Hilbert Transforms on One Parameter Groups of Operators II

Shiro ISHIKAWA

Keio University

Introduction

In [2], we studied about the existence theorems of a Hilbert transform on a complete locally convex space. In this paper, we shall consider some properties of the Hilbert transform. For this, we define several terms, some of which were already defined in [2].

DEFINITION 1. Let R be a real field. Let X be a complete locally convex space and let $\{U_t: t \in R\}$ be a one parameter group of operators on X, that is,

- (i) $U_t: X \to X$ is a continuous linear operator for all $t \in \mathbb{R}$, and U_0 is an identity operator on X,
 - (ii) $U_t U_s = U_{t+s}$ for all $t, s \in R$,
- (iii) for any $t \in \mathbb{R}$ and any $x \in X$, $(U_{t+h} U_t)x$ converges to 0 as $h \to 0$ in the topology of X (for short, in X).

Moreover, the following condition (iv) is assumed in this paper:

(iv) $U_t: X \to X$ is continuous uniformly for $t \in \mathbb{R}$, that is, for any neighborhood V of 0 in X, there exists a neighborhood W of 0 in X such that

$$U_t W \subset V$$
 for all $t \in R$.

If $\lim_{T\to\infty} (1/2T) \int_{-T}^T U_t x dt$ exists in X, then we denote it by \overline{x} .

DEFINITION 2. A continuous linear operator $H_{\varepsilon,N}$ $(0<\varepsilon< N<\infty)$ on X is defined as follows;

$$H_{\epsilon,\scriptscriptstyle N} x \! = \! rac{1}{\pi} \int_{\epsilon < |t| < \scriptscriptstyle N} rac{U_t x}{t} dt \quad (x \in X)$$
 ,

(this integral can be well defined since a mapping $t \in \mathbf{R} \to (U_t x)/t \in X$ is continuous on a compact set $\{t \in \mathbf{R} : \varepsilon \leq |t| \leq N\}$). Also, if $\lim_{\epsilon \to 0+, N \to \infty} H_{\epsilon,N} x$

exists in X, we denote it by Hx and call it a Hilbert transform of x. And the domain of H (i.e. $\{x \in X: Hx \text{ exists}\}$) is denoted by D(H).

§1. Special case (in Hilbert space).

In this section, we shall show several results in a Hilbert space, which will be generalized in a complete locally convex space in the following section.

THEOREM 1. Let $\{U_i: t \in \mathbb{R}\}$ be a one parameter group of unitary operators on a Hilbert space X (i.e. $U_i^* = U_{-i}$ for all $t \in \mathbb{R}$). Then, for any element x in X, Hx exists in X. Moreover it is seen that

$$||Hx||^2 = ||x - \bar{x}||^2 \le ||x||^2$$

for all $x \in X$.

PROOF. Let x be any element in X. Since $\{U_t: t \in \mathbb{R}\}$ be a one parameter group of unitary operators on a Hilbert space X, we, by Stone's theorem, see the following spectral representation of $U_t x$;

$$U_t x = \int_{-\infty}^{\infty} e^{i\lambda t} dE(\lambda) x$$

where $\{E(\lambda): \lambda \in R\}$ is a spectral family of a one parameter group of unitary operators $\{U_t: t \in R\}$. In order to show the first part of Theorem, it is sufficient to prove that $||H_{\epsilon,N}x-H_{\epsilon',N'}x||$ converges to 0 as $\epsilon, \epsilon' \to 0+$ and $N, N' \to \infty$. From the spectral representation of $U_t x$, we see that

$$\begin{aligned} ||H_{\epsilon,N}x - H_{\epsilon',N'}x||^{2} \\ &= \left\| \frac{1}{\pi} \int_{\epsilon<|t|< N} \frac{U_{t}x}{t} dt - \frac{1}{\pi} \int_{\epsilon'<|t|< N} \frac{U_{t}x}{t} dt \right\|^{2} \\ &= \left\| \int_{-\infty}^{\infty} \left[\frac{1}{\pi} \int_{\epsilon<|t|< N} \frac{e^{i\lambda t}}{t} dt - \frac{1}{\pi} \int_{\epsilon'<|t|< N'} \frac{e^{i\lambda t}}{t} dt \right] dE(\lambda) x \right\|^{2} \\ &= \left\| \int_{-\infty}^{\infty} \left[g_{\epsilon,N}(\lambda) - g_{\epsilon',N'}(\lambda) \right] dE(\lambda) x \right\|^{2} \\ &= \int_{-\infty}^{\infty} |g_{\epsilon,N}(\lambda) - g_{\epsilon',N'}(\lambda)|^{2} d ||E(\lambda)x||^{2} ,\end{aligned}$$

where

$$g_{\epsilon,N}(\lambda) = \frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{e^{i\lambda t}}{t} dt.$$

It is clear that $g_{\epsilon,N}(\lambda)$ has the following properties:

- (i) $g_{\epsilon,N}(\lambda)$ is a continuous function on R such that $|g_{\epsilon,N}(\lambda)| \leq 1$ for all $\lambda \in R$,
- (ii) if α and β are real numbers such that $0 < \alpha < \beta < \infty$, then $g_{\epsilon,N}$ uniformly converges to 1 (-1) for the closed interval $[\alpha, \beta]$ $([-\beta, -\alpha])$ as $\epsilon \to 0+$, $N \to \infty$ and
 - (iii) $g_{\varepsilon,N}(0)=0$.

From (1) and these properties of $g_{\varepsilon,N}$, we can easily see that $||H_{\varepsilon,N}x-H_{\varepsilon',N'}x||$ converges to 0 as ε , $\varepsilon'\to 0+$ and N, $N'\to\infty$. Hence $H_{\varepsilon,N}x$ converges to a certain element Hx in X as $\varepsilon\to 0+$ and $N\to\infty$.

Now we shall prove the second part of theorem. We see that

$$\begin{split} ||Hx||^2 &= \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} ||H_{\varepsilon,N}x||^2 \\ &= \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \left\| \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{1}{t} \left(\int_{-\infty}^{\infty} e^{i\lambda t} dE(\lambda) x \right) dt \right\|^2 \\ &= \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \int_{\infty}^{\infty} |g_{\varepsilon,N}(\lambda)|^2 d \, ||E(\lambda)x||^2 \\ &= ||x||^2 - ||E(0+)x||^2 + ||E(0-)x||^2 \; . \end{split}$$

Also we see that $||E(0+)x||^2 - ||E(0-)x||^2 = ||\overline{x}||^2$ and $||\overline{x}||^2 + ||x-\overline{x}||^2 = ||x||^2$. From this, the second part of theorem immediately follows. This completes the proof.

