Vanishing of Certain 1-form Attached to a Configuration

Kazuhiko AOMOTO

Nagoya University
(Communicated by T. Saito)

This is a remark to my paper [1], "Configurations and invariant Gauss-Manin connections of integrals". In the sequel we use the terminologies in [1].

Consider the integral

$$\widehat{\varphi}(\phi) = \int \widehat{U}(\lambda) dx_1 \wedge \cdots \wedge dx_n$$

for $\widehat{U}(\lambda) = \widehat{f}_0^{\lambda_0} \widehat{f}_1^{\lambda_1} \cdots \widehat{f}_m^{\lambda_m}$, $\lambda_0, \cdots, \lambda_m \in C$ where \widehat{f}_0 and \widehat{f}_j denote functions $1 - x_1^2 - \cdots - x_n^2$, $\sqrt{-1} \sum_{i=1}^n u_{j,\nu} x_{\nu} + u_{j,0}$ respectively. We put $a_{0,0} = 1$, $a_{j,k} = \sum_{i=1}^n u_{j,\nu} u_{k,\nu}$ and $a_{j,0} = u_{j,0}$ for $1 \leq j$, $k \leq m$. $u_{j,\nu}$ are normalized such that $a_{j,j} = 1$ for all j. For the symmetric configuration matrix $A = ((a_{j,k}))_{0 \leq j,k \leq m}$ we denote by $A(i_1, \cdots, i_p)$ the subdeterminant of the i_1, \cdots, i_p th lines and the i_1, \cdots, i_p th columns. A sequence of 1-forms $\theta(i_1, \cdots, i_p)$ for $1 \leq p \leq n+1$ are defined in an inductive way:

$$\theta \left(\begin{array}{c} \phi \\ i \end{array} \right) = da_{0,i}$$

$$(2)_{2} \qquad \theta \binom{\phi}{j, k} = da_{j,k} + \frac{A\binom{0, k}{k, j}}{A(0, k)} da_{0,k} + \frac{A\binom{0, j}{j, k}}{A(0, j)} da_{0,j}$$

$$(2)_{p} \qquad \theta \binom{\phi}{i_{1}, \dots, i_{p}} = \sum_{1}^{p} (-1)^{\nu} \theta \binom{\phi}{i_{1}, \dots, i_{\nu}, \dots, i_{p}} \cdot \frac{A\binom{0, i_{1}, \dots, \hat{i}_{\nu}, \dots, i_{p}}{i_{1}, \dots, i_{\nu}, \dots, i_{p}}}{A(0, i_{1}, \dots, \hat{i}_{\nu}, \dots, i_{p})},$$

$$\text{for} \quad p \geq 3.$$

where \dots , \hat{i}_{ν} ... denotes the deletion of the index i_{ν} . (There are misprints in (3, 9), (3, 10), (3, 11) and (3, 12), [1] which should be corrected as above.)

Received October 30, 1985

Then we have

LEMMA. For arbitrary n+1 indices i_1, \dots, i_{n+1} , the form $\theta(i_1, \dots, i_{n+1})$ always vanishes.

PROOF. First we notice that $\theta(i_1, \dots, i_{n+1})$ depends only on the functions $f_{i_1}, \dots, f_{i_{n+1}}$ from its definition. So we have only to prove the Lemma in case of m=n+1 and $i_1=1, \dots, i_{n+1}=n+1$. We specialize the coefficients $u_{j,\nu}$ such that f_j are all real and that the domain $\Delta: f_1 \geq 0, \dots, f_{n+1} \geq 0$ is not empty and is contained in the domain: $f_0 < 0$. If we take λ to be -1 in the equation (E, III₀), [1], then the latter is simplified as follows:

$$(3) 0 = \lambda_1 \cdots \lambda_{n+1} \theta \begin{pmatrix} \phi \\ 1, 2, \cdots, n+1 \end{pmatrix} \int_{\mathcal{A}} \widehat{U}(\lambda) \cdot \frac{dx_1 \wedge \cdots \wedge dx_n}{f_1 \cdots f_{n+1}}.$$

Suppose λ_i are all positive, then the integral part in the right hand side is positive. Hence the form $\theta(i_1, \dots, i_{n+1})$ must vanish identically as an analytic continuation. Q.E.D.

As a consequence of it, the formula (E, III₀) in Proposition 3, 4, [1], turns out to be

$$(4) d\widehat{\varphi}(\phi) = \sum_{i=1}^{n} \frac{1}{s!} \sum_{i_1, \dots, i_s} \frac{\lambda_{i_1} \cdots \lambda_{i_s}}{(\mu_0 + 1) \cdots (\mu_0 + s - 1)} \theta \begin{pmatrix} \phi \\ i_1, \dots, i_s \end{pmatrix} \times \frac{A(i_1, \dots, i_s)}{A(0, i_1, \dots, i_s)} \widehat{\varphi}_*(i_1, \dots, i_s)$$

for
$$\mu_0 = -2\lambda_0 - n - 1 - \sum_{i=1}^{m} \lambda_{j}$$
.

REMARK. By a direct computation $\theta(j,k)$ is expressed in the following manner:

$$(5) \qquad \frac{A\binom{0, j}{0, k}\theta(j, k)}{A(0, j, k)} = \frac{1}{2} \{-d \log A(0, j, k) + d \log A(0, j) + d \log A(0, k)\},$$

so that the Lemma is trivial for n=1, because A(0, j, k) identically vanishes. However, generally it seems rather difficult to prove in a purely algebraic way the vanishing of the forms $\theta(i_1, \dots, i_{n+1})$.

References

[1] К. Аомото, Configurations and invariant Gauss-Manin connections of integrals I, Tokyo J. Math., 5 (1982), 249-287.

Present Address:
MATHEMATICAL INSTITUTE
FACULTY OF SCIENCES
NAGOYA UNIVERSITY
CHIKUSA-KU, NAGOYA, 464