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. Introduction

In [2], we studied about the existence theorems of a Hilbert transform
on a complete locally convex space. In this paper, we shall consider some
properties of the Hilbert transform. For this, we define several terms,
some of which were already defined in [2].

DEFINITION 1. Let R be a real field. Let X be a complete locally
convex space and let {U,:tc R} be a one parameter group of operators
on X, that is, "

(i) Ug;X— X is a continuous linear operator for all te R, and U,
is an identity operator on X,

(ii) U, U,=U,, for all t,scR,

(iii) for any te R and any x € X, (U,;,— U,)x converges to 0 as h—0
in the topology of X (for short, in X).

Moreover, the following condition (iv) is assumed in this paper: v

(iv) U, X— X is continuous uniformly for ¢< R, that is, for any
neighborhood V of 0 in X, there exists a neighborhood W of 0 in X such
that

UWcV forall teR.
If lim,..(1/2T) ST Uxdt exists in X, then we denote it by Z.
-7

DEFINITION 2. A continuous linear operator H, y (0<e<N< ) on X
is defined as follows;
1

H, o=t S
T Je<lti<nN

_%ﬁdt @weX),

(this integral can be well defined since a mapping te R—(Ux)/te X is
continuous on a compact set {t e R:e<Z|t|<N}). Also, if lim, 4,y He n®
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exists in X, we denote it by Hx and call it a Hilbert transform of z.
And the domain of H (i.e. {x € X: Hx exists}) is denoted by D(H).

§1. Special case (in Hilbert space).

In this section, we shall show several results in a Hilbert space,
which will be generalized in a complete locally convex space in the follow-
ing section.

THEOREM 1. Let {U,:te€ R} be a one parameter group of unitary
operators on a Hilbert space X (i1.e. Uf=U_, for all te R). Then, for
any element x in X, Hx exists in X. Moreover it 18 seen that

|| He|]*=|e—2Z|]’< ||| [*
Jor all xe X.

PrOOF. Let x be any element in X. Since {U,.tc R} be a one
parameter group of unitary operators on a Hilbert space X, we, by Stone’s
theorem, see the following spectral representation of U,x;

Usg= S“ e dEO)T

where {E(\): n€ R} is a spectral family of a one parameter group of
unitary operators {U,:tc€ R}. In order to show the first part of Theorem,
it is sufficient to prove that ||H, yx— H, y || converges to 0 as ¢, &' —0+
and N, N'— . From the spectral represenation of U, we see that

|H, yet—H, y ocll2

_|la S 1 S Ug
e<|tI<N t T Jer<liti<y ¢
_ S _S ilt t_ls eilt t]dE(x)xuz
—c0 e<iticn ¢ T Jer<iti<nt ¢t
2
=\ 19.x0 = gm0 1BV

(1) =" 19400 = g QN EGIa

where

1 eiit
gs,N(x’)=“ - S —"'dt .
T Je<lti<n ¢

It is clear that g, x(\) has the following properties:
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(i) g.x(\) is a continuous function on R such that [g.y(\)|<1 for
all neR,

(ii) if a and B are real numbers such that 0<a<gB<oco, then g,
uniformly converges to 1 (—1) for the closed interval [a, 8] (—3, —a])
as e—>0+, N— oo
and

(i) g.x(0)=0.

From (1) and these properties of g.y, we can easily see that ||H, yx—
H,. yx|| converges to 0 as ¢, &’ >0+ and N, N'— . Hence H, yx converges
to a certain element Hx in X as e >0+ and N— .

Now we shall prove the second part of theorem. We see that

| Hel*=lim || H, 3]

L], ([ ame)a]

T Jde<iti<n ¢

=lim
i
=tim |10, sV BEOIz

N—co

= |[ec][*— || E(O +)a|* + [ EQ —)|* .

Also we see that |[E0+)x|*—||EO—)x|*=|Z|* and ||Z|[*+]||lx—Z|*=]|z|[%.
From this, the second part of theorem immediately follows. This com-
pletes the proof.

THEOREM 2. Let {U,:.te R} be a one parameter group of unitary
operators on a Hilbert space X. Then, for any x, ¥y in X,
(i) (Hz, Hy)=@—72, y—1¥).

