappings F' which
satisfy the following conditions:

There exists a partition (finite or countable) {I,},., of the unit
interval into subintervals (we call each a € A an alphabet) and

i) F' is linear on each subinterval I,

il) there exists a special alphabet 0 € A such that

F(I,)>0,1) for a0,

iii) we treat the following four cases,

type 1) inf,.,, F(®)=0 and F'(x)>0 on z¢ I,
type 2) sup,.,, F(x)=1 and F'(x)>0 on xz¢c I,
type 3) sup,.,, F(x)=1 and F'(x)<0 on z¢ I,
type 4) inf,.; F(x)=0 and F'(x)<0 on xe€ .

REMARK 1. A mapping F' of type 2 or of type 4 is conjugate to a
mapping G=I-F -1 which is of type 1 or of type 3, respectively, with
the conjugacy given by I(x)=1—x. Thus, hereafter, we only treat
mappings of type 1 or of type 3.

REMARK 2. The examples of type 1 are B-transformations (ef. [4],
[12] for constant slope and [5], [11] for more general cases) and the
examples of type 2 are unimodal linear transformations (cf. [3]).

We denote by ¢ the infimum of the lower Lyapunov number, that is,

1.1) g=essinf lim L log [(F™) ()| ,

z€[0,1] n—o N,
where F'™ is the n-th iterate of the mapping F.

1.1. Slope, signature and subinterval.
In the following, to simplify notations, we denote a subinterval I,(a € A)
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by (a). For an alphabet a € A, we define

+1 if F is monotone increasing on (a),
1.2) sgn a= . . .

—1 if F' is monotone decreasing on (a),
(1.3) A =F'(x)] ze(a),

and we call A* the slope of F on (a). We call a finite sequence of
alphabets w=a,---a, (a,€A) a word and define for each w its slope,
interval, length and signature formally as follows:

(1.4) A=At VY=Y,
(1.5) )= F“(@a)) ,
(1.6) lwl=n

and

(1.7) sgnw=]Isgna, .

We consider a formal symbol ¢ which we call an empty word and define

(1.8) =1,
1.9) (¢)=10, 1],
(1.10) l¢| =0
and

1.11) sgno¢=+1.

‘For words w=a,---a, and w’'=b,---b,, we define

(1.12) ww' =a;+-a,b,- b,

(1.13) Wo=gW=1uw .

By <{w), we denote the indicator function of the set (w).

1.2. Admissibility.
A word we W is called admissible if

(1.14) (w)#¢ .
We denote
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(1.15) W(F)={we W: w is admissible} .
To classify the set W(F'), we need the following sets of words. Let

(1.16) K={a,---a,: a,€ A and there exists 7 1=<j5<7—1) such that
a,=- "=a5=0 and Qjpyy ** at¢0}u{¢} ,

~and we call each element of the set K a 0-word (which was called k-word
in [8]). Let

1.17) S={w, - -w,: w,e K 1=1=n-1), w,e K or w,=0--.0},

and call each element of the set S a sentence. Of course, we can regard
a sentence as a word. We denote by K(F) the set of 0-words which are
admissible and by S(F') the set of sentences which are admissible. An
infinite sequence of alphabets a,a,--- is called admissible if a,- - -a, € W(F")
for any n=.

1.3. Order.

We define orders on the set A, W and K. For alphabets a, be A,
a<b if z<y for ze(a) and yc (). For words w=a,---a, and w’=b,---b,,
w<w' if there exists ¢ (¢=0) such that a,---a,=b,---b, and one of the
following holds:

i) a,,<b,;, and sgna,---a,=+1,

11.8
( ) ii) a;,>b,,, and sgna,---a,=-—1.

We can introduce the total order « on the class K of 0-words by
defining w<w' if wO<w'0. For infinite sequences of alphabets, we also
define order as above. For admissible words w, w' € W(F), w<w' means
x<y for any x e (w) and y e (w').

1.4. Expansion of z.
For x¢[0,1] and ¢ (¢=1), we define afc A by

(1.19) F“(x) € (a?)

and the infinite sequence of alphabets afai--- is called the expansion of
2. We usually identify x€[0, 1] and its expansion. For a word w and
a point x€[0, 1], we call wz admissible if there exists a point ¥ whose
expansion is wafa;--+ and we identify wx with y. Let

sup{z € (0)} if F is of type 1,

1.20 -
(1.20) ¢ {inf {xe(©)} if Fis of type 3.
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We define the expansion of ¢ by the limit of ajaz-+- as x—c (x€(0)).
This sequence plays an essential role in this article. Let

.. (0 M MR 4 if 1<7
1.21 , )=
( ) alt, ) {sﬁ otherwise ,
and
(1.22) a(t, ) =QiA L v .

We also denote the expansion of ¢ by 0-words W= ;0 €K (a,; € A),
that is,

(1‘23) a;a;. .o :w{w;. re=(y e Oy iy 0ot -
We define
¢y ugp® >1
(1.24) = {wl Wy P=
o p=0.
(1.25) G =Q5p, 1 4n even if n>|w{ ,
and
cen if <n,

(1.26) a(m, n)= {““'"‘ Bom 0 M2

é otherwise .

