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Introduction

In this paper, we shall give a canonical description of the decomposi-
tion and inertia groups, in a $Z_{p}$-extension of a number field $k$ , for any
prime ideal of $k$ ; when this prime ideal divides $p$ , and ramifies in the $Z_{p^{-}}$

extension, all the higher ramification groups are also described. This
description gives immediately a numerical knowledge of the previous
groups, as soon as the p-class group and the group of units of $k$ are
numerically known.

Of course, if $K/k$ is any abelian extension, the law of decomposition
of prime ideals of $k$ is known if and only if the Artin group of $K/k$ is
given; but in practice we have the opposite situation: the extension $K/k$

is specified by mean of some property (for instance $K/k$ is a $Z_{p}$-extension...)
and the problem is to determine its Artin group. The results obtained
in [2] give a general method for this kind of problem, via the use of a
logarithm function, $Log$ , which induces a canonical isomorphism between
the Galois group $G$ of the compositum $\tilde{k}$ of all $Z_{p}$-extensions of $k$ , and an
explicit $Z_{p}$-module attached to $k$ and depending (numerically) on ideal
classes and units. It is well known that the decomposition group $G_{r}$ in
$\tilde{k}/k$ , of any prime ideal $\mathfrak{q}$ of $k$ , is the closure in $G$ of the image of $k^{\times}$

by the Hasse norm residue symbol $(( , \tilde{k}/k)/\mathfrak{q})$ ; then it is sufficient to
compute ${\rm Log}((a,\tilde{k}/k)/q)$ for any $a\in k^{\times};$ we obtain an explicit formula for
${\rm Log}((a,\tilde{k}/k)/q)$ which permits us to describe $G_{r}$ and its subgroups such as
the inertia and higher ramification groups and to give some properties of
jumps of ramification (\S 2). Finally, to illustrate this study, we consider
(in \S 3) the case of imaginary quadratic fields and give all details for a
numerical utilization.

Some basic tools used in this paper may be compared with some ones
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of T. Kubota [6] who first gave important insights in S-ramification
aspects of class-field theory (see also some developments of Kubota’s ideas
in [8]). However, we think that the technics introduced in [2] and used
here will give a new and more powerful approach for these questions.

I am pleased to thank Professor H. Miki for his remarks and sugges-
tions about this paper, and Professor S. Iyanaga for his help conceming
its publication.

\S 1. Canonical description of $G$.
We fixe a prime number $p$ .
For any number field $k$ , we denote by $\tilde{k}$ the compositum of all $Z_{p^{-}}$

extensions of $k$ , and by $G$ the Galois group $Ga1(\tilde{k}/k)$ .
If $K$ is any extension of $k$ , contained in $\tilde{k}$ , we know that the de-

composition and inertia groups in $K/k$ of a prime ideal of $k$ , and more
generally all its higher ramification groups (with upper numbering), are
obtained by taking the restrictions of the corresponding groups in $\tilde{k}/k$ to
$K$ (see [1], chap. 11); then it is equivalent to solve the problem for $\tilde{k}$ .

For any prime ideal $q$ of $k$ we call:
$G_{r}$ the decomposition group of $q$ in $\tilde{k}/k$ ,
$G_{Q}^{0}$ the inertia group of $\mathfrak{q}$ in $\tilde{k}/k$ ,
$G_{r}^{i},$ $i\geqq 0$ , the higher ramification groups of $q$ in $\tilde{k}/k$ (with upper
numbering).

As these groups are free $Z_{p}$-modules, they will be written additively.
We call $S$ the set of prime ideals of $k$ dividing $p$ .
To recall the main result which gives a canonical description of $G$ ,

we use the following notations concerning the field $k$ :
(i) $I,$ $P,$ $I_{s},$ $P_{s}$ are respectively the group of ideals, of principal

ideals, of ideals prime to $S$, of principal ideals prime to $S$,
(ii) $Z_{k},$ $E$ are respectively the ring of integers and the group of

units,
(iii) $C_{s}=\prod,eSk,,$ $U_{s}=\prod,eSU$, are respectively the product of com.

pletions of $k$ at $\mathfrak{p}\in S$ and the corresponding product of groups of local
units; here, $k$ is identified with its diagonal embedding in $C_{s}$ ,

(iv) $log:U_{s}\rightarrow C_{s}$ is the usual p-adic logarithm (we have log $=(log,),\in S$
’

where $log,:U,\rightarrow k$, is the classical extension of the p-adic logarithm on
$U,)$ ,