PrOOF. Let x and y be any elements in X. Then we see, from the
unitarity of {U,:te R}, that for any x,ye X

(He, y)-——}iﬁ (H. 5%, ¥)

N-ooo

—lim (_1_ U g4, y)

e—0+ \ 77 Ss<|tl<N t
N-—ooo

—lim L S L uw, ydt
‘1;‘_?; T Je<iticy

=lim 1 S —l-(m, fy)dt
e=0+ ¢ Je<iti<n ¢

N—roo
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=1lim }-S 1 U_ydt
5;»_9; T Je<ltl<y

=lim ( @, 1 ——dU“y t)

e—0+ T Ss(ltl<N t
N—=oo

= _hm (x’ H:.Ny)
PRl

= —(z, Hy) ,

which proves (i).
Also we see, from Theorem 1, that

4(Hz, Hy)
=||Hz+ Hy||*— || Hx— Hy||*+ || Hx + 1 Hy|* —i|| Hx— tHy|*
=|+y)—@+y) P ll@e—y)—@—y)|
+ i@+ 1Y) — (@ +3y)" | =il (@ —iy) — (@ —iy) "
=|(x—2)+Y+D|*—l(z—%)— Y-
+1||(x— %) + 1y =PI —ill(x—F) — iy —P|°
=4(x—%, y—Y) ,
which is (ii). This completes the proof.

THEOREM 3. Let {U,:tc R} be a one parameter group of unitary
operators on a Hilbert space X. Then it follows that

H(Hx)=—(x—%) Jfor all xe€X.

PrROOF. Let x be any elements in X. Then we see, from Theorem 1
and Theorem 2, that, for any ¥ € X,

(H(Hz), )= —(Hz, HY)=—@—%, y—¥)=—@—& ) +@—%, ¥) .
Since (x—Z, ¥)=0, we obtain that
(H(Hz), ¥Y)=(—(x—%),y) for all ye X,
which gives us H(Hx)= —(x—Z%). This completes the proof.

§2. General case (in a complete locally convex space).

In this section, we shall generalize the theorems in the section 2.
The following lemma is fundumental for our theory.

LEMMA 1. Let {U,:tec R} be a one parameter group of operators on
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a complete locally convex space X. Let x be any element in X and let
7, & N and M be positive numbers such that 0<7<e<(1/2)<2<N<2N+
1<M< = (more precisely, 0<e— 77<e+77<N~—77<N+77<M-—N<M—e<
M+e<M+N). Then it follows that

HyuH, yo=—-1 U”’"’“ U 10g | b+l 'dt

P Ld—wr—erre ¢

S (M—N)/N

Ui 100 ‘_z_":%_ldt—l—R(n, e, N, M; x):l

—(M-—-N)/N
where

R, ¢, N, M; )
=S¢+v Ux+ U_x log l(a+77)(a—e)lda+szv—n. Ux+U_x log ‘ a+7n Ida
a &N a

&+7

=7

+S:+: an:U—ax log ‘( lfr\?(? -
+Su—s Ux+U_xx log l(a——M)(a——N)‘da
M-N a MN
¥+e Jax+ U_x ela—N)
+SM—= log , Na—o .da

|7 Bt Vet pog |a=M@=N) g,

Mte

PrROOF. Let x be any element in X, and let 7, ¢, N and M be a
positive numbers such that

O<'7]'<e<%<2<N<2N+1<M<oo .

Then we see that,

(1) Hﬂ,M(He,Nx)

=_17; Sn<hl<u —Is]_s(% §c<lt|\<N U;”dt)ds

(change variable {— —%)

! (change variable s—t—a, t— )
==1 S S _Um dadv

syt viat+o)
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: LS_< n (S . S )’v(a+v)dv}da]

1
T
1 (a+n)
(N

+

S)v(a-i—v) }
S (e W~ L

dv }da

+

+

a2 L (I R
R (N R W L
SN)v(a+v) }
Vot () Ny do}aa]
e ) sy o e
ol (G4 ey o}aa)]
a2 PR (I e L L
) A+ )y dofaa]
~ LA s tta+ | L sy avae]
——;TZS:IN{S:;—") v(ch]-fv) d”}d“+ S:::,{Sl_v_u v(gfv)d”}d“]