1.5. Type of words.
We will define the type of words which will be one of our main tool
for describing the symbolic structure of F. Let for a word w and m=0,

1.27) w;g;z{“(l’ m) if w='a(m+1, m+|wl) ,
é otherwise ,

and we define g(m)=gq(m, w) and r(m)=r(m, w) by

(1.28) g(m)=p—r(m) ,

(1.29) r(m)= {max{nglwlz a(p—n+1, p)=a(l, ») and sgna(l, p—n)=-—1},
) TM=10  if there exists no such 7,

where

(1.30) p=max{n: wiw=w'a(l, n) for some word w'} .

We call a word w of the type (q(0), »(0)), and a word which is of the
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type (0,0) will be called complete. We denote the type of w*w by
(@*(m), r*(m)) and we define p(m) by

aa P~ otherwine
For p=0, we define an integer t(p) by

ai=a;_, for ¢=i=i(p),
(1.32) Aty +17 Bt py+1—q »

where 4, is of the type (q, 7).

1.6. Generating funections.

Let

(1.38) s(n, n)= 3 A7,
(1.34) win, o)=_ 3, A7,
(1.85) wim, n, &)= 3, A"

weW(m,n,z)

and for a word we W(F'),

(1.36) w(w, m, n, x)= h AT,

ueW(w,m,n,z)

where

1.37) S(n, x)={s € S: |s|=n and sx is admissible},
(1.38) Wn, v)={we W: |w|=n and wx is admissible} ,
(1.39) Wim, n, z)={a,---a,€ W(n, x): a,---a.=a(l, m)},

a,---a, € Wn, x): a,*--a,,,=w and
(1.40) Ww, m, n, z)={wr=<a(m+1, «) if s(@q,,,)=—1},
wx>a(m-+1, o) if s(aly,)=+1

and

(1.41) s(@)= {_1 if ax0

+1 if a>0.
Let
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ATeem o if sgna(l, n)s(ag.)=—1 and a(l, n)x
is admissible ,

(1.42) X(n, x)=1 —r"owm» if sgna(, n)s(as:)=+1 and aQ, n)x

is not admissible ,

\ 0 otherwise .

The generating functions of w(n, ) and X(n, «) are denoted by w(z; z)
and X(z; x), respectively, that is,

(1.43) w(z; )= 22‘6 z'w(n, x) ,

and
> z"K(n, x) if F is aperiodic ,
n=0

(1.44) Xz 2)=1{y_
2, 2"X(n,2) if F is N-periodic,

where we call the mapping F N-periodic if there exists an integer N
which satisfies

(1.45) N=min{n: lim F*(x)=c¢, where x € (0) and F* is monotone
increasing in the neighborhood of ¢ in (0)},

if there exists no such N, we call F' aperiodic.
We will write down a renewal equation of symbolic structure in
terms of w(z; x) and X(z; x).

1.7. Fredholm determinant.
Let

PP Ve if s(af)sgnai=-—1,

1.46 b,=1{"""
( ) DI if s(ad)sgnai=-+1,

Py
and for =2
(1.47) bj=sgn a(l, j—1)(—s(@))* Ao emi
where >.* is the sum over all a € A such that
a<a; if s(@)=-—1 and sgnais(@ds@i)=+1,
a<a; if s(@)=—1 and sgnais(@)ds@i,)=—1,

a>aj if s(@)=+1 and sgnajs(a)s(ai,,)=+1,
a=aj if s(@)=+1 and sgnais(a))s(as,)=—1.

(1.48)
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Then the Fredholm determinant of the mapping F is defined by
1—> b7 if F is aperiodic ,

1.49)  o@={ ¥ | -
1—521, bz —\ oL N if F is N-periodic .

We call z which satisfies #(1/z)=0 a Fredholm eigenvalue. We will show
that 1 is one of the Fredholm eigenvalues in §2 and the derivative @'(1)
defines the invariant measure in the following sense. Let

(1.50) px)=—9'1)7X(1; z) ,

and by ¢ we denote a measure with its density 0. In §3, we will prove
that p is the invariant probability measure with respect to the mapping
F. Let

1 if 9'(1)=0,
(1.51) N=4{e"* if there exists no Fredholm eigenvalue except 1,
min{|7|: 7 is a Fredholm eigenvalue which does not equal 1},

and we call 7 the second Fredholm eigenvalue. As stated in Theorem 0-1,
we will show that » is the decay rate of correlation.

1.8. Perron-Frobenius operator.
For a dynamical system ([0, 1], ¢, F'), we denote the Perron-Frobenius
operator by P, that is, for f, g which are integrable with respect to g,

(1.52) | Pr@yg@dp= feyoF@na .