(v) $B_{s}=C_{s}/V_{s}$ , where $V_{s}=Q_{p}$ log $E$ is the $Q_{p}$-subspace of $C_{s}$ generated
by the logarithms of units of $k$ ,

(vi) $Log:I_{s}\rightarrow B_{s}$ is the function defined by



$Z_{p}$-EXTENSIONS 43

Log $\mathfrak{a}=\frac{1}{n}$ log $a+V_{s}$ ,

where $n$ is any integer such that $\mathfrak{a}^{*}=aZ_{k},$ $a\in k^{\times}$ ,
(vii) $\alpha:I_{s}\rightarrow G$ is the Artin map $(\alpha(\mathfrak{a})=((\tilde{k}/k)/\mathfrak{a}))$ .
We know that Log is trivial on Ker $\alpha$ , and then may be dePned on

$\alpha(I_{s})$ , and finally on $G$ (See [2], \S 2); the image of $G$ by Log is $\overline{{\rm Log} I_{s}}$,
the closure of Log $I_{s}$ in $B_{s}$ :

THEOREM 1.1. The continuous map $Log:G\rightarrow\overline{{\rm Log} I_{s},}$ defined on the
dense subgroup $\alpha(I_{s})$ of $G$ by Log $\alpha(\mathfrak{a})={\rm Log} \mathfrak{a}$ , is a canonical isomorphism

of $G$ onto $\overline{{\rm Log} I_{s}.}$

Now we identify $G$ with $\overline{{\rm Log} I_{s}}$ and we will describe any subgroup
of $G$ in terms of the corresponding subgroup of $\overline{{\rm Log} I_{s};}$ for instance, if
$k=Q$ , the corresponding group $G$ is $qZ_{p}$ , where $q=p$ (resp. 4) if $p\neq 2$

(resp. $p=2$).
Note that if $H$ is any group of automorphisms of $k$ , the groups $G$,

$C_{s},$ $U_{s},$ $V_{s},$ $B_{S}$ are canonically $Z_{p}[H]$-modules and Log an isomorphism of
$Z_{p}[H]$-modules.

\S 2. Canonical description of $G_{r}$ .
2.1. The tame case.
If the prime $q=I$ is not in $S$, then we have immediately the result

because I does not ramify and the Artin symbol $\alpha(I)$ is a topological
generator of $G_{\iota}$ :

THEOREM 2.1. If I is a prime ideal of $k$ which does not divide $p$ ,
the decomposition group $G_{t}$ of I in $\tilde{k}/k$ is $G_{\iota}=Z_{p}$ Log I.

REMARK. As I does not ramify, it is known that the Hasse norm
residue symbol $((a,\tilde{k}/k)/I),$ $a\in k^{x}$ , is given by $((\tilde{k}/k)/I)^{-v_{I}\{a)}$ , where $v_{\iota}:k^{x}\rightarrow>Z$

is the I-adic valuation on $k^{\times};$ then we have, with the Log function:

${\rm Log}(\frac{a,\tilde{k}/k}{I})=-v_{I}(a){\rm Log}$ I ;

then, as the image of $k^{\times}$ by $(( \tilde{k}/k)/I)$ is dense in $G_{\iota}$ , we find again that
$G_{\iota}=Z_{p}$ Log 1.

2.2. The wild case.
If $q=\mathfrak{p}\in S$, then $\mathfrak{p}$ ramifies in $\tilde{k}/k$ , and the description of $G,,$ $G_{l}^{0}$ and

the higher ramification groups $G,$ , requires an extension of the Log
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function.
a) Extension of the Log function to $I$.

Let $\mathfrak{a}eI$; if $\mathfrak{a}\cdot=aZ_{k},$ a $ek^{x}$ , we will put Log $\mathfrak{a}=(1/n)\log a+V_{s}$ , in the
same way as for elements of $I_{s}$ ; then we must define log on $k^{x}$ : the more
natural and efficient definition is that of Iwasawa ([5], \S 4.2):

Let $a\in k^{x}$ and log $=(log,)_{es}$ (in the usual sense); if we consider $a$ in
$k^{\times}$ then there exists integers $e>0$ such that $a=p^{\lambda}u,$ $\lambda\in Z,$ $u\in U,$ , and
we put:

$log,$ $a=\frac{1}{e}log,$ $u$

(equivalently we put $log,p=0$ for each $\mathfrak{p}\in S$).
The properties of Iwasawa’s log function show that $Log:I\rightarrow B_{s}$ is an

homomorphism of groups.

REMARK. It must be noted that for any me $\langle S\rangle$ the value Logm is
defined in $B_{s}$ but is not, in general, in $\overline{{\rm Log} I_{s}}$.
b) Class field theory.

