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Introduction

Recently, N. Th. Varopoulos ([10]) has shown that if X and Y are
2-parameter Brownian martingales, then

(*) H(S“ S‘” VX, |7, Y,t|2dsdt)l/2 ,
=G, .|lsup,, tIX.zl ollsup,,:| Yelllg

for all 1<p<2, 2<g<c and (1/r)=@1/p)+1/q) with (1/p)+(2/g)<1.

In this paper we prove that the inequality (*) also holds true when-
ever 0<p< oo, 0<g=<c and (1/r)=(1/p)+1/q) (cf. Theorem 2.1). More-
over, as an application of this result we give a probabilistic extension
of a result of E. M. Stein ([8]) on a variant of the area integral for the
bi-dise (cf. Corollary 3.1). v

After some preliminaries in section 1, in section 2 we prove our main
result, Theorem 2.1. Corollary 8.1 will be proved in section 8.

§1. Preliminaries.

In this section we mention some probabilistic facts that will be used
for the proofs of our results.

Let n(1) and n(2) be two natural numbers and let Bi(t;)=(xi(t,), ---,
;5 (t;)) be an n(j) dimensional Brownian motion on a complete probability
space (2;, FY, p’) such that pi(Bi0)=(0, ---,0)=1, j=1,2. For every
t;=0, let us denote by FY(t;) the o-field generated by {Bi(s):0<s<t;}
and all p?-null sets. Suppose Fi= V3, Fi(t), j=1,2. Let (2, F, P) be the
completion of the product measure space (2,x 2, F'xF? p'xp?, and put
F(s, t)=(F"(s) X F*(t)) V{P-null sets}, s, t=0. Let E[-] denote the expecta-
tion with respect to P.

Received April 9, 1985



374 HITOSHI ARAI

Given 0<p< ~, we will denote by H” the space of all 2-parameter
stochastic processes X=(X,,) satisfying

(1) (X,), and (X,), are 1l-parameter local martingales adapted to
(F(s)), and (F™(t)), respectively,

(2) 4X.,=X,—X,,— X+ X, has a unique stochastic integral repre-

sentation
n(1) n(2) (¢t (s
@2.1) 1X=33 So So ot daidat , s, 20,

where @7* is a 2-parameter predictable process with
El:(Soo Sw [(D"”‘lzdsdt)m:|<oo for some 0<r<o (cf. [3]), and
0 [

(8) X*=sup,,|X,|eL*, F, P).

As we see in [3], for every 2<p<, we can regard H” as L*(Q, F, P)
by identifying fe L?(2, F, P) with (E[f|F (s, t)]).. € H".

For a process X=(X,,) € U,>, H?, we define stochastic gradients of
X as follows: V. X,,=((0X/0x%),.), i=1, 2, and VX, = ((0*X/oxi0x}),,), where
0X/oxi and 0*°X/ox;0x} are stochastic derivatives in the sense of [3] or
[10]. Further, we set [V X, |*=>:34 |(0X/ox%),.’, 2=1,2, and [V,X,|'=

78 2008 [(0° X/0w307%) e

Throughout this paper we write ||:||, instead of ||*||zrwp, 0<DS co.

The following was proved in [2]:

PROPOSITION 1.1. Suppose 0<p<o. Let Ye H”. If Xe H?*, then

B |7 1Xap v Y.rdsdt [< Ol Vel X3
0 JO

B[ |7 102 17, Y.dlids |< Ol Yool Isup | X.ol 12
LJo s

and

E S: | Xoel? |V, Yot|2dt:|§0” Yooo”io”SPPIXOtl I3 ,

where C 18 a constant independent of X, Y and p.