By @, we denote the n-th correlation, that is, for S which is integrable
with respect to g,

(1.53) @f@)=Pfa) - fap
We denote

L'=the set of integrable functions on the unit interval with respect
to the Lebesgue measure,

BV =the set of bounded variation functions on the unit interval,

and by |:|| and V(:), we denote the L'-norm and the total variation,
respectively. We need a ‘quasi measure’ »* to estimate the decay rate
of the correlation. For a monotone function f, we define
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(1.54) (f)o(@) =min f(x) ,

and for n=1, we inductively define functions

(1.55) (@)= 2 Bulw) @) +(f)a-a(®)
where

(1.56) B, =min{f(z) — (f)s-@)} .

We define »* in the following way:
1) For a monotone function f, we define

(1.57) U= 3 B+

1=k

For a function fe BV, we define

(1.58) va(f) =inf{on(f) +252()}

where infimum is taken over all f, and f, which are monotone and
fi+f:=f. Finally, for a function fe BV, we define

(1.59) V(f) =H§vi(f) .

1.9. Some technical notations. ‘
We need several notations to construct the renewal equation.

(1.60) o, n, )= S, A °,
8€R(p,n,x)

(1.61) ko, D= 3> 1™,
we K (p,J])

A7 3 k(p, F)s(n—6,|— 7, x) if sgnéd,=+1,
Jj=1 .
N%s(n—16,], @) —\I? ;. k(p, 5)s(n—10,]—J, =)
2

Nlrrig(n—16,.,., ) if sgng,=-1,

(1.62) r(p, n, x)=

and for |6,|=m=6,.,|,

(1.63) (o, m, m, x)= >, A\,
weR(DP,m,n,x)

(1.64) ko, m, 5)= > ™,
weK(p,m,])

where
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(1.65) R(p, n, x)={s € S(n, ): s=w,- * *w,(q¢>p), w,=w; for 1<i<p
and wp+1:'bw;+1} ’

(1.66) R(p, m, n, x)={w € W(m, n, x): w+0,..} ,
(1.67) K, )={we K: |lw|=7 and w<w3,.},

and

(1.68) K(p, m, j)={a, - -a;€ K(p, 7): a,** *@p=0,.,(1, m)} .
Note that

(1.69) s(n, a:)=§ 7(p, n, x)

and

(1.70) w(m, n, w)=§ 7(p, m, n, x) .

We will define by (w, m) and X(w, m, n, ) (we W(F'), m=0, j=1). Let
condition 1) s(a%.,)=-—1 and w>a(m+1, m+|w)),
condition ii) s(ai.)=+1 and w<a(m+1, m+|w)),
condition iii) »(m)=0 and sgn wxs(af,* ..)sgn a(l, p(m))s(@sm+)=—1,
condition iv) 7r*(m)>r(m)>0 and 8(@l m+1)8(@m+) = —1.

Then we define:
case 1) When the condition i) or ii) holds, then for any j, we define

1.71) b;(w, m)=X(w, m, j, )=0.

case 2) When the conditions i) and ii) do not hold but the condition
iii) or iv) bholds, then we define

1.72) bloi(w, m)=x"",
and
(1.73) X(w, m, |lw|, 2)=0.

case 3) When the conditions i) to iv) do not hold, then we define
(1.74) biwi(w, m)=X(w, m, lw|, )=0 .

case 4 When the conditions i) and ii) do not hold and j=|w|+1,
then we define

(1.75)  bj(w, m)= —s(afu* )8 WINTIASEIMHTINY, bt +0F (W0, M),
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where
—S(GTW:|+1)Sgn w::x—wka(l,r(m))bj_'_ﬂm)_le
(1.76) b (w, m)= if r(m)>0,
0 if rim)=
and
1.77) X(w, m, 7, )= —8(AfuX|11)SEN WA TN LI Frim)
X7 +a(m) +r(m) —|w|, ©) +X*(w, m, j, z) ,
where
—8(afu% +)SgN WAN "N T MX(F - r(m) — |w), x)
1.78) X(w, m, 7, €)= if r(m)>0,
0 if r(m)=0.
Let
(1.79) X+, 5)= {L‘““'"’ if a(l,. n)x is admissible ,
0 otherwise ,
. [ (1 if i<k§j )
1.80 , 71k) =
( ) @, 31k) 10 otherwise .

§2. Renewal equation and Fredholm determinant.

In this section, we will introduce renewal equations on s(u, x) and
w(n, ), and prepare several lemmas and theorems which we use in the
next section. We will show in Lemma 2-1 and Lemma 2-2 that the type
of words determines symbolic structure of the mapping F.

LemMMa 2-1. i) A word w=a,---a, ts admissible if and only if,
Sfor each i (1=4=<n), one of the following holds:

a) a,#0,

b) a;,=0 and a,---a,<a(l, n—i+1).

ii) For admissible words w, w' € W(F), ww' € W(F) if and only if
one of the following holds:

a) w 18 of the type (0, 0),

b) w is of the type (p, 0) (p>0) and a(l, p)w’' =a(l, p+|w’)),

c) w s of the type (p,q) (v, ¢>0) and a@d, p)w’ <a(1 p+w'|) and
al, Qw'=a(l, g+w').

iii) If w is complete, then F“*"((w))>(0, 1).
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ProoF OF i). If m=1, the assertion is trivial. Suppose that the
assertion holds up to n—1. For a word a,---a, for which a,---a, is ad-
missible, if a,#0, (@, - -a,) is admissible since F((a,))>(0, 1). On the other
hand, if ¢,=0 and a,---a,<a(l, n), then F(1)<xz for some ze€(a,--a,).
This completes the proof.