As the Artin map is not defined in $\tilde{k}/k$ for $\mathfrak{p}\in S$, we use Hasse norm
residue symbol, whose main properties are the following ones:

(i) the image of $k^{\times}$ by $(( \tilde{k}/k)/\mathfrak{p})$ is a dense subgroup of $G,$ ;
(ii) more generally, if $k_{(’)}^{l},$ $i\geqq 0$ , is the subgroup $k^{x}\cap U^{l}$ , where

$\{U_{1}^{l}\}_{\iota\geq 0}$ is the usual filtration of the group $U,$ , then the image of $k_{(’)}^{\iota}$ by
$(( \tilde{k}/k)/\mathfrak{p})$ is a dense subgroup of the i-th higher ramification group $G^{\iota}$,
(in upper numbering). Of course, as $G$ is a pro-p-group, we have $G^{0}=G^{1}$,
for all $\mathfrak{p}\in S$.
Then the problem is reduced to the computation of $((a,\tilde{k}/k)/\mathfrak{p})$ , for $a\in k^{x}$

and $\mathfrak{p}\in S$.
c) Computation of $((a,\tilde{k}/k)/\mathfrak{p})$ .

Let $a$ be an element of $k^{x}$ and let $\mathfrak{p}\in S$. Let $aZ_{k}=\mathfrak{p}^{v(l)}a,$ $\mathfrak{a}\in I$, a
prime to $\mathfrak{p}$ ; we recall that $((a,\tilde{k}/k)/\mathfrak{p})$ may be approximated by a suitable
Artin symbol in the following manner:

Let $m=\mathfrak{p}^{-1}\prod_{\mathfrak{g}eS}q$ , and let $n$ be any large enough integer $(n>v,(a)$

for instance), and let $b_{n}\in k^{\times}$ be such that the two following multiplicative
congruences are satisfied:

$b.\equiv amod^{\times}\mathfrak{p}$.
$ b.\equiv 1mod^{\times}m\cdot$ ;

then if we put $b.Z_{k}=\mathfrak{p}^{v_{1}(b)}b_{*},$ $\mathfrak{y}$. $\in I$, we see that $v,(b.)=v,(a)$ and that
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$b_{n}\in I_{s}$ . Then $\sigma_{1*}=((a,\tilde{k}/k)/\mathfrak{p})((\tilde{k}/k)/\mathfrak{b}_{r})^{-1}\in Ga1(\tilde{k}/k^{(n)})$ where $k^{(n)}$ is the ray
class field $mod (\prod_{qeS}q)^{n}$ ; then $\sigma_{n}\rightarrow 1$ in $G$ as $ n\rightarrow\infty$ .

We have ${\rm Log}((a,\tilde{k}/k)/\mathfrak{p})$ which is approximated by Log $\mathfrak{b}_{n}$ ; but, by
using the extension of Log to $I$, described in \S a, we have Log $\mathfrak{b}_{n}=$

Log $b_{n}-v,(a){\rm Log} \mathfrak{p}$ , and we see the following facts:
(i) if $\mathfrak{q}\in S,$ $q\neq \mathfrak{p}$ , then $\log_{r}b_{n}$ is close to $0$ ;
(ii) if $q=\mathfrak{p}$ , then $\log_{\mathfrak{g}}b_{*}$ is close to $log,$ $a$ ; then ${\rm Log} b$. is close to

$(log, a, 0, \cdots, 0)+V_{s}$ ; then finally we obtain:

THEOREM 2.2. For any $a\in k^{\times}$ and $\mathfrak{p}\in S$ , the canonical image of
$((a,\tilde{k}/k)/\mathfrak{p})\in G$ in $\overline{{\rm Log} I_{s}}$ is given by:

${\rm Log}(\frac{a,\tilde{k}/k}{\mathfrak{p}})=(log, a, 0, \cdots, 0)-v,(a){\rm Log} \mathfrak{p}$ .
c REMARK. Let $a\in k^{\times}$ . Then we have (See \S 2.1)

$\sum_{q}{\rm Log}(\frac{a,\tilde{k}/k}{q})=\sum_{qeS}{\rm Log}(\frac{a,\tilde{k}/k}{q})+\sum_{q\not\in S}{\rm Log}(\frac{a,\tilde{k}/k}{q})$

$=(log, a),eS-\sum_{qeS}v_{0}(a){\rm Log} q-\sum_{rs}v_{\mathfrak{g}}(a){\rm Log} q$

$={\rm Log} a-{\rm Log} a=0$ .
Of course this phenomena means the product formula.
d) The decomposition group $G,$ .