THEOREM 2. Let $\{U_t: t \in R\}$ be a one parameter group of unitary operators on a Hilbert space X. Then, for any x, y in X,

- (i) (Hx, y) = -(x, Hy),
- (ii) $(Hx, Hy) = (x \overline{x}, y \overline{y}).$

PROOF. Let x and y be any elements in X. Then we see, from the unitarity of $\{U_t: t \in \mathbb{R}\}$, that for any $x, y \in X$

$$(Hx, y) = \lim_{\substack{\varepsilon \to 0+\\ N \to \infty}} (H_{\varepsilon,N}x, y)$$

$$= \lim_{\substack{\varepsilon \to 0+\\ N \to \infty}} \left(\frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{U_t x}{t} dt, y\right)$$

$$= \lim_{\substack{\varepsilon \to 0+\\ N \to \infty}} \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{1}{t} (U_t x, y) dt$$

$$= \lim_{\substack{\varepsilon \to 0+\\ N \to \infty}} \frac{1}{\pi} \int_{\varepsilon < |t| < N} \frac{1}{t} (x, U_t^* y) dt$$

$$\begin{split} &= \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \frac{1}{\pi} \int_{\varepsilon < |\varepsilon| < N} \frac{1}{t} (x, \ U_{-\varepsilon} y) dt \\ &= \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \left(x, \frac{1}{\pi} \int_{\varepsilon < |\varepsilon| < N} \frac{U_{-\varepsilon} y}{t} dt \right) \\ &= -\lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} (x, \ H_{\varepsilon, N} y) \\ &= -(x, \ Hy) \ , \end{split}$$

which proves (i).

Also we see, from Theorem 1, that

$$\begin{aligned} &4(Hx,\,Hy) \\ &= ||Hx + Hy||^2 - ||Hx - Hy||^2 + i||Hx + iHy||^2 - i||Hx - iHy||^2 \\ &= ||(x + y) - (x + y)^-||^2 - ||(x - y) - (x - y)^-||^2 \\ &+ i||(x + iy) - (x + iy)^-||^2 - i||(x - iy) - (x - iy)^-||^2 \\ &= ||(x - \overline{x}) + (y + \overline{y})||^2 - ||(x - \overline{x}) - (y - \overline{y})||^2 \\ &+ i||(x - \overline{x}) + i(y - \overline{y})||^2 - i||(x - \overline{x}) - i(y - \overline{y})||^2 \\ &= 4(x - \overline{x},\,y - \overline{y}) \ , \end{aligned}$$

which is (ii). This completes the proof.

THEOREM 3. Let $\{U_t: t \in R\}$ be a one parameter group of unitary operators on a Hilbert space X. Then it follows that

$$H(Hx) = -(x - \overline{x})$$
 for all $x \in X$.

PROOF. Let x be any elements in X. Then we see, from Theorem 1 and Theorem 2, that, for any $y \in X$,

$$(H(Hx), y) = -(Hx, Hy) = -(x - \overline{x}, y - \overline{y}) = -(x - \overline{x}, y) + (x - \overline{x}, \overline{y}).$$

Since $(x-\bar{x}, \bar{y})=0$, we obtain that

$$(H(Hx), y) = (-(x-\overline{x}), y)$$
 for all $y \in X$,

which gives us $H(Hx) = -(x - \bar{x})$. This completes the proof.

§2. General case (in a complete locally convex space).

In this section, we shall generalize the theorems in the section 2. The following lemma is fundumental for our theory.

LEMMA 1. Let $\{U_t: t \in R\}$ be a one parameter group of operators on

a complete locally convex space X. Let x be any element in X and let η , ε , N and M be positive numbers such that $0 < \eta < \varepsilon < (1/2) < 2 < N < 2N + 1 < M < \infty$ (more precisely, $0 < \varepsilon - \eta < \varepsilon + \eta < N - \eta < N + \eta < M - N < M - \varepsilon < M + \varepsilon < M + N$). Then it follows that

$$H_{\eta,M}H_{\epsilon,N}x = -rac{1}{\pi^2} \left[\int_{-(M-\epsilon)/\epsilon}^{(M-\epsilon)/\epsilon} rac{U_{\epsilon t}x}{t} \log \left| rac{t+1}{t-1}
ight| dt - \int_{-(M-N)/N}^{(M-N)/N} rac{U_{Nt}x}{t} \log \left| rac{t+1}{t-1}
ight| dt + R(\eta, \epsilon, N, M; x)
ight]$$

where

$$\begin{split} R(\eta, \varepsilon, N, M; x) &= \int_{\varepsilon-\eta}^{\varepsilon+\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a+\eta)(a-\varepsilon)}{\varepsilon \eta} \right| da + \int_{\varepsilon+\eta}^{N-\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{a+\eta}{a-\eta} \right| da \\ &+ \int_{N-\eta}^{N+\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{N\eta}{(a-N)(a-\eta)} \right| da \\ &+ \int_{M-N}^{M-\varepsilon} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a-M)(a-N)}{MN} \right| da \\ &+ \int_{M-\varepsilon}^{M+\varepsilon} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{\varepsilon (a-N)}{N(a-\varepsilon)} \right| da \\ &+ \int_{M-\varepsilon}^{M+\varepsilon} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a-M)(a-N)}{N(a-\varepsilon)} \right| da \end{split}$$

PROOF. Let x be any element in X, and let η , ε , N and M be a positive numbers such that

$$0\!<\!\eta\!<\!\varepsilon\!<\!\frac{1}{2}\!<\!2\!<\!N\!<\!2N\!+\!1\!<\!M\!<\!\infty\ .$$

Then we see that,

$$(1) \qquad H_{\eta,M}(H_{\epsilon,N}x)$$

$$= \frac{1}{\pi} \int_{\eta < |s| < M} \frac{U_s}{s} \left(\frac{1}{\pi} \int_{\epsilon < |t| < N} \frac{U_t x}{t} dt\right) ds$$

$$(\text{change variable } t \longrightarrow -t)$$

$$= \frac{-1}{\pi^2} \iint_{\substack{\eta < |s| < M \\ \epsilon < |t| < N}} \frac{U_{s-t} x}{st} ds dt$$

$$(\text{change variable } s - t \longrightarrow a, \ t \longrightarrow v)$$

$$= \frac{-1}{\pi^2} \iint_{\eta < |a+v| \le M} \frac{U_a x}{v(a+v)} da dv$$

$$= -\frac{1}{\pi^{2}} \left[\int_{-(\epsilon-7)}^{\epsilon-7} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{\epsilon-7}^{\epsilon+7} \left\{ \left(\int_{-N}^{-(\epsilon-7)} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$+ \int_{-(\epsilon+7)}^{(\epsilon-7)} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{-a+7}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{\epsilon+7}^{N-7} \left\{ \left(\int_{-N}^{-(a+7)} + \int_{-(a-7)}^{-\epsilon} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$+ \int_{-(N-7)}^{-(\epsilon+7)} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a-7} + \int_{-a+7}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-7}^{N-7} \left\{ \left(\int_{-(a-7)}^{-\epsilon} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$+ \int_{-(N-7)}^{-(N-7)} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{-a-7} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-7}^{N-7} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$+ \int_{-(M-N)}^{-(N-7)} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-8}^{N-\epsilon} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N-a} \right) \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \int_{-N}^{-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da + \int_{-(M+\epsilon)}^{-(M+\epsilon)} \left\{ \int_{-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \int_{-N}^{-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da + \int_{-(M+\epsilon)}^{-(M+\epsilon)} \left\{ \int_{-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \int_{-N}^{-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da + \int_{-(M+\epsilon)}^{-\epsilon} \left\{ \int_{-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \int_{N-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da + \int_{-\epsilon}^{-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da \right]$$

$$-\frac{1}{\pi^{2}} \left[\int_{N-\epsilon}^{N-\epsilon} \left\{ \int_{N-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}{v(a+v)} dv \right\} da + \int_{-\epsilon}^{N-\epsilon} \frac{U_{\epsilon}x}$$