PROOF OF ii). By i), it is sufficient to show that if

2.1) a(l, p+Qw'=a(l, p+q-+w'l)
and
2.2) al, Qw'=a(, g+ |w']) ,

then for any r (r+#p+q) which satisfies

(2.8) w=w"a(l,r) w'e WF)),
(2.4) a1, P)w' =a(, r+w'))
holds.

case 1) Suppose that sgna(l, p+g—7r)=+1. Then

(2.5) a(l, p+g—r)ad, w'=a(l, p+Qw =a(, p+q+|w')
=a(l, p+g—r)a@+q—r+1, p+qg+w')),

and from the admissibility, we have the last term of (2.5) equaling

(2.6) all, p+q—r)a@, r+|w')) .
Thus
2.7 a@, rw' =a@, r+|w')) .

case 2) Suppose that sgna(l, p+g—r)=—1 and that r+#q. Since
a(l, g—r)=+1, as in the case 1) we get

(2.8) ald, Pw'=a@, r+|w')) .
This completes the proof.

PROOF OF iii). By ii), if w is of the type (0, 0), ww' € W(F') for every
w' € W(F). This shows that F'*"((w))>(0, 1).

LEMMA 2-2. Suppose that 6, is of the type (16,, 16,)). Then 6,., ts
either of the type (|6,l, 16,..) or ‘(|0,,+1|, 0). Moreover, if 0,., is of the type
(165411, 0), then 6.., is of the type (|6,.l, 0).
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PROOF. Suppose that 6,,, is of the type (|6,], |6,]) (0<t=<r). Then by
the assumption of the lemma,

(2.9) a1, 6,1.)>a(1, |8,.4)a, 6.)
and
(2.10) | o, g14:=0 .

Since sgn a(l, |6, )= +1, we get by (2.9)
(2.11) a(|0,_gl +1, 16,..)>a(1, |6,)) .

In view of (2.10), this contradicts the admissibility of 4,,,. Now assume

that 4,,, is of the type (6,,, 0). Suppose that 6.+, is of the type (|6,], |6.)
(t>0). Then

(2°12) ‘ a’(lv I0r+1{)>a(|0q[+1’ |0q+r—1|)
and
2.13) o1 =0 -

By (2.12), we get

(2.14) a(l, 16.Dadl, |6.)=a(, [6,+.))>a(l0,/+1, 84,4
=a(19 Iosl)a(,0q+a,+1’ loq+r+1|) .

Since sgn a(l, |0,))=—1, we get by (2.14)
(2.15) a(l, 16.)) <a(|0g+sl +1, 044 psa]) -

In view of (2.18), this contradicts the admissibility of 4,.

In order to write down the relevent renewal equations, we need two
more lemmas. Since

(2.16) s(n, 2)=3.7(p, n, z) ,
we first calculate 7(p, n, ).

LEMMA 2-3. i) If 6, is of the type (16,1, 0) and 6,,, is of the type
(1605411, 0), then

(2'17) 7(p, n, x)z'r(py n, x)+x(n’ x)(leply ,6,,_,_1'](’)1,) .

i) If 0, is of the type (6,),10,)) and 6,., is of the type (6, |6,..),
then
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(2.18) (D, n, ) =X*(n, )(|0,], |6,../1(n) .

iii) If 6, is of the type (6., 10,]) (r>0) and 6,,, is of the type
(10,44, 0), then
(2.19) r(p, n, x)=:2;‘,:?(q, n, ) +r®, n, ) +X(n, 2)(16,], 10,../1(n)
—X*(n, )(10,), 10,]1(n) .

PROOF. By Lemma 2-1, i) and ii) are trivial. We will prove iii) when
sgn f,=+1. For the case sgn §,= —1, the proof is almost the same. Let
t=t(p), which we defined in (1.32). Then

2.20) F(p, n, x)=\"?% ng k(p, 5)s(n—10,]—7, x)
—'7\4_0? % k(7'9 j)S(’n'— lep| _j’ m) _7\'_0'0'.“3(”_ 10a0r+1|’ m)
i=1

+X('n, m)(t! lap—i-l'](n)_l')\'—o‘x(n—leal: x)(t: I030r+1”(n)
+X*(n, 2)(16,l, tl(n) .

On the other hand, since sgn 0;= -1,

@21) 5 (g n—lo), ®y=s(n—0, ®)— 3, 7g, n—0,), 2)

=s(n—10,!, w)—gj(q, n—|0,], ) —{x"rs(n—10,], x)
-\ ,Egl k(p, 5)s(n—10,| —3, ) —\"r+18(n—16,0,.), x)
+X(’n—10,|, x)(l0p|7 ]0:0r+ll](n)} .