To obtain $G$, it is sufficient to compute the $sub- Z_{p}$-module generated
in $B_{s}$ by the elements $(log, a, 0, \cdots, 0)-v,(a){\rm Log} \mathfrak{p}$ , when $a$ varies in $k^{\times};$

we obtain:

THEOREM 2.3. The decomposition group $G$, of $\mathfrak{p}\in S$ in $\tilde{k}/k$ is:

$G,=((log, \pi,, 0, \cdots, 0)-{\rm Log} \mathfrak{p})Z_{p}+(log, U_{p})\times\{0\}\times\cdots x\{0\}+V_{s}/V_{s}$ ,

where $\pi$, is any prime element in $k,$ .
PROOF.
We can choose $\pi$, in $k^{\times}$ .
Let $a\in k^{\times};$ considering $a$ in $k_{\mathfrak{p}}^{x}$ , we have $a=\pi^{\lambda},u,$ $\lambda\in Z,$ $u\in k^{\times}\cap U,$ , and

${\rm Log}((a,\tilde{k}/k)/\mathfrak{p})=(\log_{\mathfrak{p}}a, 0, \cdots, 0)-v,(a){\rm Log} \mathfrak{p}=(x\log_{\mathfrak{p}}\pi,+log, u, 0, \cdots, 0)-$

$x{\rm Log} \mathfrak{p}=x((log, \pi_{\mathfrak{p}}, 0, \cdots, 0)-{\rm Log} \mathfrak{p})+(log, u, 0, \cdots, 0)+V_{s}$ . Conversely, as
$\lambda\in Z$ and $u\in k^{\times}\cap U$, may be choosen independently, and by the fact that
$Z$ (resp. $k^{\times}\cap U,$) is dense in $Z_{p}$ (resp. $U,$), the result follows easily.

COROLLARY. Let $\tilde{H}^{s}$ the maximal subextension of $\tilde{k}$ which is unrami-
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fied on $k$ and such that $S$ splits completely (i.e. in which all $\mathfrak{p}\in S$ split
completely). Then the field $\tilde{H}^{s}i\epsilon$ fixed by the subgroup

$({\rm Log}\langle S\rangle+{\rm Log} k^{\times})\cap\overline{{\rm Log} I_{s}}$

of $\overline{{\rm Log} I_{s}}$.
Of course $\tilde{H}^{s}$ is fixed by the subgroup of $G$ generated by all the $G,$ ,

$\mathfrak{p}\in S$; then it is the subgroup:

$\sum_{eS}((0, \cdots, 0, log, \pi,, 0, \cdots, O)-{\rm Log} \mathfrak{p})Z_{p}+{\rm Log} U_{s}+V_{S}/V_{s}$ .

It is not difficult to prove the equality.

REMARK 1. This result is consistent with the following situation of
class field theory: Let $H$ be the Hilbert p-class field of $k$ and let $H^{s}$ be
the maximal subfield of $H$ where $S$ splits completely, and put $\tilde{H}=\tilde{k}\cap H$,
$\tilde{H}^{s}=\tilde{k}\cap H^{s}$ . Then in the canonical isomorphism $Ga1(H/k)\simeq I/P$ (the class
group $C$) we have $Ga1(H/H^{s})\simeq\{mP, m\in\langle S\rangle\}$ (denoted by $C(S)$) and
therefore $Ga1(H^{s}/k)\simeq I/\langle S\rangle P\simeq C/C(S)$ (the S-class group $C^{s}$).

REMARK 2. Suppose that we write $\mathfrak{p}^{h}=\omega Z_{k},$ $\omega ek^{x}$ , and $\omega=\pi_{l}^{h}w$ ,
$w\in U,$ ; then a representative of Log $\mathfrak{p}$ is $(1/h)\log\omega=\log\pi,+(1/h)\log w$

and $(log,\pi,, 0, \cdots, 0)-{\rm Log} \mathfrak{p}$ is represented by $(log, \pi,, 0, \cdots, 0)$ -log $\pi$,-
$(1/h)\log w=(-(1/h)log, w, \cdots, -\log_{r}\pi_{l}-(1/h)\log_{0}w, \cdots)_{r\neq},$ .

This shows that we obtain a kind of local-global computation involv-
ing the class group (via the number h) and the local units via $log,$ $\pi,$ ;
for instance, $(1/h)log,$ $w$ is not necessarly in $\log_{l}U,$ .