1 1 1 1
—phm ek ks

+

—=Lot0,

_I_

+

Now we shall calculate I, I,, I, --- I, and I;, and successively have
the followings;

@ =l (LA Do) e
=S::v) I{:w gla,-?:-vll-zv-i_ g|a+vH }d

S"" U“wlog|a’+8|da S” U"wlogla""NIda

—(e=7 @ -7 a
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-—(a+n)

(3) IZ:S:? Zx(lo \aj—v ' - ogla+vH
o og ||| o | ][ Jas
_S;Z o¥ logl——————(OL—'_E)w’"—’?)‘da—i-ss+ l{zx log z_i_%lda
+S_::_%‘—w-lo (a— s)(a——77)‘ S—:+: = logl %\da
" B o B
+S"(“v’ Uz log |a+slda S o=} Ux Uz 4, gla—l—NIda
—(e+7) a —(e+7)
+S‘+’7 Ut U_o® g l(a——s)(a+77)lda i
e—7 a /]
(4) IS‘S Ux<1 gl a+v l o logl a+v I _:u—’n+10g| a+v
+S—::’:) U;,x( a,—l—v a,+'v L +10g| a,—HJl :+0)da
=SN—"_g_a.9£10g‘“__Z7_ da—i—SN_ U"mlog‘ - ‘da
e+7 — e+7
+SN“ leogla—l'e(da—i-s etn) leog‘a"i_elda
e+7 —(N=-7)
= Vet og | 2= N |dat p| D logla-H?‘da
—(N=1) —-(N=-7) QA
R =
+{7 og| L2 da |7 Stog| 1T de
_l_SN"’ Ua:—l— U_xx log' “+1‘da
&+7
(5) I‘—Siﬂ L la—?I)-'v i —:a—?) +log , a-+v l \N>da
| 2 t0g | 3| e | | )

_SN““')le g‘a+e’da+§“ U”108|G+N\d“+gmgﬁ1°g|;ﬂ_7 da

N—% N-7 @ N7 @




402 SHIRO ISHIKAWA

~W=n U x a+te W= .2
log| 22| da—{_ | " Lot 1og| &
+S—(N+’7) : o 2= —-v+m @ e a,—N

+S—(N_ﬂ) leog! a+?y Ida

—(N+7)

=S”+’/ U logla’_'_e'da, S”*” leogla’-l_Nlda

N-%

+) o a8 |22 da— 7 Do 0| 44 g

+SZ: an:U_axbg l (a—:y)(a—N)ld“ ’
e Ul e 9 5[, )ae

e G Pl °g| N)d“

S”‘” leogia"*'slda S" a leogl

N+7 N+7

+S (N+p) leog'a’+8|da S (N+7) Ux ogla’+Nlda ’
—(M—N) — (M=) a—N
_ M—s ax{ I v I —8 M—a
(7) I°_§ N a \lo a+v ‘ )da
(M—N) Ux{ —e l N
+§—(M—-¢) a log a—l—'v ’ —(M+a) log )da
(M—N)
S ,wlogla+elda+s u-N leogla"'e’da
¥-N @ —(M—¢)
H—e Ua:+ U_xx (a—M)(a—N)
+SM_N logl N Ida ,
_ M+te Ux I (M—¢) le |
(8) I7_SM—! log at+v da+§—m+s) g a-+v
(¥ U+ U_xx ela— I
—L_! - log‘ Na—s) da
and finaly _
(9) I8=S1+N a.x logl v l —(G—H)da+§—(x+c) Ogl ' N da
Hie @ a+v | l-~ —(M+N) a4+ | | —aen

(¥ Ux+ U_x (a—M)(a—N)
—S - logl UN da

M+ts
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Therefore we obtain, from (1), (2), --+, (8) and (9), that

—n°H, wH, yo
B T

(change variables a —— ¢t and a —— Nt respectively)
S(M—:)/: Uetx log‘t+1 ‘dt S(M—N)/N UNtx ]og t+1 ldt

—-N/Nn 1

—(M—e)/e

+R(n, &, N, M; ) .
This completes the proof.