Moreover, since

(2.22) A Pss(n—16,], ) —F(0, n—|0,|, ) =\"{s(n—|8,|, x)
—,Zg]l kEQ©, 5)s(n—10,1—J, ) —X(n—10,|, 2)(0, |6,]](n—16.,])}

'——-’I'(S, n, w)+)\,-oa+1s(fn_i0’+1|’ x)—X(n, w)(’aslv I03+1‘]<n)
_)\"'aaX(n_lﬁJ’ 97)(0, ‘01”(%—'0:[)

and

(2.23) X(n, 2)(10,], 16,41]1(n) +N"%X(n—16,], 2)(0, |6,]}(n—16,])
=x+(n’ x)(laal’ lao+1l](n) ’

repeating this procedure, we get
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r—1 1
A s(n—18,), x)—q§=lo (g, n—10,l, x)= >, r(g, n, x)

84r—

g=8

+A"lrs(n—10,l, ) — X+ (n, 2)(|0,], 16,/1(n) .

Combining (2.20) and (2.21), we get the proof.

LEMMA
(2.25)
Then
2.26) 1)

@.27) i)
(2.28) iii)
2.29) iv)
2.30) V)

(2.31) i)
(2.32) vii)

ProoF.
(2.33)

where

(2.34)

2-4. Let

by.s= k@, =Sk, j—1) .

149

b, ;=N\ "o L10p1+D) if j=1 and sgna,,,1, 1)s(@,.,.)=+1.

bs,i=N2byg, 14 if 2=j5<|wp.l .

0
b, 1w, 1 =N ?big,

by, 1w, 1 =N02(b)g, | — NP 41)

by, 105,141 = AP AN

a<0

by, 108, 141 = AP AT

a>0

b, ;=0 otherwise .

k(p, j)=2§%j* (Zp,i N—a)h—ap.,_l(l,i—l)(;o )\,—a)g‘——i_'_k*(p’ ,7) ,

if sgnwi,,=+1.

if Sng@U;+1=:__1 .

if sgnw;,,=+1.

if Sng@v;+1::—'1 .

J*=min{y, lwp.} ,

>\ is the sum over all a € A which satisfies

and
(2.85) i)

(2.36) ii)

a<@,.,; and a=+0, if

a>a,.,;, and a#0, if sgna,,,1,:-1)=-1,

E*(p, 3)=N?( AN
a<0

sgna,, 1, t1—1)=+1,

(Z x—a)j—|0p+1|+|0p|—1

if sgnwiu=+1 and j>lwial,
E*(p, ) =N2(0 NN (S N ) T 0p i HI0pl
a>0 a®0

if sgnwi,=—-—1 and j7>|w.l,
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2.37) iii) k*(p, 5)=n"crn®d :
if j<|w:;] and J satisfies one of the following:
a) sgna,.,(1, N=+1,  @Gpuu>0 and Ap+1,570
b) sgnea,.,1, 5)=-1, Opi1,;1:<0 and a,,, ;#0,
(2.38) iv) k*(p, 7)=0 otherwise .

Hence, the proof easily follows.
The relevant renewal equation takes the following form.

THEOREM 2-5. i) The radii of comvergence for X(z;x) and w(z; x)
are greater than ef.
ii) For |z|<¢f,

(2.39) w(z; 2)=X(z; 2)/D(2) .

ProOOF. The radii of convergence for X(z; x) and w(z; ) both equal

(2.40) exp(}_igl_—l— log x““"") =exp(}i£ % log(F"")’(l))gee .

n—r00 n—>c0

Using Lemma 2-3 and Lemma 2-4 to s(n, £) — ez M *)8(n—1, x), we get
(2.41) s(n, ©) =3, bs(n—j, ) +X(n, ©) — (S A" —1, 7) .
§=0 a#0

This is the renewal equation for s(n, x). Now we show the renewal
equation for w(n, x), that is,

(2.42) w(n, ©)=3(S N")is(n—j, 2)

§=0 a+0
= z_‘, bw(n—j, x)+X(n, ) .
P

This shows ii).

To calculate the decay rate of correlation, we need to express
w(w, m, n, ) in terms w(n,x). For this purpose, we must consider
w(m, n, x). To beginning with, we have to calculate the values of
r(p, m, n, x) and k(p, m, 7).

LEMMA 2-6. Let 6, be of the type (16,,16.)). Then we have the
Jollowing: '

(2.43) i) r( m,n o)=rp nx) if m=9,,



@.44) i)
2.45)  iii)
2.46)  iv)
@47 V)
@.48)  vi)