EXAMPLE. Consider $k=Q(\sqrt{-15})$ and $p=2$ ; we have $S=\{\mathfrak{p}, q\}$ and,
as $C\simeq Z/2Z$, we see that $\mathfrak{p}^{2}=((1+\sqrt{-15})/2)Z_{k}$ ; if we take $\pi,=2$ , we have,
in $k_{l},$ $\omega=(1+\sqrt{-15)}/2=4w$ , where $w=(1+\sqrt{-15})/8\in U,$ ; as $\sqrt{-15}\equiv$

$-25$ mod $\mathfrak{p}^{\tau}$ , we have $w\equiv-3$ mod 16, then $(1/2)log,$ $w=2u,$ $u\in Z_{l}^{*};$ we have
also $(1/2)\log_{r}w=2v,$ $v\in Z_{2}^{*}$ . Then

$G,=(2,2)Z_{2}+(log, U,)\times\{0\}=(2,2)Z_{2}\oplus(4,0)Z_{2}$ .
As $G=\overline{{\rm Log} I_{s}}=\langle{\rm Log} I_{8}\rangle+{\rm Log} U_{s}$ (where $I_{8}|3$ and $I_{s}^{2}=3Z_{k}$) we obtain

$G=(2,2)Z_{2}\oplus(4,0)Z_{2}$ ( $=G$, in this example).

e) The higher ramification groups.
We have recall in \S b that $G^{l},,$ $i\geqq 0$ , is the $Z_{p}$-module generated by
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the ${\rm Log}((a,\tilde{k}/k)/\mathfrak{p}),$
$a\in k_{(’)}^{\iota}$ , and the general computation of this symbol

(See \S c) gives immediately (of course, as $G$ is a pro-p-group, we have
$G^{0},=G^{1},)$ :

THEOREM 2.4. For any $i\geqq 0$ , the ramification group $G^{l}$, (in upper
numbering) of $\mathfrak{p}\in S$ in $\tilde{k}/k$ is:

$G_{l}^{l}=(log, U^{l})\times\{0\}\times\cdots\times\{0\}+V_{s}/V_{s}$ .
Now we give some remarks concerning the jumps of ramification in

$\tilde{k}/k$ .
Let $e$, be the absolute index of ramification of $\mathfrak{p}$ . We know that if

$i>e,/(p-1)$ , then $log,:U^{t}\rightarrow(\overline{\mathfrak{p}})^{l}$ is an isomorphism (where fi denotes the
closure of $\mathfrak{p}$ in the ring of integers of $k,$).

Thus we deduce, from the previous description of $G^{l},$ , the following
results:

COROLLARY 1. For $i>e,/(p-1),$ $G^{l},=(\overline{\mathfrak{p}})^{\iota}\times\{0\}\times\cdots\times\{0\}+V_{s}/V_{s}$ , and
$G^{l+\cdot \mathfrak{p}}=pG^{l}$, (hence if $i>e,/(p-1)$ is a jump of ramificat,bon of $G,$ $i+e$,
is also a jump of ramification).

The case of a $Z_{p}$-extension is interesting and yields the following
corollary (cf. Wyman [9]):

COROLLARY 2. Let $K/k$ be a $Z_{p}$-extension of $k$ and let $\Gamma$ be its Galois
group. Then, for $i>e,/(p-1)$ , the set of jumps of ramification of $\Gamma$ , for
$\mathfrak{p}\in S$, is $\{i_{0}+xe,, x\in N\}$ , where $i_{0}$ is the first $jump>e_{\mathfrak{p}}/(p-1)$ .

PROOF. Let $H=Ga1(\tilde{k}/K)$ , and $\Gamma=G/H$. We know that $\Gamma^{l},=G^{l},H/H$

([1], chap. 11, \S 2).
By the previous Corollary 1, if $i>e,/(p-1)$ is a jump of $\Gamma,$ $i+e$, is

also a iump because $\Gamma^{l+\epsilon}=G^{l+l}’ H/H=pG^{l},H/H=p\Gamma^{i},$ .
Let $m>n>e,/(p-1)$ be two consecutive jumps of ramification of $\Gamma$ .