Now we shall calculate I_1 , I_2 , $I_3 \cdots I_7$ and I_8 , and successively have the followings;

$$(2) I_{1} = \int_{-(\epsilon-7)}^{\epsilon-\eta} \frac{U_{a}x}{a} \left[\left(\int_{-N}^{-\epsilon} + \int_{\epsilon}^{N} \right) \left(\frac{1}{v} - \frac{1}{a+v} \right) dv \right] da$$

$$= \int_{-(\epsilon-7)}^{\epsilon-\eta} \frac{U_{a}x}{a} \left[\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \right|_{\epsilon}^{N} da$$

$$= \int_{-(\epsilon-7)}^{\epsilon-\eta} \frac{U_{a}x}{a} \log \left| \frac{a+\epsilon}{a-\epsilon} \right| da - \int_{-(\epsilon-7)}^{\epsilon-\eta} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da ,$$

$$(3) \qquad I_{2} = \int_{\epsilon-\gamma}^{\epsilon+\gamma} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-(a+\gamma)} + \log \left| \frac{v}{a+v} \right| \right|_{\epsilon}^{N} \right) da$$

$$+ \int_{-(\epsilon+\gamma)}^{-(\epsilon-\gamma)} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \right|_{-a+\gamma}^{N} \right) da$$

$$= \int_{\epsilon-\gamma}^{\epsilon+\gamma} \frac{U_{a}x}{a} \log \left| \frac{(a+\epsilon)(a+\gamma)}{\epsilon\gamma} \right| da + \int_{\epsilon-\gamma}^{\epsilon+\gamma} \frac{U_{a}x}{a} \log \left| \frac{a-N}{a+N} \right| da$$

$$+ \int_{-(\epsilon+\gamma)}^{-(\epsilon-\gamma)} \frac{U_{a}x}{a} \log \left| \frac{\epsilon\gamma}{(a-\epsilon)(a-\gamma)} \right| da + \int_{-(\epsilon+\gamma)}^{-(\epsilon-\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a-N}{a+N} \right| da$$

$$= \int_{\epsilon-\gamma}^{\epsilon+\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+\epsilon}{a-\epsilon} \right| da - \int_{\epsilon-\gamma}^{-\epsilon+\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{-(\epsilon+\gamma)}^{-(\epsilon-\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+\epsilon}{a-\epsilon} \right| da - \int_{-(\epsilon+\gamma)}^{-(\epsilon-\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{\epsilon-\gamma}^{\epsilon+\gamma} \frac{U_{a}x + U_{-a}x}{a} \log \left| \frac{(a-\epsilon)(a+\gamma)}{\epsilon\gamma} \right| da ,$$

$$(4) \quad I_{3} = \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-(a+\gamma)} + \log \left| \frac{v}{a+v} \right| \left|_{\epsilon}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \left|_{\epsilon}^{N} \right) da$$

$$+ \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \left|_{\epsilon}^{-a-\gamma} + \log \left| \frac{v}{a+v} \right| \left|_{-a+\gamma}^{N} \right) da$$

$$= \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+\gamma}{a-\gamma} \right| da + \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a-N}{a+N} \right| da$$

$$+ \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da + \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a+\varepsilon} \right| da$$

$$+ \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a-N}{a+N} \right| da + \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+\gamma}{a-\gamma} \right| da$$

$$= \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(N-\gamma)}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{-(N-\gamma)}^{N-\gamma} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(N-\gamma)}^{-(\epsilon+\gamma)} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{\epsilon+\gamma}^{N-\gamma} \frac{U_{a}x + U_{-a}x}{a} \log \left| \frac{a+\gamma}{a-\gamma} \right| da ,$$

$$(5) \quad I_{4} = \int_{N-\eta}^{N+\eta} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-(a-\eta)}^{-\varepsilon} + \log \left| \frac{v}{a+v} \right| \right|_{\varepsilon}^{N} \right) da$$

$$+ \int_{-(N+\eta)}^{-(N-\eta)} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\varepsilon} + \log \left| \frac{v}{a+v} \right| \right|_{\varepsilon}^{-a-\eta} da$$

$$= \int_{N-\eta}^{N+\eta} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da + \int_{N-\eta}^{N+\eta} \frac{U_{a}x}{a} \log \left| \frac{N}{a+N} \right| da + \int_{N-\eta}^{N+\eta} \frac{U_{a}x}{a} \log \left| \frac{\eta}{a-\eta} \right| da$$

$$\begin{split} &+ \int_{-(N+7)}^{-(N-7)} \frac{U_a x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(N+7)}^{-(N-7)} \frac{U_a x}{a} \log \left| \frac{N}{a-N} \right| da \\ &+ \int_{-(N+7)}^{-(N-7)} \frac{U_a x}{a} \log \left| \frac{a+\eta}{\eta} \right| da \\ &= \int_{N-7}^{N+\eta} \frac{U_a x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{N-7}^{N+\eta} \frac{U_a x}{a} \log \left| \frac{a+N}{a-N} \right| da \\ &+ \int_{-(N+7)}^{-(N-7)} \frac{U_a x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(N+7)}^{-(N-7)} \frac{U_a x}{a} \log \left| \frac{a+N}{a-N} \right| da \\ &+ \int_{N-7}^{N+\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{N\eta}{(a-\eta)(a-N)} \right| da \;, \end{split}$$

$$(6) I_{5} = \int_{N+\eta}^{M-N} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \left|_{\epsilon}^{N} \right) da$$

$$+ \int_{-(M-N)}^{-(N+\eta)} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\epsilon} + \log \left| \frac{v}{a+v} \right| \left|_{\epsilon}^{N} \right) da$$

$$= \int_{N+\eta}^{M-N} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{N+\eta}^{M-N} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da$$

$$+ \int_{-(M-N)}^{-(N+\eta)} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da - \int_{-(M-N)}^{-(N+\eta)} \frac{U_{a}x}{a} \log \left| \frac{a+N}{a-N} \right| da ,$$

$$(7) I_{6} = \int_{M-N}^{M-\varepsilon} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-N}^{-\varepsilon} + \log \left| \frac{v}{a+v} \right| \right|_{\varepsilon}^{M-a} da$$

$$+ \int_{-(M-\varepsilon)}^{-(M-N)} \frac{U_{a}x}{a} \left(\log \left| \frac{v}{a+v} \right| \right|_{-(M+a)}^{-\varepsilon} + \log \left| \frac{v}{a+v} \right| \right|_{\varepsilon}^{N} da$$

$$= \int_{M-N}^{M-\varepsilon} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da + \int_{-(M-\varepsilon)}^{-(M-N)} \frac{U_{a}x}{a} \log \left| \frac{a+\varepsilon}{a-\varepsilon} \right| da$$

$$+ \int_{M-N}^{M-\varepsilon} \frac{U_{a}x+U_{-a}x}{a} \log \left| \frac{(a-M)(a-N)}{MN} \right| da ,$$