PRrOOF.
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r(p, m, n, x)=\"’ 5;. k(p, m—10,|, 5)s(n—|0,|—7J, )
+A(n, x)(m—1, |6,4,]}(n) ,
if 10,|=m=160,.), m>t() and sgnb,=+1,
'I'(p, m, n, x)=7\'—a(l’M)w(n""m; x)_'h_op Zl k(p9 m_laply j)
. 7
X 8(n—10,|—J, ) —n"r18(n—1{0,.., )
+X(n, 2)(m—1, |6,.,/1(n) ,
Wf 10,l=m=10,4. , m>t(p) and sgné,=-—1,

r(®, m, n, £)=X*(n, )(m—1, |6,,,]](n) ,
if  O,+, 18 of the type (10,, 10,..]) (hence m=t(p)) ,

r(®, m, m, ) =3, (5, m, B)+N 3. (k(p, m—16,], )
8=q J

—k(r, m—10,], §)+(r, D)s(n—8,1—3, 2)
+X(n, )(m—1, |0,.,]1(n) —X*(n, ©)(16,], 16,1(n) ,
2f 6,4, 18 of the type (16,5, 0), m=t(p) and sgnf,=+1,

r(p, m, n, ) =p§-11 r(s, n, ) +N"78(n—10,|, x)
8=0

—\70 3 (k(p, m—[0,, 5)—k(r, m—16,], 3)

+k(r, 7))s(n—10,] — 3, ) —\"0r+18(n — 0,4/, ¥)
+X(n, £)(m—1, |6,..1(n) —X*(n, 2)(|0,, 16,]1(n) ,
if 0,41 18 of the type (10,4, 0), m=t(p) and sgn ,=—1.

As Lemma 2-8, we can prove i), ii), iii) and iv). Thus we

will prove v), the proof of vi) is almost the same.

(2.49)

r(p, m, n, )=x1"% ; k@, m—16,l, 5)s(n—|6,|—J, x)

— N0 2 k(’l", m’—lﬁplv j)s(n—lapl'—jv x)_x_0q0r+ls(n_"|0q0r+1|’ w)
3

+X*(n, x)(m—1, t(p)](n) +X(n, 2)(E(D), 10,+.]1(n)
+ AU (1 —0,], ©)E(D), 1048,4:11(0) +N % @%_1 (s, n—|0,, %) .

On the hand, as in Lemma 2-3, |

(2.50)

gz'ﬂ r(s, n—|0,l, x)=s(n—14,, x) —g r(s, n—10,l, x)

A Ors(m—10,], )10 3 k(r, s(n—10,1— 7, @)
A8 — 0,0, 1), ) — X1 — 18], 2161, 10,8,4:1(m) -
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Combining (2.49) and (2.50), we get the proof.

LEMMA 2-7. i) For 1=m=|wi.l,

(2.51) k(p, m, j)—("% Nk(p, m, j—1)
k@, )=k, 1) if j>m,
=A% lm) ©f j=m and sgna,,, 1, m)s(a,,, ;..)=+1,
0 otherwise .
ii) Let 6, be of the type (10,l, 10,]). Then for |0,|<m=t(p) ,
(2.52)

{k(p, m_lapli _’j)"‘k('l", m-—lepll j)+k(r’ .7)}
— AT (D, m—16,], 5—1)—k(r, m—6,], §—1)+k(r, j—1)}
=k®, 9)— (2 "kp, §-1) .

The proofs are almost the same as in Lemma 2-4, thus we omit them.
LEMMA 2-8. For n>m>0,

(2.53) w(m, n, x)

(A —g, 2)—( 3 A wn—g—1, )}

ay=+

+ ZZ:L bjwn—7, )+ X(n, x)

if a(l, m) is of the type (q, r) (r>0),
=(A"obm 4 -=E+ bwn—3, x)+X(n, x) ,

if a1, m) is of the type (m, 0) and sgna(l, m)s(as.)=+1.
_EZ bwin—3, x)+X(n, x)
Jzm+1

©f a(l, m) is of the type (m, 0) and sgn a(l, m)s(as,.,)=—1 .

Using Lemma 2-6 and Lemma 2-7 to

W(m, n, x)—z (%N_G)iw(m, n_j’ x) ’

j=1
we can prove the lemma.
Now we can calculate w(w, m, n, ).

PROOF.

LEMMA 2-9. For a word we W(F),

1) f one of the following holds:

1) w<a(m+1, m+|w]) and s(as,,)=-+1,
2) w>a(m+1, m+|w]) and s(as,)=—1,
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then
(2.54) w(w, m, n, x)=0,
ii) otherwise,

(2.55) w(w, m, n, x)=sgn WA —8(asx L )AL Hrim)
x{. 2 bwn+a(m)+rim)—|w|—7,2)+X(n+q0m)+r@m)—wl, ))
+wi(w, m, n, x) +w.(w, m, n, x),

where

(2.56) w,(w, m, n, )
)\‘—w)\la(l,q(m)+r(m))>\l—-a(1,q(m)),w(n___lwl_l_,r(m)’ x)
—wy(w, m, n, x) ,
tf sgn a(l, p(m))s(asm+.)sgn wrs(alp )= —1,
0 otherwsise ,

CinvHYwn—|w|+r(m)—1, x) wf r(m)>0,
(2.57) ws(w, m, n, x)={ a#0

0 wf r(m)=0,

A w(n—|w|, x) f r*(m)>r(m)>0 and
(2.58) wy(w, m, n, x)= 8(A7xmy+1)8 (A (my+1) = —1 ,

0 otherwise .