REMARK. This result, in fact, holds for all Y€ BMO (See [2, Lemma
8.1].), however we need only the above case for the proof of our main
result. The space BMO was defined by H. Sato ([6]), and he proved that

BMO is the dual of H".
We introduce here operators of holomorphic projection type. In this
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paragraph we assume that n(l) and %(2) are even numbers. Let H;
(=1, 2) be the Hilbert martingale transform with respect to j-th para-
meter in the sense of Varopoulos [9], that is, H(dx4) =dzh iy sms
H (dln 51/+m) = — dad, and Hy(da})=0 (m=1,- -, n(5)/2; I=1, - -, n(); k=1, 2
with k+7; j=1, 2). Further let T;=(I+(—1)"2H,)/2 and S;=I—(—1)"*H,)/2,
J=1,2, where I is the identity transform.

Now we define holomorphic projection type operators K', K%, K* and
K* as follows:

K'=IQT.OTOT.T,, K'=0P0POPT.S,,
K'=0P0PODS, T, and K*=0PS.PHSPS.S,,

where 0 is the zero mapping, and where A=A PAPAPA, means that
A(X)=A,(Xy) + A,(X,0— Xy)) + A (Xos — X)) +A,((4X,,)) for an Xe U »>o HP.
The following proposition was obtained in [1].

PROPOSITION 1.2. Given 0<p< oo, there exist constants ¢, and C,
depending only on p such that

> 4 3
¢, || K3 (@), 3% sup | KX, I, <, | X7,
Jor every X e H.

§2. Main theorem.
Our main theorem is the following

THEOREM 2.1. Suppose 0<p<co, 0<g=co and 1/r)=1/p)+1/q). If
XeH? and Ye H?, then

vix, V)=({" [T w.Xl v, Y.rdsdt) e L, F, P)
and
*) VX, DL=Codl X*[ 1 T,
where C, ., is a constant depending only on p and q.

PrROOF. By the same argument as in Stein [8], it is only necessary
to verify this lemma in the following cases (I), (II), (III) and (IV):
(D) 0<p<2and 0<¢<2; (II) 2<g< oo, 0<Pp<oo and r<2; (III) 0<p< oo,
0<g<co and r>4; (IV) 0<p<2 and ¢g= .

Proofs of cases (II), (III) and (IV) which we will describe later were
inspired from [8] (and [10]). However, as will be shown below, a
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probabilistic method gives a drastic simplification of the proof of Case (I)
due to Stein.

Now we begin by proving the lemma in the case of (I). By Holder’s
inequality we have that

VX, V.=

(1, swp wiaras) (] sup v Yurar)”
;

(S sup | 1X..,|2ds)1/2

r

g (- soorara)”

b4 q

Here we recall an estimate of H*-martingales:

LEMMA 2.2 (Brossard-Chevalier [8, Corollary 2 and Theorem 3]).
For every 0<a<2, there exists a constant C, depending only on «
such that

o . 1/2 *
(1 sup .z.1ds) || <C.liz*le

and

oo 1/2
(§ sup [7,Z,'dt) || SCallZ*le s
(1] * a

for every Ze H*.
In order to apply Lemma 2.2 to our proof we need the following

LEMMA 2.8. Let T(j, L)=inf{t;: |Bi(t;)|>L} (j=1,2) and UL)=
{t, t): 0<t;<T(4, L), 7=1,2}. Let S={Xw+Xran.ot+Xoren+4X'*:
Xe H% (7, X.), 7:X.) and (V. X,.) are simple processes (cf. [3]}. If there
exists a constant C,, depending only on p and ¢ such that

*" VX, DI.=C oI X* 1Y

for every X, YeS, then the inequality (**) holds for all Xe H? and all
Y e H°.

The proof of this lemma will be given in Appendix. From Lemma
2.2 and Lemma 2.3 it follows the Case (I).

Case (II). In order to prove the Theorem in this case it suffices to
verify it when n(1) and n(2) are even numbers, because by using techni-
que in [9, p. 104], we can show it for every two natural numbers n(1)
and n(2). Hence we suppose that »(1) and n(2) are even numbers.