(8)
$$I_{7} = \int_{M-\epsilon}^{M+\epsilon} \frac{U_{a}x}{a} \log \left| \frac{v}{a+v} \right| \Big|_{-N}^{-\epsilon} da + \int_{-(M+\epsilon)}^{-(M-\epsilon)} \frac{U_{a}x}{a} \log \left| \frac{v}{a+v} \right| \Big|_{\epsilon}^{N} da$$
$$= \int_{M-\epsilon}^{M+\epsilon} \frac{U_{a}x + U_{-a}x}{a} \log \left| \frac{\varepsilon(a-N)}{N(a-\epsilon)} \right| da$$

and finaly

$$(9) I_{8} = \int_{\underline{M+s}}^{\underline{M+N}} \frac{U_{a}x}{a} \log \left| \frac{v}{a+v} \right| \Big|_{-N}^{-(a-\underline{M})} da + \int_{-(\underline{M+N})}^{-(\underline{M+s})} \frac{U_{a}x}{a} \log \left| \frac{v}{a+v} \right| \Big|_{-a-\underline{M}}^{N} da$$
$$= \int_{\underline{M+s}}^{\underline{M+N}} \frac{U_{a}x + U_{-a}x}{a} \log \left| \frac{(a-\underline{M})(a-\underline{N})}{\underline{M}N} \right| da .$$

Therefore we obtain, from (1), (2), \cdots , (8) and (9), that

$$\begin{split} &-\pi^{2}H_{\eta,M}H_{\varepsilon,N}x\\ &=\int_{-(M-\varepsilon)}^{M-\varepsilon}\frac{U_{a}x}{a}\log\left|\frac{a+\varepsilon}{a-\varepsilon}\right|da-\int_{-M+N}^{M-N}\frac{U_{a}x}{a}\log\left|\frac{a+N}{a-N}\right|da+R(\eta,\,\varepsilon,\,N,\,M;x)\\ &\quad \text{(change variables }a\longrightarrow\varepsilon t \text{ and }a\longrightarrow Nt \text{ respectively)}\\ &=\int_{-(M-\varepsilon)/\varepsilon}^{(M-\varepsilon)/\varepsilon}\frac{U_{\varepsilon t}x}{t}\log\left|\frac{t+1}{t-1}\right|dt-\int_{-(M-N)/N}^{(M-N)/N}\frac{U_{Nt}x}{t}\log\left|\frac{t+1}{t-1}\right|dt\\ &\quad +R(\eta,\,\varepsilon,\,N,\,M;\,x)\;. \end{split}$$

This completes the proof.

LEMMA 2. Let $\{U_t: t \in \mathbf{R}\}$ be a one parameter group of operators on a complete locally convex space X. Let $R(\eta, \varepsilon, N, M; x)$ be defined as in Lemma 1. Then it follows that

- (i) $\lim_{\eta \to 0+,M\to\infty} R(\eta, \varepsilon, N, M; x) = 0$ for all $x \in X$ and all ε , N such that $0 < \varepsilon < (1/2) < 2 < N < \infty$, and
- (ii) $\lim_{x\to 0} R(\eta, \varepsilon, N, M; x) = 0$ uniformly for ε , η , M, N such that $0 < \eta < \varepsilon < (1/2) < 2 < N < 2N + 1 < M < \infty$.

PROOF. We can easily find a constant K>0 such that

$$(1) \qquad \quad \int_{\alpha^{-1}}^{\alpha^{+1}} \frac{1}{t} |\log|t\!\pm\!1||\,dt\!<\!K \quad \text{and} \quad \int_{1-\beta}^{1+\beta} \frac{1}{t} |\log|t\!\pm\!1||\,dt\!<\!K \;,$$

for all $1 < \alpha < \infty$ and all $0 < \beta < 1$. Also, we see that

(2)
$$\lim_{\alpha \to \infty} \int_{\alpha-1}^{\alpha+1} \frac{1}{t} |\log|t \pm 1| |dt = 0 \text{ and } \lim_{\alpha \to 0} \int_{1-\alpha}^{1+\alpha} \frac{1}{t} |\log|t \pm 1| |dt = 0 .$$

Let $R(\eta, \varepsilon, N, M; x)$ be defined as in Lemma 1, that is,

$$\begin{split} R(\eta, \varepsilon, N, M; x) &= \int_{\varepsilon-\eta}^{\varepsilon+\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a+\eta)(a-\varepsilon)}{\varepsilon \eta} \right| da + \int_{\varepsilon+\eta}^{N-\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{a+\eta}{a-\eta} \right| da \\ &+ \int_{N-\eta}^{N+\eta} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{N\eta}{(a-N)(a-\eta)} \right| da \\ &+ \int_{M-N}^{M-\varepsilon} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a-M)(a-N)}{MN} \right| da \\ &+ \int_{M-\varepsilon}^{M+\varepsilon} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{\varepsilon (a-N)}{N(a-\varepsilon)} \right| da \end{split}$$

$$+\int_{M+\epsilon}^{M+N} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a-M)(a-N)}{MN} \right| da$$
 $= J_1 + J_2 + \cdots + J_6$, say.

Now we are going to estimate $R(\eta, \varepsilon, N, M; x)$. Let x be any element in X. Let q be any semi-norm from the system $\{q\}$ semi-norms defining the topology of X.

Let θ be any positive number. Since $U_t: X \to X$ is continuous uniformly for $t \in \mathbb{R}$, we take a balanced convex neighborhood W of 0 in X such that

$$q(U_t x) < \theta$$
 for all $x \in W$ and $t \in R$.

First we see that

$$\begin{split} q(J_{\scriptscriptstyle 1}) &= q \Big(\int_{\scriptscriptstyle \epsilon - \gamma}^{\scriptscriptstyle \epsilon + \gamma} \frac{U_a x + U_{-a} x}{a} \log \left| \frac{(a + \eta)(a - \varepsilon)}{\varepsilon \eta} \right| da \Big) \\ &\leq 2\theta \int_{\scriptscriptstyle \epsilon - \gamma}^{\scriptscriptstyle \epsilon + \gamma} \frac{1}{a} \left| \log \left| \frac{a - \varepsilon}{\varepsilon} \right| \left| da + 2\theta \int_{\scriptscriptstyle \epsilon - \gamma}^{\scriptscriptstyle \epsilon + \gamma} \frac{1}{a} \left| \log \left| \frac{a + \eta}{\eta} \right| \right| da \\ &\leq 2\theta \int_{\scriptscriptstyle 1 - (\gamma/\varepsilon)}^{\scriptscriptstyle 1 + (\gamma/\varepsilon)} \frac{1}{t} \left| \log |t - 1| dt + 2\theta \int_{\scriptscriptstyle (\epsilon/\gamma) - 1}^{\scriptscriptstyle (\epsilon/\gamma) + 1} \frac{1}{t} \left| \log |t + 1| \right| dt \end{split}$$