LEMMA 2. Let {U:tc R} be a one parameter group of operators on
a complete locally convex space X. Let R(%, ¢, N, M;x) be defined as in

Lemma 1. Then it follows that
(i) limyoos yoe By & N, M; )=0 for all x€ X and all &, N such that

0<e<(1/2)<2<N< 00,
and

(i) lim,, R(®, & N, M; x)=0 uniformly for & 7, M, N such that
0<<e<(1/2) <2< N<L2N+1<M< o0,

PROOF. We can easily find a constant K>0 such that

ot+11 1+51
(v |, loglex1llde<K and |7 Hilogl 1| de <K,

1—-8
for all 1<a<c and all 0<B<1. Also, we see that

(2) th“ ——llog|t+1Hdt 0 and 1im§1+“%|1og1ti1ndt=o.

a—+00 a—0
Let R(3, &, N, M; x) be defined as in Lemma 1, that is,

R(n, &, N, M; x)
S‘*” Ua:-i—U_axlog‘(a—Hy)(a e)ld +S”"’ Ux+ U-“xlogla’+7]‘da

+7

S 13]\777 da

Ya—n)
+§ Ux—{—U_awlog‘(a M)(a—-N)\da
|

N Nto U o+ U‘“xlog‘
(@—

N

ute [J x_*_ U._. N)

X
Uzt U2
e OglN(a e

+
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M+N Ux+ U_.x (a—M)(a— N)
+ S‘m log UN da

=J1+J2+ e +J¢ N say .

Now we are going to estimate R(7, ¢, N, M; x). Let x be any element
in X. Let q be any semi-norm from the system {q} semi-norms defining
the topology of X.

Let 6 be any positive number. Since U,: X— X is continuous uni-
formly for tc R, we take a balanced convex neighborhood W of 0 in X
such that

q(Ux)<6 for all xe W and teR.

First we see that

q(Jl)=q<S‘+z U.,x+ U_x logl(a+77)(a—s) 1da)

_s_zos |1 g[ Hda+20§ +”.1_llog|“_;_’ll'|da

=7 @ =7

1+(5/s (s/9)+1 1
gzos Tlloglt—llldt+20§  —llogt+1]|de
1—- (e/7)—1 _

(7/¢)

which implies, by (1) and (2), that
(3) limJ,=0 for all xe X and all 0<e<N< =

=0+

M—o0

and

(3) lim J;=0 uniformly for 0<7<e<1/2<2<N<2N+1<M< o .

z—0

Next we see that

a(J)= q(SN‘ U+ U‘“xlogl a-+7n Ida'>

&+7

(e/7n)
gzas i Ilog|t+1“dt

e/m-1 ¢

This implies that
(4) limJ,=0 for all ze X and all 0<e<N< o

70+

M—c0

and

(4) lim J,=0 uniformly for 0<7<e<1/2<2<N<2N+1<M< oo ,
z—0
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since S A/t)log|(t+1)/(t—1)||dt =1
Slmllarly we see that
Y1 Ug+ Uyt N7
q(Jy) = q(s _ - og‘(a Ny(a—7) da)

1+(yp/N

7 +1
—|10g|t 1Hdt+2a§ :;’ %—l’loglt—llldt,

gzag

1— (/N
which implies, by (1) and (2), that
(5) lim J,=0 for all z€ X and all 0<e<N< oo

7—04-
Moo

and
(5) lim J;=0 uniformly for 0<7<e<1/2<2<N<2N+1<M< e ,

a—0

and we see that

a@t T =g [ Vet Uost o | @= BN | g

+SM+N Uax—:LU_,,x log!(a——ll]l&%a/:—N) ‘da)

M+te

<2 Su+N_1-log‘(a,——M)(a—N) lda’
M-N @
N+
<20 Smm 1 og|t— 1[[dt+2¢9§ L oglt—1||dt
1—(N/M) M/ny—1 ¢

which implies, by (1) and (2), that
(6) lim {J,+J,}=0 for all x€ X and all 0<e<N< oo
N—+04

Moo

and
(6) lim{J,+J}=0 uniformly for 0<7<e<1l/2<2<N<K2N+1<M< o .
z—0

Lastly we see that

q(Js)= Q(Sui: Ux—;U_ax log[ j\(l.a(ta Z\;')) ! a,)

<26 S::%logl (@—N) lda+20 S

M/e)+
o5 Sumv “i]loglt 1]]dt+20§ o l—t—lloglt—lll dt,

Hda,

M-t

=

(/)1
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which implies, by (1) and (2), that
(7) lim J,;=0 for all x€ X and 0<e<N< o

n—0+
M—+c0

and

7)Y lim J,=0 uniformly for 0<7<e<1/2<2<N<ZN+1<M<eo .
z—0

Putting above estimates (3), « -+, (7) and (3)', -+, (7)’ together, we see that

(i) and (ii) are true. The proof of the lemma is now complete.