Let ie{l, 2, 3,4}. Let X*=K'X) and [XYi=(X'"+&)"*, 0<0<2. By
Ito’s formula we have
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(3/38)(|X:tlg) = (1/4)(0'2+80(2—0))(|X:t|2+ 5)(0/2)—2
X |V X5
2 (0* /(XA +e) = 7 X4,

for every 0<o<2. Consequently,

2.1 0/08)(| X 2|7 A+ CIX 2 [P 7, AP
2G| XWX TILAPR,

for every Ae U, H? and every 0<o<2, where C and C, are constants
depending only on ¢. Hence from (2.1) and the argument in [10, p.
200-p. 201} it follows that

VX, DL=Cp o | X, 11 Y],
Thus we get that

IV, D=3 IV, DIL.SChe 351X, 1741
=G, | X*,|Y*||, (Proposition 1.2) .

Case (III). For the proof of Theorem 2.1 in this case we use a
duality argument with Case (I). Let m be the exponent dual of 7/2.
Let H*5¢=0 with |guw/l.=<1. Suppose that | X*||,<1, ||Y*||,<1 and

[V(X, V)|, (=4)<oo. Let S(Y)= S S 7.7, Y"dsdt. For the simplicity,
let L[H]=E|:§ S ]Z,tdsdt] for a process I7I. We put
B=L[(a/as)(¢|V1XI2le le)]—L[?S |V1X]2“72 lel .

Since the first term in the right-hand side of the above equality is
estimated by C,||g|l.||X*|l,||Y*||, (=C.,), we have

Elp. VX, Y)I=Llg V. X'V, Y']=C.+|B| ,

where C, is a constant depending only on p and ¢q. From Ito’s formula
it follows that

|B|= Ll | X*@|F, Yl2/88)]+§; {L1(0g/0x%)(0 | X */0%i)|V, Y ]

+ L[(0¢/022)@ |V, Y [*/0xi)| X "1+ LI$(3 | X |*/03) (0 17, Y */ o) I}
=E[s*X*S(Y)]+2E[X*V($, Y)V(X, DI+ E[X*V(g, Y)S(Y)]
+2E[¢*X*V(X, Y)S(Y)]

Since >4, we may assume that ¢>4 without loss of generality.
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Let (1/n)=Q1/m)+@1/q) (>1/2). By the above inequality, Holder’s
inequality and [3, Theorem 3] we get that

Elpes V(X, Y)]1=C,+C,+CA|| V(g, V)Il.+C.|| V(g Vll.+CoA,

where C,, ---, C, are constants depending only on » and q. Hence if we
apply Case (I) to the above V(¢, Y), we obtain A*<cA+¢’, where ¢ and
¢’ are constants depending only on p and ¢q. This guarantees that A<C, ,
namely, ||V(X, DI|,.=C, I X*, | Y*||, if || V(X, Y)||,<eo. Further we can
easily remove this assumption by Lemma 2.3, because an easy calculation
implies that || V(X, Y)||,<e, for every X, Ye S(C N,.H?).

Case (IV). As we see in Case (II), it suffices to show that the
inequality (*) is true when #(1) and n(2) are even and X=K%X) for
some de{l, 2, 8, 4}. Since ||sup,| Y.l |-=]| Y*||.<c, we have by Proposi-
tion 1.1 that

123 L[(3/38)(| X 2 +¢€)*2 |7, Y]

<lim E r (Xt )7 |7, lezdt:l
0

e—0+

=C,Elsup | X 1 Y*L =G [ X3 Y*( -
Proposition 1.1 and (2.1) tell us
LI XP= P XP P YPI=C I X 3| ¥ .
Thus by using the argument in [10, p. 201] we obtain
VX, Dl,=C e | X[, 1| T¥los

§3. An application to Stein’s area integrals.