which implies, by (1) and (2), that

(3)
$$\lim_{\substack{y \to 0+\\ y \to \infty}} J_1 = 0 \quad \text{for all } x \in X \text{ and all } 0 < \varepsilon < N < \infty$$

and

(3)'
$$\lim_{x\to 0} J_1 = 0$$
 uniformly for $0<\eta .$

Next we see that

$$egin{aligned} q(J_2) = q \Big(\int_{\epsilon+\eta}^{N-\eta} rac{U_a x + U_{-a} x}{a} \log \left| rac{a+\eta}{a-\eta} \right| da \Big) \ & \leq 2 heta \int_{\langle \epsilon/\eta \rangle - 1}^{\langle \epsilon/\eta \rangle - 1} rac{1}{t} \left| \log \left| rac{t+1}{t-1} \right| dt \end{aligned}.$$

This implies that

(4)
$$\lim_{\substack{\gamma \to 0+\\ M \to \infty}} J_2 = 0 \quad \text{for all } x \in X \text{ and all } 0 < \varepsilon < N < \infty$$

and

(4)'
$$\lim_{z \to 0} J_z = 0$$
 uniformly for $0 < \eta < arepsilon < 1/2 < 2 < N < 2N + 1 < M < \infty$,

since $\int_{-\infty}^{\infty}{(1/t)|\log|(t+1)/(t-1)||dt}\!=\!\pi^{\rm 2}$. Similarly we see that

$$\begin{split} q(J_{\rm S}) &= q\!\!\left(\int_{N-\eta}^{N+\eta} \! \frac{U_a x + U_{-a} x}{a} \log \left| \frac{N\eta}{(a-N)(a-\eta)} \right| da\right) \\ &\leq & 2\theta \int_{1-(\eta/N)}^{1+(\eta/N)} \frac{1}{t} |\log|t-1|| \, dt + 2\theta \int_{(N/\eta)-1}^{(N/\eta)+1} \frac{1}{t} |\log|t-1|| \, dt \; , \end{split}$$

which implies, by (1) and (2), that

(5)
$$\lim_{\substack{\eta \to 0+\\ M \to \infty}} J_3 = 0$$
 for all $x \in X$ and all $0 < \varepsilon < N < \infty$

and

(5)'
$$\lim_{\alpha \to 0} J_8 = 0$$
 uniformly for $0 < \eta < \varepsilon < 1/2 < 2 < N < 2N + 1 < M < \infty$,

and we see that

which implies, by (1) and (2), that

(6)
$$\lim_{\substack{\eta \to 0+ \\ M \to \infty}} \{J_4 + J_6\} = 0$$
 for all $x \in X$ and all $0 < \varepsilon < N < \infty$

and

(6)'
$$\lim_{s\to 0} \{J_4 + J_6\} = 0$$
 uniformly for $0 < \eta < \varepsilon < 1/2 < 2 < N < 2N + 1 < M < \infty$.

Lastly we see that

$$\begin{split} q(J_{\mathsf{S}}) &= q \Big(\int_{\mathtt{M} - \varepsilon}^{\mathtt{M} + \varepsilon} \frac{U_{a}x + U_{-a}x}{a} \log \left| \frac{\varepsilon(a - N)}{N(a - \varepsilon)} \right| da \Big) \\ &\leq 2\theta \int_{\mathtt{M} - \varepsilon}^{\mathtt{M} + \varepsilon} \frac{1}{a} \log \left| \frac{(a - N)}{N} \right| da + 2\theta \int_{\mathtt{M} - \varepsilon}^{\mathtt{M} + \varepsilon} \left| \frac{1}{a} \log \left| \frac{\varepsilon}{a - \varepsilon} \right| da \\ &\leq 2\theta \int_{(\mathtt{M}/N) - 1}^{(\mathtt{M}/N) + 1} \frac{1}{t} |\log|t - 1|| dt + 2\theta \int_{(\mathtt{M}/\varepsilon) - 1}^{(\mathtt{M}/\varepsilon) + 1} \frac{1}{t} |\log|t - 1|| dt , \end{split}$$

which implies, by (1) and (2), that

(7)
$$\lim_{\substack{\gamma \to 0+\\ M \to \infty}} J_5 = 0 \quad \text{for all } x \in X \text{ and } 0 < \varepsilon < N < \infty$$

and

(7)'
$$\lim_{z\to 0} J_s = 0$$
 uniformly for $0<\eta<\varepsilon<1/2<2< N<2N+1< M<\infty$.

Putting above estimates (3), \cdots , (7) and (3)', \cdots , (7)' together, we see that (i) and (ii) are true. The proof of the lemma is now complete.

THEOREM 4. Let $\{U_t; t \in R\}$ be a one parameter group of operators on a complete locally convex space X. Then, for any $x \in X$, $HH_{\bullet,N} \circ x$ $(0 < \varepsilon < N < \infty)$ exists in X, and

$$HH_{\epsilon,N}x = -rac{1}{\pi^2}\int_{-\infty}^{\infty}rac{U_{\epsilon t}x}{t}\log\left|rac{t+1}{t-1}
ight|dt + rac{1}{\pi^2}\int_{-\infty}^{\infty}rac{U_{Nt}x}{t}\log\left|rac{t+1}{t-1}
ight|dt$$
 .

PROOF. Let x be any element in X. By Lemma 1 and (i) in Lemma 2, we see that

$$\begin{split} HH_{\epsilon,N}x = & \lim_{\stackrel{\gamma \to 0+}{M \to \infty}} H_{\gamma,M}H_{\epsilon,N}x \\ = & \lim_{\stackrel{\gamma \to 0+}{M \to \infty}} \left[-\frac{1}{\pi^2} \left[\int_{-(M-\epsilon)/\epsilon}^{(M-\epsilon)/\epsilon} \frac{U_{\epsilon t}x}{t} \log \left| \frac{t+1}{t-1} \right| dt \right. \\ & \left. - \int_{-(M-N)/N}^{(M-N)/N} \frac{U_{Nt}x}{t} \log \left| \frac{t+1}{t-1} \right| dt + R(\gamma, \epsilon, N, M; x) \right] \\ = & -\frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{U_{\epsilon t}x}{t} \log \left| \frac{t+1}{t-1} \right| dt + \frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{U_{Nt}x}{t} \log \left| \frac{t+1}{t-1} \right| dt \; . \end{split}$$

This completes the proof.

The following lemmas are useful to prove Theorem 5.

LEMMA 3. Let $\{U_t: t \in \mathbf{R}\}$ be a one parameter group of operators on a complete locally convex space X. Let x be any element in X such that \overline{x} exists. Then, for any $\phi \in L^1(\mathbf{R})$ such that $\int_{-\infty}^{\infty} \phi(t)dt = 1$, $\lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt}x\phi(t)dt$ exists in X and is equal to \overline{x} .