PROOF. From the assumption of w(w, m, n, x), if w>a(m+1, m+|w)),

0 if an.,=0,

2.59 wlw, m, n, )= .
(2:59) ( ) NN+, ntqtr—|w|, 2) if a5, >0,

where w is of the type (g, ). Thus by Lemma 2-8, the assertion is
proved. For the case w<a(m-+1, m-+|w|), the proof is almost the same.
Now assume that w=a(m+1, m+|w|). Then

(2.60) w(w, m, n, £)=>, """,
where the sum is over all v which satisfies
(2.61) [v|=n—|wl,

and

2.62)  a(l, m+iwhvr=a(l, <) if sgna(, m)s(an)=-1,
a1, m+w|)ve>a(l, ) if sgna(l, m)s(as.)=-+1.
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Thus if a(l, m+|w|) is of the type (m+|w|, 0),

A ™ap(m 4+ |lw|, n+m, x) ,
if sgna(l, ms(an.)=-1,
A *w(n—|w|, 2) =A™ wim+|w|, n+m, x) ,
if sgna(l, m)s(as,)=+1.

(2.63) w(w, m, n, x)=

Thus also by Lemma 2-8, we can prove the assertion. For the other
cases, the proofs are more complicated but we can prove them in a
similar way.

COROLLARY 2-10.

(2.64) w(w, m, n, x)=-zz|“| b;(w, m)w(n—7, x)+X(w, m, n, x) .

The proof is trivial.
Now we will show that 1 is one of the Fredholm eigenvalues.

LEMMA 2-11. Suppose that £>0. Then we get:
(2.65) i) o1)=0.
ii) For any word we W(F),

(2.66) S(w) (@)X(m, x)dx= —s(an.)sgn a(l, m)A"*“™ 3 bi(w, m) .

PrROOF. Let
(2.67) W(n, 0)= ﬂw) Wn, x) ,
(2.68) W(w, m, n, 0)= ﬂw) Ww, m, n, x)
and

(2.69) F(w, m, n)=the set of words v=a,---a, € W(w, m, n, 0) such that
a,:--a, ¢ Ww, m, n, 0) for any 1in—-1.

Then we define

(2.70) w(n, 0)= GWZ(” o A",
2.71) w(w, m, n, 0)= eW(Z ) AT,
(2.72) Sfw,m,m)= 3 AT

veF(w,m,n)



PIECEWISE MONOTONIC MAPPINGS

and we denote the generating functions of w(n, 0), w(w, m, n, 0) and
fw, m, ») by w(z; 0), w(z; w, m) and f(z; w, m). Then as for Theorem 2-5

and Corollary 2-10, we get

(2.73) w(z; 0)=(2(2)™",

and

(2.74) w(z; w, 'm)=(§‘, b;(w, m)zH)w(z; 0) —w*(w, m)z'*",
where

(2.75) w*(w, m)= {1 if 'r(m.)>0 and  8(@¢m +rim+)8(@m+)=—1,
0 otherwise .

Since

(2.76) ww, m, n, 0)= 3. faw, m, ipotn—i, 0),
we get

(2.77) w(z; w, m)=f(z; w, m)w(z; 0) .

Hence by (2.78) and (2.74)

(2.78) Sf(z; w, m) =EJ_ b;(w, m)z —w*(w, m)z'*'0(2) .

Thus, by virtue of (2.78), we get

(2.79) —s(am+1)sgn a(l, m))»““"”’s (w) (@)X (m, x)dz
=23 3 flw, m, AP A-Z07)

=f1; w, m)
=3 b(w, m)—w*(w, m)d(1) .

Hence, for w=¢ and m=0, since w*(¢, 0)=0 and b;,(w, m)=>b;, we get

(2.80) > b;=1,

that is, #(1)=0. This completes i). Substituting this to (2.79), we get ii).

§3. The decay of correlation.

In this section, we will prove Theorem 0-1 and Theorem 0-2.
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first show that o(x) is the density of the invariant probability measure
with respect to the mapping F.

LEMMA 38-1. Assume that £>0 and that n<1. Then we get:
3.1) i) p(x)=0.

G.2) i) S p@)dz=1 .
iii) For any fe L},
3.3) | Aoo@dz= | rFe@np@de .

iv) For any word we W(F),

B9 | w@p@ds=—@ W) S 5 (~s(az.)sen adt, m)
X b;(w, m)n~ebm
PrROOF OF iv). By virtue of (2.66), this is trivial.

ProOF OF iii). For any word we W(F'), we get:
1) If ai,,=0,
3.5) 2 Xm, aa=_ 3, sgna(l, mneome
=bp+A(m+1, x) .
2) If ai,,>0, then as above,

(3.6) >% A(m, ax)"*=b, ., +X(m+1, x) .

acAd

Hence, appealing to Lemma 2-11, we get

3.7) S (> (F@)X(1; p)de= S x‘“S (wd(x) g‘,o A(m, ax)dz

XY}

=§ {w)(x) ,..Z:‘o b,,,+1da:+s {w)(x) g,o A(m+1, x)dx
""S @A 2)dz .

On the other hand, by the assumption, {(w): we W(F')} is a generator.
This proves iii).