Let D=D,x D, be a direct product of two bounded planer domains
with C? boundaries, and let o0=o0,%X 0, be the product induced Euclidean
measure on 0D, xoD, (cf. [7]). As usual, we denote by H?(D) the space
of bi-harmonic functions « on D, whose nontangential maximal function
N(u)(x)=sup{ju(z)|: ze I'(x)} is in the Lebesgue space L*(0D,xaD,, do),
0<p< . Here I'(x) is the product domain I''(x,) x I'*(x,), if x=(x,, «.),
with I'(x;)={y; € D;: ly;—=;| <2 dist(y;, 0D;)}, j=1,2. We give in H?(D)
the norm as follows: |[u||z»= || N(%)||22.a0)-

In [8], E. M. Stein defined the area integral of two bi-harmonic
functions # and » on D as follows:

B, 'v)(x)=(“ Ptz 20 zz)lzdzldildzzd’z})m :

Iz
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x€o0D,xoD,. As the main result in [8], Stein showed the following
theorem when D is the bi-disc.

THEOREM S. Suppose 0<p< oo, and 0<qg=, with A/r)=>1/p)+
1/g). If we H*(D), ve HY(D), then B(u, v) € L"(do) and

1B, )|, =Cp,q |l [|0]] 20

where C,, 18 a constant depending only on D, p and q.

By Theorem 2.1 we have a probabilistic extension of Theorem S.
Before stating our result, we prepare some notations. Let n(1)=n(2)=2.
Suppose that B(t,), B*t,), (2, F, P), --- are established by a similar way
as in section 1. For every &=(&, &) €D, we put X¥(¢;, t;)=DBi(t;)+¢&; and
(&) =inf{t;: X¥(¢;, t;) ¢ D}, 7=1,2. If w is a function defined on D, then
we denote by M‘u the Brownian maximal function

sup{lu(X*(&, t.), X(&, L)|: 0=5¢,;<7(8y), =1, 2}.

Further, we define a probabilistic analogue of B(u, v) as follows:

r{§p) Sr(ez

~ ) 1/2
B, v)=(| Pl 7 0 (X 8), Xo(G t)dtds) -

0 0

As a corollary of Theorem 2.1 we have the following

COROLLARY 3.1. Let D=D,x D, be a direct product of two bounded
stmply connected C?> domains in the plane. Suppose that 0<p<oo,
0<g=< o and A/r)=QA/p)+A/q). If we H?(D) and v e HYD), then

| B(u, 'v)”récz",q”Meu”Lp(dP) | M|| Lo (ap)
écp.a”u”H?“v“H'I ’

for every &€ D, where C,, and C,, are constants depending only on ¢, p,
q and D.

In order to prove Corollary 3.1 we need the following

LEMMA 3.1. LetéeD. Ifwu and v are bi-harmonic functions on D,
then

(1) PM*u>N)=Co(Nm)>N\), Az>0 and

(2) 0B, V)>N=C'Y{PB(K.u, Kpw)>C\): ¢ 6=1, 2, 8, 4}, A>0,
where C' and C are constants depending only on & and D, and K, i3 a
projection on H?(D) defined in a similar way of the definition of the
operator K°-.
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Ao
The inequality (1) is proved by & same way as the proof of [5, Lemma

4'], and (2) follows from modification of proofs of [4, Theorem 1] and [5,
Theorem 14]. We omit a detail.
Now we prove Corollary 3.1.

PROOF OF COROLLARY 3.1. Since the second inequality in Corollary 3.1
are immediate consequence of Lemma 3.1, we need to prove the first inequali-
ty. For every small ¢>0, we put T(j, e)=inf{t;: dist(Xi(¢;, ¢;), 0D;)<¢}, j=
1,2, X{=w(X"¢&, T, e)A8), X*(&» T(2, e)At)) and Y =v(X' (&, T, &) As,
X*&,, T(2,8)A\U)), 8, t=0. Then X, Y“ ¢ H*>. Hence Theorem 2.1, Lemma
3.1 and the monotone convergence theorem yield the desired inequality.