PROOF. We define a characteristic function $\chi_{(a,b]}: \mathbb{R} \to \{0, 1\}$ such that $\chi_{(a,b]}(t)=1$ (for $t \in (a, b]$) and 0 (elsewhere).

First we assume that ϕ is represented by a linear combination of above

characteristic functions i.e.

$$\phi(t) = \sum_{i=1}^{m} c_i \chi_{(a_i,b_i]}(t)$$

where $(a_i, b_i]$, $i=1, 2, \dots, m$, are disjoint intervals, and hence $\sum_{i=1}^{m} c_i(b_i - a_i) = \int_{-\infty}^{\infty} \phi(t)dt = 1$. Then we see that

$$\begin{split} \lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt} x \phi(t) dt = & \lim_{N \to \infty} \sum_{i=1}^{m} c_i \int_{a_i}^{b_i} U_{Nt} x dt = \sum_{i=1}^{m} \left[c_i (b_i - a_i) \lim_{N \to \infty} \frac{1}{(b_i - a_i)N} \int_{a_i N}^{b_i N} U_t x dt \right] \\ = & \overline{x} \sum_{i=1}^{m} c_i (b_i - a_i) = \overline{x} \end{split}.$$

Next we shall consider the case of a general ϕ . Let ϕ be any element in $L^1(\mathbf{R})$ such that $\int_{-\infty}^{\infty} \phi(t)dt = 1$. Let ε be any positive real and let q be any semi-norm from the system of semi-norms defining the topology of X. Then we can find an L>0 and a linear combination $\phi_0(t) = \sum_{i=1}^m c_i \chi_{(a_i,b_i)}(t)$ such that

$$q(U_t x) \leq L$$
 for all $t \in R$

and

$$\|\phi-\phi_0\|_1<\varepsilon$$
 .

Therefore, we see that

$$\begin{split} q \Big(\! \int_{-\infty}^{\infty} U_{Nt} x \phi(t) dt - \! \int_{-\infty}^{\infty} U_{Mt} x \phi(t) dt \Big) \\ & \leq q \Big(\! \int_{-\infty}^{\infty} U_{Nt} x (\phi(t) - \phi_0(t)) dt \Big) + q \Big(\! \int_{-\infty}^{\infty} U_{Nt} x \phi_0(t) dt - \! \int_{-\infty}^{\infty} U_{Mt} x \phi_0(t) dt \Big) \\ & + q \Big(\! \int_{-\infty}^{\infty} U_{Mt} x (\phi(t) - \phi_0(t)) dt \Big) \\ & \leq 2L \varepsilon + q \Big(\! \int_{-\infty}^{\infty} U_{Nt} x \phi_0(t) dt - \! \int_{-\infty}^{\infty} U_{Mt} x \phi_0(t) dt \Big) \;, \end{split}$$

which implies that $\left\{\int_{-\infty}^{\infty} U_{Nt}x\phi(t)dt\right\}_{N=1}^{\infty}$ is a Cauchy sequence in X, and has a certain limit y in X, since as was shown above $\left\{\int_{-\infty}^{\infty} U_{Nt}x\phi_0(t)dt\right\}_{N=1}^{\infty}$ is a convergent sequence in X. Moreover, it is clear that $y=\bar{x}$, and this completes the proof.

LEMMA 4. Let $\{U_t; t \in \mathbf{R}\}$ be a one parameter group of operators on a complete locally convex space X. Let x be an element in X such that $\lim_{N\to\infty}\int_{-\infty}^{\infty}U_{Nt}x\phi(t)dt$ exists for some $\phi\in L^1(\mathbf{R})$ with $\int_{-\infty}^{\infty}\phi(t)dt=1$. Then

 $ar{x}$ exists in X and $ar{x}\!=\!\lim_{N\! o\infty}\int_{-\infty}^{\infty}U_{Nt}\!x\phi(t)dt$.

PROOF. Let $\lim_{N\to\infty}\int_{-\infty}^{\infty}U_{Nt}x\phi(t)dt$ be denoted by x^* . Firstly, we shall prove that $U_sx^*=x^*$ for all $s\in R$. Let s be any fixed real number. Then we see that

$$(1) \qquad U_{s}x^{*}-x^{*}$$

$$= U_{s} \left[\lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt}x\phi(t)dt \right] - x^{*}$$

$$= U_{s} \left[\lim_{N \to \infty} \frac{1}{N} \int_{-\infty}^{\infty} U_{t}x\phi\left(\frac{t}{N}\right)dt \right] - x^{*}$$

$$= \lim_{N \to \infty} \frac{1}{N} \int_{-\infty}^{\infty} U_{t+s}x\phi\left(\frac{t}{N}\right)dt - x^{*}$$

$$= \lim_{N \to \infty} \frac{1}{N} \int_{-\infty}^{\infty} U_{t}x\phi\left(\frac{t-s}{N}\right)dt - x^{*}$$

$$= \lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt}x\phi\left(t-\frac{s}{N}\right)dt - \lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt}x\phi(t)dt$$

$$= \lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt}x\left(\phi\left(t-\frac{s}{N}\right) - \phi(t)\right)dt$$

$$= 0.$$

since $U_t: X \to X$ is continuous uniformly for $t \in \mathbb{R}$ and $\phi(t - (s/N)) - \phi(t) \to 0$ in $L^1(\mathbb{R})$ as $N \to \infty$. Hence we get that $U_s x^* = x^*$ for all $s \in \mathbb{R}$.

Now let D(t) be a function on R such that

$$D(t)=1/2$$
 $(t \in [-1, 1])$ and 0 (elsewhere).

Let V be any balanced convex neighborhood of 0 in X. By the continuity of $U_t: X \to X$ uniformly for $t \in \mathbb{R}$, there exists a balanced convex neighborhood W of 0 in X such that

$$(2) U_t W \subset \frac{V}{3} for all t \in R.$$

Also, there exists an $\eta > 0$ such that

$$\begin{array}{ll} \text{(3)} & \int_{-\infty}^{\infty} U_{Nt} x D(t) dt - \int_{-\infty}^{\infty} U_{Nt} x \Big(\int_{-\infty}^{\infty} D(t+s) \frac{1}{\eta} \phi \Big(\frac{s}{\eta} \Big) ds \Big) dt \in \frac{V}{3} \quad \text{for all } N \geqq 0 \text{ ,} \\ & \text{since } \int_{-\infty}^{\infty} D(t+s) (1/\eta) \phi(s/\eta) ds \to D(t) \quad (\eta \to 0+) \quad \text{in } L^1(\mathbf{R}). \\ & \text{And there exists an } N_0 = N_0(\eta) > 0 \text{ such that} \end{array}$$

$$\int_{-\infty}^{\infty} U_{N\eta t} x \phi(t) dt - x^* \in W \quad (N \ge N_0)$$

and

$$(5) x^* - \int_{-\infty}^{\infty} U_{Nt} x \phi(dt) \in \frac{V}{3} \quad (N \ge N_0).$$