PRrROOF OF ii). in iv), put w=¢. Then, since wk=a(l, m),
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(3.8) bi(p, m)=—s(an)sgn a(l, m)b LA™ .
Thus
3.9) [ 205 o3da= 3, | 2m, wydr=3 51,0,

=3 nb,=—0'(1) .

PROOF OF 1i).
(3.10) p@)=—0'(1)7X(1; @) =Um(1 —2)X(z; ©)/0(2)

=1i¥n(1—z)w(z; 2)=0 .

This proves i).

LEMMA 38-2. Suppose that £¢>0 and 7<l. Then for ¢>0 which
satisfies (P+e)ef~*>1 and for a function fe BV, ‘

(8.11) ) (<o .

ii) For sufficiently large n,

(3.12) S |f@) = {(f)n+ (S} @) de < V(e

iof fi+fi=Ff and both f, (i=1, 2) are monotone.

PROOF. Assume that a function f is monotone. Then for sufficiently
large n,

3.13) M) < V@ +e) -+ —1)"
and
(3.14) | 1w — (@l de< Ve

This proves the lemma.

LEMMA 3-3. Assume that ¢>0 and n<l. Then for any >0, there
exists a constant K, such that

(3.15) lw(n, ©)— o) < K,(p+e)" .
PROOF. By Theorem 2-5 and the definition of p,
(3.16) w(z; x) — (@)1 —2) "' =X(z; 2)/B(2) +(D'(1))7A(1; 2)(1—2)*
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is analytic in |z|<%™'. Thus for [2|<()+¢&)™%, there exists a constant K,
such that

3.17) lw(z; x)—p@)1—2)"" <K, .
This completes the proof.

LEMMA 3-4. Assume that §>0 and n<l1. Then for any >0 which
satisfies (+e)et~*>1, we W(F) and g € L', there exists a constant K, such
that for m>|w),

@18 || @ @eE@)e@ds—| wi@e@ads | s@p@ia|
<K.l|gll(7+e)"*((w)) .

PrOOF. By Lemma 3-1,

=n—

@19) | @r@eE@)owds= = | g@pwende

=—(@'(1)* ' Z' | ATV S g(x) 2,.“ X(m, wvx)dx

vi=n-—|w

=—(P'(1))™ 3 Ao S 9(x)(—s(an.))sgn a(l, m)w(w, m, n, x)dx
=(@(L) A s(ai,sgn all, m) | (@)

x| 3 b, myw(n—j, 9)+Xw, m, n, o)} de

i=|wl|

=(@(W)™ Trts(as)sgn a(t, mi| g@) 3% b, m)
X (w(n—j, x)—p(x))dx—S 0@) ;;': by, mp(z)dz
+§ 9@, m, n, ¥)dz) +§ (wd@)o(z)da S 9(x)p(x)das -

On the other hand, from the definition, there exists a constant K, such
that

(8.20) b(w, m)|, | X(w, m, j, x)| <Kp~ve v

Hence, by Lemma 3-3 and using the fact that p is bounded, we get the
proof.

PROOF OF THEOREM 0-1. By the assumption that £>0, Lemma 3-4
shows that the dynamical system ([0, 1], &, F') is mixing. For fe BV,
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3.21) | @r@owan| <[] @+ )@e@as]

+ || @I+ BN
where f, (i=1, 2) are monotone and f,+f,=f. Then by Lemma 3-4
3.22) || @ r@a@ar| <K+ ey lalloats -+

+ || @ — (@) + ) @NaE= @i

+ @@ + (o.M du( gan| .

Since

(3.23) | s =@nap| = || s@in| <o ,

and by Lemma 8.2,
(3.24) lim ¢*¢~* {the second and the third term of the right hand side
of (3.22)}=0.

Hence,
(3.25) lim (7+¢) | @@@)dp=0.

This completes the proof.
Now we will prove Theorem 0-2. We devide the proof into six steps.
i) If a word w is complete, then it is trivial that a®>1.
if) If A*i=1, since any other O-word is complete, A*=1 for any
word w. This contradicts the assumption. Thus we get

(3.26) A<l .

iii) If sgnw{=—1, it is trivial that there exists a periodic point
with its expansion wiw;--- and wi=w’ for any 4.
iv) Assume that sgnw{=+1. Since for m<n,

(8.27) lim F'™(z) ¢ (0) (xe(0)),

a word which is of the form w=was---as (m<n) satisfies either

(3.28) a) aA">1,
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or
(3.29) b) (w0)=¢ .
v) By iv), we get
(3.30) Avire <l

vi) Repeating above arguments, we get that one of the following
holds:

1) There exists n such that sgn wS---w.=—1, and there exists a
periodic point with its expansion w:---wiw::--wiw--- which coincides
with the expansion of c.

2) For any n, sgnws-- -w.=+1 and \*i"*»<1. But, since

(3.31) lim(wf - - -w3)={0} ,

the case 2) can occur only if

(3.32) inf{x € (0)}=0
and
(3.33) V<1,

that is, the expansion of ¢ equals 00--- and 0 is an attractive fixed point.
This completes the proof.
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