We prove now that $\Gamma^{n+1}=p\Gamma^{n}$ and $\Gamma^{m+1}=p\Gamma^{m}$ . As $\Gamma,\simeq Z_{p}$ , if $\Gamma^{l+1}\neq\Gamma^{l},$ ,
$i>e,/(p-1)$ , we have $\Gamma^{\iota+1}=p^{\alpha}\Gamma_{l}^{i},$ $\alpha\geqq 1$ ; but we have the surjection;

$G^{i},/G^{t+1}\rightarrow G^{l},H/G^{i+1}H=\Gamma^{i},/\Gamma^{l+1}$ ,

and $i$ must be a jump of $G$ , but, as $G^{l+}’=pG^{i},$ , this proves that $G^{i},/G^{l+1}$

is of exponent $p$ and then $\Gamma^{l+1}=p\Gamma^{l},$ . Therefore we have $\Gamma^{n+1}=p\Gamma_{l}^{n}=\Gamma\phi$
.

and $\Gamma_{\mathfrak{p}}^{m+1}=p^{2}\Gamma^{n}$ ; then $G^{n}/G_{l}^{m+1}$ has the exponent $p^{2}$ at least; but as $G^{n+}=$

$pGC$ , it is necessary to have $m+1>n+e,$ , then $m-n\geqq e,$ ; we obtain $m=$
$n+e$, as desired.

To compare these results with the local case, see [7] and the bibliogra-
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phy of this paper.
f) Some particular cases.

(i) If $p$ does not split in $k/Q$ , then as $pZ_{k}=\mathfrak{p}^{e_{p}}$ , we have Log $\mathfrak{p}=$

$(1/e,){\rm Log} p=0$ ; but for a prime element $\pi$ of $k,$ , log $\pi$ is not necessarily
$0$ (except for instance if $\mathfrak{p}$ is principal) (in this direction, we observe that
if $\pi\in k^{x},$ $\pi Z_{k}=\infty,$ $\mathfrak{a}\in I_{s}$ , and then Log $\pi={\rm Log} \mathfrak{a}\in\overline{{\rm Log} I_{s}}$). In this case
we have:

$G,=Z_{p}$ log $\pi+\log U_{s}+V_{s}/V_{s}$ ,

$G^{l},=\log U_{s}^{l}+V_{s}/V_{s}$ , for all $i\geqq 0$ .
(ii) If $p$ does not ramify in $k/Q$ , for any $\mathfrak{p}\in S$ we may take $\pi,=p$ ,

then $log,$ $\pi,=0$ ; but (except if $p$ does not split, then is inert in $k/Q$)
Log $\mathfrak{p}$ is not necessarily $0$ .

In this case we have:

$G,=Z_{p}{\rm Log} \mathfrak{p}+(log, U,)\times\{0\}\times\cdots\times\{0\}+V_{s}/V_{s}$ ,

$G:=(log, U^{l})\times\{0\}\times\cdots\times\{0\}+V_{s}/V_{s}$ ,

for all $i\geqq 0$ .
g) Local norms.

If $K$ is a finite extension of $k$ contained in $\tilde{k}$ , we obtain an effective
computation of $((a, K/k)/q)$ and a criterion for the condition $a$ $ek^{x}$ is a
local norm at $q$ in $K/k’$ . For this we must know the Artin group $A\subset I_{s}$

of $K(A=\{\mathfrak{a}\in I_{s}, ((K/k)/\mathfrak{a})=1\})$ ; then $Ga1(K/k)\simeq\overline{{\rm Log} I_{s}}/\overline{{\rm Log} A}$ ([2], corollary
to Theorem 2.1.), and the map:

$k^{\times}\rightarrow\overline{{\rm Log} I}_{s}/\overline{{\rm Log} A}$

$a\rightarrow\dagger_{(\log_{1}a,0},$

$\cdots,$
$0$)

$-v_{r}(a){\rm Log} q+-v_{q}(a){\rm Log} q+\frac{{\rm Log} A}{{\rm Log} A}$

,
$ifif$ $q\not\in Sq\in S$

is, essentially, the Hasse norm residue symbol at $q$ in $K/k$ , and its kernel
gives the local norms at $q$ (cf. \S 2, c).

For instance this gives the elements $a\in k^{\times}$ which are local norms at
$q$ , in any finite subfield of $\tilde{k}$ .

This gives also (only for subfields of k) a new approach concerning
explicit reciprocity laws.

\S 3. The case of imaginary quadratic fields.

Such a situation offers many possibilities of numerical computations.
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Let $k=Q(\sqrt{-m}),$ $m$ square free, be an imaginary quadratic field, and
put $H=\{1, s\}=Ga1(k-/Q)$ . Such a field has two fundamental $Z_{p}$-extensions
which are normal over $Q$ (See [2], \S 3, or [4], \S 3): the cyclotomic one,
$k_{\infty}=kQ_{\infty}$ , for which the law of decomposition of prime ideals is rather
trivial (because $k_{\infty}/Q$ is abelian), and the prodiedral one, $F$; we have
$k_{\infty}F=\tilde{k}$ , but, for $p=2,$ $k_{\infty}\cap F$ is of degree 1 or 2 over $k$ .