Then we see, by (1), (4) and (2), that

$$\begin{aligned} & \int_{-\infty}^{\infty} U_{Nt}x \Big(\int_{-\infty}^{\infty} D(t+s) \frac{1}{\eta} \phi \Big(\frac{s}{\eta} \Big) ds \Big) dt - x^* \\ &= \int_{-\infty}^{\infty} D(s) \Big[\int_{-\infty}^{\infty} U_{Nt}x \frac{1}{\eta} \phi \Big(\frac{t+s}{\eta} \Big) dt - x^* \Big] ds \\ &= \frac{1}{2} \int_{-1}^{1} \Big[U_{-Ns} \Big(\int_{-\infty}^{\infty} U_{N\eta t}x \phi(t) dt - x^* \Big) \Big] ds \\ &\in V/3 \quad (N \geqq N_0) \ . \end{aligned}$$

Therefore we, by (3), (6) and (5), find that

$$\begin{split} \frac{1}{2N} \int_{-N}^{N} U_{t}xdt - \int_{-\infty}^{\infty} U_{Nt}x\phi(t)dt \\ = & \left[\int_{-\infty}^{\infty} U_{Nt}xD(t)dt - \int_{-\infty}^{\infty} U_{Nt}x \left(\int_{-\infty}^{\infty} D(t+s) \frac{1}{\eta} \phi \left(\frac{s}{\eta} \right) ds \right) dt \right] \\ + & \left[\int_{-\infty}^{\infty} U_{Nt}x \left(\int_{-\infty}^{\infty} D(t+s) \frac{1}{\eta} \phi \left(\frac{s}{\eta} \right) ds \right) dt - x^{*} \right] \\ + & \left[x^{*} - \int_{-\infty}^{\infty} U_{Nt}x\phi(t) dt \right] \\ \in & \frac{V}{2} + \frac{V}{2} + \frac{V}{2} = V \quad (N \ge N_{0}) \; . \end{split}$$

Since V is arbitrary convex balanced neighborhood of 0 in X, this implies that \bar{x} exists and $\bar{x} = \lim_{N \to \infty} \int_{-\infty}^{\infty} U_{Nt} x \phi(t) dt$. This completes the proof.

THEOREM 5. Let $\{U_t; t \in R\}$ be a one parameter group of operators on a complete locally convex space X. Let x be any element in D(H). Then the following two statements are equivalent.

- (i) \bar{x} exists in X,
- (ii) Hx belongs to D(H).

Moreover, if \bar{x} exists in X, then $H^2x = -(x - \bar{x})$.

PROOF. Let x be any element in D(H). Since $H_{*,N}$ is continuous,

we see, by Theorem 4, that

$$\begin{array}{ll} (1) & \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} H_{\varepsilon,N} H x = \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} H_{\varepsilon,N} (\lim_{\stackrel{\eta \to 0+}{N \to \infty}} H_{\eta,M} x) = \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \lim_{\stackrel{\eta \to 0+}{N \to \infty}} H_{\eta,M} H_{\varepsilon,N} x = \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} H H_{\varepsilon,N} x \\ & = -\frac{1}{\pi^2} \lim_{\varepsilon \to 0+} \int_{-\infty}^{\infty} \frac{U_{\varepsilon t} x}{t} \log \left| \frac{t+1}{t-1} \right| dt + \frac{1}{\pi^2} \lim_{N \to \infty} \int_{-\infty}^{\infty} \frac{U_{N t} x}{t} \log \left| \frac{t+1}{t-1} \right| dt \\ & = -x + \lim_{\stackrel{\varepsilon \to 0+}{N \to \infty}} \frac{1}{\pi^2} \int_{-\infty}^{\infty} \frac{U_{N t} x}{t} \log \left| \frac{t+1}{t-1} \right| dt \ . \end{array}$$

Hence we get, by (1) and Lemma 3, that (i) implies (ii). Moreover, it immediately follows that (i) implies that $H^2x = -(\bar{x} - x)$. Also, we get, by (1) and Lemma 4, that (ii) implies (i). This completes the proof.

LEMMA 5. Let $\{U_t; t \in R\}$ be a one parameter group of operators on a complete locally convex space X. Then, it follows that $\lim_{x\to 0} H_{\eta,M}H_{\varepsilon,N}x=0$ uniformly for ε , η , M, N such that $0<\eta<\varepsilon<\frac{1}{2}<2< N<2N+1< M<\infty$.

PROOF. Let θ be any positive number. Let q be any semi-norm from the system $\{q\}$ of semi-norms defining the topology of X. Since $U_t: X \to X$ is continuous uniformly for $t \in \mathbb{R}$, we can take a neighborhood W of 0 in X such that

$$q(U_t x) \leq \theta$$
 for all $x \in W$ and all $t \in R$.

Then, we see, by Lemma 2, that, for any $x \in W$ and any ε , η , M, N such that $0 < \eta < \varepsilon < (1/2) < 2 < N < 2N + 1 < M < \infty$,

$$\begin{split} q(H_{\eta,M}H_{\epsilon,N}x) & \leq q\Big(-\frac{1}{\pi^2}\bigg[\int_{-(M-\epsilon)/\epsilon}^{(M-\epsilon)/\epsilon} \frac{U_{\epsilon t}x}{t}\log\Big|\frac{t+1}{t-1}\Big|dt \\ & -\int_{-(M-N)/N}^{(M-N)/N} \frac{U_{Nt}x}{t}\log\Big|\frac{t+1}{t-1}\Big|dt + R(\eta,\,\epsilon,\,N,\,M;\,x)\bigg]\Big) \\ & \leq \frac{\theta}{\pi^2}\bigg[\int_{-\infty}^{\infty} \frac{1}{t}\log\Big|\frac{t+1}{t-1}\Big|dt + \int_{-\infty}^{\infty} \frac{1}{t}\log\Big|\frac{t+1}{t-1}\Big|dt + K\bigg] \\ & \leq \theta\Big(2 + \frac{K}{\pi^2}\Big)\,, \end{split}$$

where K is a positive constant independent of η , ε , N and M (such K exists by Lemma 2, (ii)). This completes the proof.

LEMMA 6. Let $\{U_t; t \in R\}$ be a one parameter group of operators on

a complete locally convex space X. Then, it follows that

- (i) for any $x \in X$ and any $0 < \varepsilon < N < \infty$, $(H_{\varepsilon,N}x)^- = 0$, and
 - (ii) for any $x \in D(H)$, $(Hx)^- = 0$.