THEOREM 4. Let {U,;tc R} be a one parameter group of operators
on a complete locally convex space X. Then, for any xe X, HH, yox
(0<e<N< ) exists in X, and

HH, o=~ | U“xloglt+1(dt+ -~ UM‘” log‘t+1|dt
n B ad -0

PrROOF. Let z be any element in X. By Lemma 1 and (i) in Lemma
2, we see that

HH, yo=lim H, ,H, y

jraees
(M—e)/e
=lim| — 1[8” ! U“wloglt"*'lldt
70+ 2 LY —r—er/e

—S(,,_N)/N Uyt log_lt+1 ‘dt+R(7]’ &, N, M, x)]

—(M—N)/N

12 * U“xloglt+1|dt+ 1 (= U’Z‘mloglt—l—l‘dt
7r -0 —00

This completes the proof.
The following lemmas are useful to prove Theorem 5.

LEMMA 3. Let {U,:t< R} be a one parameter group of operators on
a complete locally convexr space X. Let x be any element in X such that Z

exists. Then, for any ¢ € L'(R) such that r s(t)dt=1, limy_., U veXp(t)dt
exists in X and 1s equal to Z. '

PROOF. We define a characteristic function X, ;;: B— {0, 1} such that
Xen(t)=1 (for te(a, b]) and 0 (elsewhere) .

First we assume that ¢ is represented by a linear combination of above
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characteristic functions i.e.

#(8) =3 Liupa(®)

where (a,, b], ©=1,2, - - -, m, are disjoint intervals, and hence S, eib;—a)=
S ¢(t)dt=1. Then we see that

lim |” Uyege)dt=1im S e, (* Uyadt= 3] o6 a) lim —L S"‘”det]
NEE . ne%o(t) t—NHEg' ¢ Sa‘ ni® t-—glul:ct( 1 Nl_{{:m g

=E§;, c(b;—a)=% .

Next we shall consider the case of a general ¢. Let ¢ be any element
in L*(R) such that S ¢(t)dt=1. Let ¢ be any positive real and let ¢ be

any semi-norm from the system of semi-norms defining the topology of

X. Then we can find an L>0 and a linear combination $o(t) =20 € oy p(t)
such that

qUx)<L for all teR
and ‘

lp—g0ll, <€ .
Therefore, we see that

q(S:, Useop(t)de— S: Umx¢(t)dt)
=d].. Unisp®—ptNit) +o({” Uagut)it—|" Uwput)dt)

+q(§: U CORINON)
§2Le+q(§l Uy do(t)dt — gl U tdo(t)d t) ’

=]

which implies that {r UN,x¢(t)dt} is a Cauchy sequence in X,and has

- N=1 oo 0
a certain limit ¥ in X, since as was shown above {S _ Umacgzso(t)olt}N‘1

is a convergent sequence in X. Moreover, it is clear that y==%, and this
completes the proof.

LEMMA 4. Let {U,;tec R} be a one parameter group of operators on
a complete locally convexr space X. Let x be an element in X such that

limN_.«,S Uyiag(t)dt exists for some o< L'(R) with S: p(t)dt=1. Thén
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Z exists in X and F=limy_. Sw Uyeo(t)dt .
PrROOF. Let limy_. Sw Uywp(t)dt be denoted by «*. Firstly, we shall

prove that Ux*=z* for all se R. Let s be any fixed real number. Then
we see that

(1) Uax*—a*

=U, hms B N,xgs(t)dt]——x*

= 0fm 3 |7 V() -+

—lim -11\7 S"; U,+,w¢(i-)dt—x*

N—+oo [

N+

—o0

=lim%r U, ¢( dt—ax*

(-]

=lim UN,xqs(t — 17) dt—1lim U vexd(t)dt

N—o J)— N—roo J—o0

—1; ® _S\_
g Do) )
=0,
since U,;: X— X is continuous uniformly for te R and ¢(t—(s/N))—¢(t)—0
in L'(R) as N— . Hence we get that Uax*=z* for all seR.
Now let D(t) be a function on R such that

D@t)=1/2 (te[—1,1]) and O (elsewhere).