We call $\Gamma\simeq Z_{p}$ the Galois group $Ga1(F/k)$ (then $H$ acts on $\Gamma$ via the
relation $ s\gamma=-\gamma$ , for all $\gamma\in\Gamma$).

As log $E=0$ , we have $B_{s}=C_{s}$ and then Log $=log$ . We can then
describe the subgroups of $G$ corresponding to $k_{\infty}$ and $F$ (See [4], \S 3):

$Ga1(\tilde{k}/k_{\infty})=G^{*}=\overline{\log I_{s}}^{*}$ ,

the kernel of the trace map $C_{s}\rightarrow Q_{p}$ restricted to $\overline{\log I_{s}}$ ,

$Ga1(\tilde{k}/F)=G^{H}=\overline{\log I_{S}}^{H}$ .
Of course, if $p\neq 2,$ $k_{\infty}$ and $F$ are linearly disjoint over $k$ and $\overline{l\log I_{s^{*}}}=$

$((1-\underline{s)/2)\overline{lo}}gI_{s}, \overline{\log I_{S}}^{H}=((1+s)/2\overline{)\log I}_{s}$ ; if $p=2$ , we recall that $[k_{\infty}\cap F:k]=$

$(2Z_{2}:\log I_{s}^{H})=2^{\chi},$ $x=0$ or 1 (See [4], Theorem 3.1 and its corollary).
Here we give only the results concerning the law of decomposition

of prime ideals of $k$ in $F/k$ (the general case, in $\tilde{k}/k$ , for the various $Z_{p}-$

extensions, is obtained easily from the corresponding information in $k_{\infty}/k$

and, mainly, in $F/k$).
As $\Gamma\simeq Z_{p}$ , all subfields of $F$ are characterised by their degree over

$k$ . For this we suppose that $\overline{\log I_{s}}$ is numerically known (then $\overline{l\log I_{s^{*}}}$ ,
$\overline{\log I_{s}}^{H}$ and $\chi$ are known).

REMARK. Let $\tilde{H}$ (resp. $\tilde{F}$) be the intersection of $\tilde{k}$ with the Hilbert
p-class field $H$ of $k$ (resp. $F$); if $p\neq 2,\tilde{H}=\tilde{F}$ is the unique subfield of $F$

of degree ($\overline{\log I_{s}}$ : log $U_{s}$); if $p=2$ , we have shown in [4] (See \S 2, pp. 13
and 14) how to find $\tilde{H}$ and $\tilde{F}$ (of course $[\tilde{H}:\tilde{F}]=1$ or 2).

We distinguish the tame and wild cases.
a) Tame case. Let $\mathfrak{q}=I\not\in S$ ; the problem is to determine $(\Gamma;\Gamma_{t})$

which is given by the index $(G:G_{\iota}+G^{H})$ . We know (See \S 2) that $G_{\iota}=$

$Z_{p}$ log 1; then we have the following cases:
(i) if I does not split in $k/Q,$ $I=I$ and $G_{I}\subset G^{H}$ , therefore I splits

completely in $F$.
(ii) if I splits in $k/Q$ , we have two cases:
-if $p\neq 2,$ $G/Z_{p}$ log $I+G^{H}\simeq G^{*}\oplus G^{H}/Z_{p}$ log $I+G^{H}\simeq G^{*}/Z_{p}\log(I^{1-})$ , and

$(\Gamma:\Gamma_{1})=$ ($\overline{\log I_{s^{*}}}:Z_{p}$ log $I^{1-}$ ).
-if $p=2$ , we have the exact sequence:
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$ 1\rightarrow G^{*}/G^{*}\cap$ ($Z_{2}$ log $I+G^{H}$) $\rightarrow G/Z_{2}$ log $I+G^{H}$

$\rightarrow^{Tr}4Z_{2}/4\times 2(l)Z_{2}+4\times 2^{\chi}Z_{2}\rightarrow 1$ ,

where $lZ_{k}=I\cap Z$, and $\pm l=1+4\times 2(l)u,$ $u$ odd.
Let $\sigma\in G^{*}$ be such that $\sigma=a\log I+\sigma_{0}$ , $a\in Z_{2}$ , $\sigma_{0}\in G^{H}$; then $0=$

$a$ log $l+2\sigma_{0}$ , and $\sigma_{0}=-(1/2)a$ log $l$ . As $G^{H}=2^{x+1}Z_{2}$ and log $l=2(l)+2v,$ $v$ odd,
we must have $2^{1+\cdot(l)}a\in 2^{1+\chi}Z_{2}$ , therefore $a\in 2^{\chi-\cdot(t)}Z_{2}\cap Z_{2}$ ; this is sufficient
and gives $ G^{*}\cap$ ($Z_{2}$ log $I+G^{H}$) $=2^{{\rm Max}(\chi-*(l),0)-1}Z_{2}$ log $I^{1-}$ .