PROOF. Firstly we shall prove the first part of lemma. Let x be any element in X. We see that, for large T>0,

$$\begin{split} (1) & I = \frac{1}{2T} \int_{-T}^{T} U_{t} H_{\varepsilon,N} x dt \\ &= \frac{1}{2T} \int_{-T}^{T} U_{t} \left[\frac{1}{\pi} \int_{\varepsilon < |s| < N} \frac{U_{s} x}{s} ds \right] dt \\ &= \frac{1}{2T} \int_{-T}^{T} \left[\frac{1}{\pi} \int_{\varepsilon < s < N} \frac{U_{t+s} x - U_{t-s} x}{s} ds \right] dt \\ &= \frac{1}{2\pi} \int_{\varepsilon < s < N} \frac{1}{s} \left[\frac{1}{2T} \int_{-T}^{T} (U_{t+s} x - U_{t-s} x) dt \right] ds \\ &= \frac{1}{2\pi} \int_{\varepsilon < s < N} \frac{1}{s} \left[-\frac{1}{2T} \int_{-T-s}^{-T+s} U_{t} x dt + \frac{1}{2T} \int_{T-s}^{T+s} U_{t} x dt \right] ds \ . \end{split}$$

Let q be and semi-nom from the system $\{q\}$ of semi-norms defining the topology of X. By the uniform continuity of $\{U_t: t \in \mathbb{R}\}$, we can take C>0 such that

$$q(U_t x) \leq C$$
 for all $t \in \mathbb{R}$.

Hence we get, by (1), that

$$q(I)\! \le \! \frac{1}{2\pi} \int_{\epsilon < s < N} \! \frac{1}{s} \! \left[\frac{2Cs}{T} \right] \! ds \! = \! \frac{C(N\!-\!\varepsilon)}{\pi T} \! \longrightarrow \! 0 \quad \text{as} \ T \! \longrightarrow \! + \! \infty \ .$$

This implies that $(H_{\epsilon,N}x)^-=0$.

Next we shall prove the second part of lemma. Let x be any element in D(H). Let V be any balanced convex neighborhood of 0 in X. By the uniform continuity of U_t , there exists a balanced convex neighborhood W of 0 in X such that

$$(2) U_t W \subset \frac{V}{2} \text{for all } t \in \mathbf{R} .$$

Since $x \in D(H)$, there exist positive number ε_0 and N_0 such that

$$(3) Hx - H_{\varepsilon_0, N_0} x \in W.$$

And, by the first part of theorem, we take $T_0>0$ such that

$$(4) \qquad \frac{1}{2T} \int_{-T}^{T} U_{t} H_{\epsilon_{0},N_{0}} x dt \in \frac{V}{2} \quad \text{for all } T \geqq T_{0} .$$

Hence we see, by (2), (3) and (4), that, for any $T \ge T_0$,

$$\begin{split} \frac{1}{2T} \int_{-T}^{T} U_t Hx dt \\ &= \frac{1}{2T} \int_{-T}^{T} U_t (H - H_{\epsilon_0, N_0}) x dt + \frac{1}{2T} \int_{-T}^{T} U_t H_{\epsilon_0, N_0} x dt \\ &\in \frac{V}{2} + \frac{V}{2} = V \end{split}$$

which implies that $(Hx)^-$ exists in X and $(Hx)^-=0$. This completes the proof.

THEOREM 6. Let $\{U_t; t \in R\}$ be a one parameter group of operators on a complete locally convex space X. Then, the Hilbert transform H is a closed operator on X (though D(H) is not always dense in X).

PROOF. Assume that $\{x_k\}_{k \in K}$ is any generalized sequence in D(H) such that

$$(1) x_k \longrightarrow x \text{ and } Hx_k \longrightarrow y \text{ in } X.$$

It is sufficient to prove that $x \in D(H)$ and Hx=y. Let V be any balanced convex neighborhood of 0 in X. By Lemma 5, we can take a balanced convex neighborhood W of 0 in X such that

$$(2) H_{\eta,M}H_{\mathfrak{s},N}W\subset \frac{V}{4},$$

for all ε , η , M, N such that $0 < \eta < \varepsilon < (1/2) < 2 < N < 2N + 1 < M < \infty$. And we take $k_0 \in K$ such that

(3)
$$Hx_k-y\in W \text{ for all } k\geq k_0.$$

By (2) and (3), we see that

$$(4) H_{\tau,M}H_{\epsilon,N}(Hx_k-y) \in \frac{V}{4},$$

for all $k \ge k_0$ and for all ε , η , M, N such that $0 < \eta < \varepsilon < (1/2) < 2 < N < 2N + 1 < M < \infty$.

Letting $\eta \to 0+$, $M \to \infty$ in (4) and noting $\lim_{\eta \to 0+, M \to \infty} H_{\eta,M} H_{\epsilon,N} H x_k = H^2 H_{\epsilon,N} x_k$, we see, by Theorem 4, Theorem 5 and Lemma 6, that

$$-H_{\varepsilon,N}x_k-HH_{\varepsilon,N}y\in\frac{V}{3},$$

for all $k \ge k_0$ and for all $0 < \varepsilon < (1/2) < 2 < N < \infty$. Letting $k \to \infty$ in (5), we find that

$$-H_{\epsilon,N}x-HH_{\epsilon,N}y\in\frac{V}{2},$$

for all $0 < \varepsilon < (1/2) < 2 < N < \infty$.

Next we shall prove that $\bar{y}=0$. Let G be any balanced convex neighborhood of 0 in X. We can, by the uniform continuity of U_t , take $k_0 \in K$ such that

(7)
$$\frac{1}{2T} \int_{-T}^{T} U_{t}(y - Hx_{k_{0}}) dt \in \frac{G}{2} \quad \text{for all } T > 0 ,$$

and we can, from Lemma 6, take $T_0 > 0$ such that

$$\frac{1}{2T}\int_{-T}^{T}U_{t}(Hx_{k_{0}})dt\in\frac{G}{2}\quad\text{for all }T\geqq T_{0}\text{ .}$$

By (7) and (8), we see that, for large T such that $T \ge T_0$,

$$\begin{split} \frac{1}{2T} \int_{-T}^{T} U_{t} y dt = & \left[\frac{1}{2T} \int_{-T}^{T} U_{t} (y - Hx_{k}) dt \right] + \left[\frac{1}{2T} \int_{-T}^{T} U_{t} (Hx_{k_{0}}) dt \right] \\ \in & \frac{G}{2} + \frac{G}{2} = G \ , \end{split}$$

which implies that $\bar{y} = 0$.

From this, Theorem 4 and Theorem 5, we see that, for small ε and large N,

$$HH_{\epsilon,N}y-(-y)\in \frac{V}{2}$$

Then if follows, from this and (6), that

$$H_{s,N}y-y\in V$$

for small ε and large N, which implies that $x \in D(H)$ and Hx = y. This completes the proof.

The author wishes to express his sincere thanks to Professor S. Koizumi and the referee for their valuable suggestions regarding the improvement of the paper.

References

- [1] M. COTLAR, A unified theory of Hilbert transforms and ergodic theorems, Rev. Mat. Cuyama, 1 (1955), 105-167.
- [2] S. ISHIKAWA, Hilbert transforms on one parameter groups of operators, Tokyo J. Math., 9 (1986), 383-393.
- [3] K. Petersen, Ergodic Theory, Cambridge University Press, Cambridge, 1983.
- [4] K. Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc., vol. 88, no. 1 (1983), 39-43.
- [5] K. Yosida, Functional Analysis, Springer-Verlag Berlin-Heidelberg-New York, 1971.

Present Address:
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCES AND ENGINEERINGS
KEIO UNIVERSITY
HIYOSHI, KOHOKU-KU
YOKOHAMA 223