Let V be any balanced convex neighborhood of 0 in X. By the continuity
of U, X— X uniformly for te R, there exists a balanced convex neigh-
borhood W of 0 in X such that

(2) U,Wc_;f for all tcR.

Also, there exists an >0 such that

(3) S: UN,xD(t)dt—S: Umw(r

o) =00

1./s |4
D(t+s)-?7¢(5-)ds)dt e forsall N20,

since "S‘” D(t+8)(1/n)é(s/p)ds— D(E) (p—0+) in L(R).
And there exists an N,=N,(7)>0 such that
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(4) §°° Upnirg(t)dt—a* e W (N=N,)
and
(5) oo Uqus@zt)e—g‘-’r (N2N) .

Then we see, by (1), (4) and (2), that
(6) Sl Umx(gl D(t+s)%¢(-;s7—)ds)dt—-w*

= S: D(S)I:S : Umx%(t;s)dt-—x*:]ds
_—__;_ 51_1 I:U_.N,(So; UN%ng(t)dt——x*)]ds
eV/3 (N=N,).

Therefore we, by (3), (6) and (5), find that

1 N =)
|7 Uit |"_ vvasat

=" vvapae={"_ Usa(§” D+ Lo( L )as)at

+[S°; UNtx(Sl Dt +s)%¢(-f7)ds)dt——x*:|
+[x* — Sl U N,xqs(t)dt]

yv.v.v_ >
eg+3+3 V. (N=N,) .

Since V is arbitrary convex balanced neighborhood of 0 in X, this implies
that ¥ exists and :E=limN_mS Uyxp(t)dt. This completes the proof.

THEOREM 5. Let {U,;tec R} be a one parameter group of operators
on a complete locally convexr space X. Let x be any element in D(H).
Then the following two statements are equivalent.

(i) = exists in X,

(ii) Hx belongs to D(H).
Moreover, i+f T exists in X, then Hx= —(x—%).

PrOOF. Let x be any element in D(H). Since H, , is continuous,
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we see, by Theorem 4, that

(1) lim H, yHz=lim H, ,(lim H, yx)=lim lim H, ,H, yx=lim HH, yx
e—0+ e—0+ N0+ =00+ 70+ e—0+

N—oo N—oo M—o0 N—oco M—c0 N—oo

=-.l1im Sw U“xlog't+1|dt+1hm N U”‘xlog't+1|dt

7[21—~0+ - ﬂ,‘ N—oo J—co
= —a+lim L |" Yriog|itllas.
10+ g% J—eo t—11

Hence we get, by (1) and Lemma 3, that (i) implies (ii). Moreover, it
immediately follows that (i) implies that H?*x= — (¥ —2x).

Also, we get, by (1) and Lemma 4, that (ii) implies (i). This completes
the proof.

LEMMA 5. Let {U,;te R} be a one parameter group of operators on a
complete locally convex space X. Then, it follows that lim, ., H, ,H, yx=0

uniformly for e, 7, M, N such that 0<77<s<%<2<N<2N+1<M<°°.

PrROOF. Let @ be any positive number. Let ¢ be any semi-norm
from the system {q} of semi-norms defining the topology of X. Since
U,: X— X is continuous uniformly for {c R, we can take a neighborhood
W of 0 in X such that

q(Ux)<6 for all xe W and all teR.

Then, we see, by Lemma 2, that, for any x€ W and any ¢, 7, M, N
such that 0<7<e<(1/2) <2< N<2N+1< M< 0o,

q(Hﬂ,MHc,Nx)
éq(__lgl:s(""”‘ U,z log|t+1 ldt

—(M—2)/e

—S(y—N)/N Uyt log|t+1 ‘dt—{—R(?], e, N, M; x)]

—(M~N)/N
—U_m—loglt'*'l ldt—i-r 1 log"t—*_1 Idt+K:|
§0(2+£:-2) :

where K is a positive constant independent of #, ¢, N and M (such K
exists by Lemma 2, (ii)). This completes the proof.