Then we have the following values for $(\Gamma:\Gamma_{\iota})$ :

The result does not depend on the choice of $I|l$ .
b) Wild case. Let $q=\mathfrak{p}\in S$; here the prime $\mathfrak{p}$ ramifies in $F/k$ and

we must determine the groups $\Gamma,,$
$\Gamma^{0}$, (which do not depend on the choice

of $\mathfrak{p}\in S$); the decomposition field is contained in $\tilde{F}$, and the inertia field is $\tilde{F}$

which is known ([3], array III, p. 14). Then it remains to compute for
instance $(\Gamma,:\Gamma_{l}^{0})$ which is the residual degree of $\mathfrak{p}$ in $F/k$ ; we see that
$(\Gamma,:\Gamma^{0},)=(G,+G^{H}:G^{0},+G^{H})=(G,:G_{l}^{0}+G_{1}^{H})$ and we have the following cases:

(i) if $\mathfrak{p}$ is inert in $k/Q$ , then (See case (ii) in \S 2, f) we have $G,=$

$G^{0},=\log U_{s}$ , and therefore the decomposition field is also the inertia field $\tilde{F}$.
(ii) if $\mathfrak{p}$ ramifies in $k/Q$ (See case (i) in \S 2, f) we have the following

results:
-if $p\neq 2$ , then $p|m$ and we can take $\pi=\sqrt{-m}$ ; then $G,=$

$Z_{p}\log(\sqrt{-m})+\log U_{s}=\log U_{s}$ ; therefore the decomposition field is also $\tilde{F}$.
-if $p=2$ , we have $G,=Z_{2}$ log $\pi+\log U_{s}$ where $\pi=\sqrt{-m}$ if $ m\equiv$

$2$ mod 4, $\pi=1+\sqrt{-m}$ if $m\equiv 1$ mod 4. The computation of log $\pi$ and that
of log $U_{s}$ given in [3] (See array I, p. 10) give the following results con-
cerning $G,$ , and the index $(G,:G^{0},+G^{H})=$ ($G,$ : log $U_{S}+G^{H}$):
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In this array, $(a)$ means $aZ_{p}$ .
(iii) if $\mathfrak{p}$ splits in $k/Q$ (See case (ii) in \S 2, f), then $G,=Z$, log $\mathfrak{p}+$

$\log_{\mathfrak{p}}U_{l}\times\{0\},$ $G^{0},=\log_{l}U,$ $\times\{0\}$ :
-if $p\neq 2$ , we recall that the inertia and decomposition fields of $\mathfrak{p}$ in

$F/k$ (resp. $\tilde{H}$ and $\tilde{H}^{s}$) do not depend on the choice of $\mathfrak{p}$ ; but $\tilde{H}$ is fixed
by $log,$ $U_{\mathfrak{p}}\times\{0\}+G^{H}=\log U_{s}$ , and $\tilde{H}^{s}$ is fixed by $Z_{p}$ log $\mathfrak{p}+\log_{l}U,$ $\times$

$\{0\}+G^{H}=Z_{p}$ log $\mathfrak{p}+\log U_{s}$ ; therefore $(\Gamma,:\Gamma^{0},)=$ ($Z_{p}$ log $\mathfrak{p}+\log U_{s}$ : log $U_{s}$) $=$

( $Z_{p}$ log $\mathfrak{p}+pZ_{p}\times pZ_{p}:pZ_{p}\times pZ_{p}$).
-if $p=2$ , the result of [4] (array III of Theorem 2.2) shows that

$\tilde{H}/k$ is cyclic, and the final result depends on $x$ ;
. if $\chi=0$ , $[\tilde{H}:\tilde{F}]=2$ , then $(\Gamma,:\Gamma^{0},)=(Z_{2}$ log $\mathfrak{p}+(4,0)Z_{2}+(2,2)Z_{2}$ :

$(4, 0)Z_{2}+(2,2)Z_{2})$ ;
. if $\chi=1,\tilde{H}=\tilde{F}=k$ , and in this case, $\Gamma,=\Gamma^{0},=\Gamma(\mathfrak{p}$ is totally ramified

in $F/k$).
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