7 ) )
In the proof of Theorem 2.1, we used Lemma 2.8. Here we prove

Lemma 2.3. Throughout the appendix we put || X|z»=|X*|, for every
Xe H?. We first prove the following

LEMMA. Let X eH? (n=1,2, ---) converge to an Xec H? in the
topology of H?, 0<p<o. Then for every M>1,
(*M) there exists a subsequence {n(5)} of {n} such that

lim |7, X3 (@) -7, X, (@)|=0 a.e. dslw,i@dtQdP .

F Rndod

PROOF. Let p’=min(p, 2). By [3, Corollary 2] we have

’/2

E[(S” sup, |77, X —V,X:st) ]gcp [ X™ — X[ yp—0
0

as n, m— oo,
This yields that for every &£>0,

lim v, QP((s, w): sup [V . XM (0)—V,X,(w)|>€)=0,
e ¢ 2vAY

where dy,=ds|, 4 Hence we obtain,lemma.
By this lemma we have the following

ASSERTION 1. Let Xe H? and Ye H* If X" e S, lim,_...|| X*™ — X]|z»=0,
lim, poo V(X*—X"™, Y)=0 a.e., and [[V(X™—X" Y)|,=C,,[[X™—
X ™|z || Yllze then ||V(X, V)|, =C, || X]| o || Y1 ara-

PrROOF. Put 2,={we 2:lim, ,.. V(X —-X", ¥)=0}, and 2,={we2:
[0, M[ X< [0, o[={(s, t): (s, t, w) satisfies (*M)} a.e.}, M=1,2,8, -.-. By
Lemma and Fubini’s theorem we have P(Q2,)=P(2,)=1. Let Q’E{a) € 2:
S: S: |V, Y, ()|’ dsdt < , for every M=1, 2, - - } Corollary 2 in [3] implies
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P@)=1. Let 2"=2'NQ2,N2,N2,N---. For every we 2", we set
dﬂg.N= “72 Yat(w)Pdet[O,M[x[o,N[ (M; N=1,2, +-., + °°) .
Then there exists an F'“e L*(dpe..) >(< oo f>< L¥(dpe..) such that
n(l) old

lim SS 7, X% (@) — F*(s, ) dpe(s, £)=0 .

Hence V., X™(w) converges to F* in measure p%y (M, N=1,2, -..).
Consequently, by (*M) we get that F°(s, t)=V, X, (w) a.s. dttyn,
M, N=1,2,--.. Thus F*=r,X, a.e. dgs.. From this it follows
that lim,.. V(X™, Y)(w)=V(X, Y)w) (we"). Since PQ")=1 and
lim,, .|| V(X™, Y)—V(X*™,Y)||,=0, we have || V(X, Y)||,<C, | X*|, || Y*||,<

By a similar way as the proof of Assertion 1 we have the following

ASSERTION 2. Let Xe Hrand Ye H%. If Y™ e S, lim,_.|| Y™ — Y| =0,
lim,, .o V(X, Y™ —Y")=0a.e.,and | V(X, Y — Y|, <C, || X||z» || Y™ —
Y| g0, then | V(X, Y)||ar=Cp, || Xllze | ¥]ls.

Now we prove Lemma 2.8.

Let XeH?” and Ye H’. There exist X7 eS, Y™eS such that
lim, .. | X™ — X||zp=0 and lim,,_..]|] Y™ — Y||z7=0.

By the assumption of Lemma 2.3 we have that for every m € N there
exists a subsequence {n(j)}c{n} such that

lim || X®9 — X||z»=0 , l}cm V(X" — X yim)=0 a.e., and
n—oo Jy—c0
“ V(X(n(;i))_X(n(k))' Y(M)H§Cp,q ||X(n(j))_X('n.(k))HHpH Y(m)”Hq .

Hence by Assertion 1 we obtain || V(X, Y"™)|, =G, | Xzl Y™ || e.
From this it follows that ||V(X, Y™ —Y™)|,—0 (as m, n— co),
Thus Assertion 2 tell us that ||V(X, Y)|,=C, | X|la» || Y]l se-
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