LEMMA 6. Let {U,;tc R} be a one parameter group of operators on
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a complete locally convex space X. Then, it follows that
(i) for any xe X and any 0<e<N< oo, (H, yr)~ =0,
and '

(ii) for any xe D(H), (Hx)-=0.

PrOOF. Firstly we shall prove the first part of lemma. Let z be
any element in X. We see that, for large 7>0,

(1) I=-21—T S: U,H, yadt
=?11-; Sir U‘[-yl? Ss<la|<N s :]dt
LR St
S
A e

Let ¢ be and semi-nom from the system {g} of semi-norms defining the

topology of X. By the uniform continuity of {U,:tc R}, we can take
C>0 such that

q(Ux)<C for all teR.
Hence we get, by (1), that

q(I)g—-S 1 2C8]d —CN=9) _ 0 a5 Tt oo .
27 Je<s<n 8 T

This implies that (H, yx)~=0.
Next we shall prove the second part of lemma. Let z be any ele-
ment in D(H). Let V be any balanced convex neighborhood of 0 in X.

By the uniform continuity of U,, there exists a balanced convex neigh-
borhood W of 0 in X such that

(2) U,Wc_‘é’- for all te R .

Since x € D(H), there exist positive number ¢, and N, such that
(8) Hex—H, yxe W.
And, by the first part of theorem, we take 7,>0 such that
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(4) 1 ST UH, yxzdte Y for all T2 T
—2_f r tLdleg,Ng _2' =4y .
Hence we see, by (2), (8) and (4), that, for any T=T,,
1 T
ﬁS—T U,det
1 (7 1 (7
=57 S_T UdH—H., n)2dt+ 50 S_T U.H.,,, v xdt
ez K::
2

which implies that (Hx)~ exists in X and (Hz)"=0. This completes the
proof.

THEOREM 6. Let {U,;tc R} be a one parameter group of operators
on a complete locally convex space X. Then, the Hilbert transform H is
a closed operator on X (though D(H) is mot always dense in X).

PROOF. Assume that {z,}..x is any generalized sequence in D(H) such
that

(1) 2,——2x and Hzx,—y in X.

It is sufficient to prove that x € D(H) and Hx=y. Let V be any balanced
convex neighborhood of 0 in X. By Lemma 5, we can take a balanced
convex neighborhood W of 0 in X such that

(2) HyxH. Wc{- ,

for all &, », M, N such that 0<7<e<(1/2)<2<KN<K2N+1<M< .
And we take k,€ K such that

(3) Hx,—ye W for all k=k,.
By (2) and (38), we see that
(4) HuH, w(Hty—y) € -,

for all k=k, and for all ¢, 7, M, N such that 0<7<e<(1/2)<2<N<K2N+
1<M< oo,

Letting >0+, M— oo in (4) and noting limy_o; - H, y»H, yH2,=H*H, y,,
we see, by Theorem 4, Theorem 5 and Lemma 6, that
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(5) —H, o~ HH, yy ¢ -‘35 ,

for all k=k, and for all 0<e<(1/2)<2< N <00,
Letting k— o in (5), we find that

(6) | ~H,xa—HH. 2y 65,
for all 0<e<(1/2)<2< N< oo,

Next we shall prove that 7=0. Let G be any Dbalanced convex
neighborhood of 0 in X. We can, by the uniform continuity of U,, take
k,€ K such that

1 G

T
(7) ETS_T Uly—Hadte S for all T>0,

-and we can, from Lemma 6, take T,>0 such that

L
2T

By (7) and (8), we see that, for large T such that T=T,

(8) S: U (Hz,)dt e£2i for all T=T, .

" vwar=[ L\ vw-Heat ]+ o= || vt ]

2T 2T 2T
eg g:G ,
2 2

which implies that y=0.
From this, Theorem 4 and Theorem 5, we see that, for small ¢ and large
N,

HH, yy—(—7) e-‘zf

Then if follows, from this and (6), that
H yy—yeV

for small ¢ and large N, which implies that x € D(H) and Hx=y. This
completes the proof.

The author wishes to express his sincere thanks to Professor S.
Koizumi and the referee for their valuable suggestions regarding the
improvement of the paper.
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