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Introduction

Let $S^{4}(1)$ be the 4-dimensional unit sphere. Fix an orientation of
$S^{4}(1)$ . We denote by $T_{x}$ the space of orthogonal complex structures
compatible with the orientation of $T_{x}(S^{4}(1))$ and by $T=\bigcup_{xeS^{4}(1)}T_{x}$ the
fiber bundle over $S^{4}(1)$ . $T$ is called the twistor space of $S^{4}(1)$ and it is
well-known that $T$ is the 3-dimensional complex projective space $P_{3}$ and
the projection of $T$ onto $S^{4}(1)$ is the Hopf fibration. Let $M$ be an
orientable Riemannian surface isometrically immersed in $S^{4}(1)$ and $J^{1}$ a
complex structure compatible with a fixed orientation of $M$. Then the
normal space $N.(M)$ admits an orthogonal complex structure $J_{l}^{2}$ defined by
$J_{x}^{1}$ and the orientation of $S(1)$ and hence $J_{x}^{1}+J_{x}^{2}$ is an orthogonal complex
structure of $T_{x}(S^{4}(1))$ for $x\in M$, where $J_{x}^{1}$ is the orthogonal complex
structure of $T_{x}(M)$ given by $J^{1}$ . Therefore we obtain a map of $M$ into
$P_{3}$ defined by $xeM\rightarrow J_{x}^{1}+J_{x}^{2}\in P_{3}$ . We call this map the Calabi lifting
defined by the fixed orientation of $S(1)$ ([19]). Choosing the reverse
orientation of $S^{4}(1)$ , we have another Calabi lifting. We call the former
the positive Calabi lifting and the latter the negative Calabi lifting. If
$M$ is an orientable surface in the 4-dimensional Euclidean space $R^{4}$ , we
can define the Gauss map of $M$ into $S^{2}\times S^{2}$ . We note that the Gauss
map is constructed as follows: By the same argument as above, each
point of $M$ gives an orthogonal complex structure of $R^{4}$ compatible with
the fixed orientation of $R^{4}$ . Since the space of orthogonal complex
structures of $R^{4}$ is $S^{2}$ , we obtain a map of $M$ into $S^{2}$ . Changing the
orientation of $R^{4}$ , we get another map of $M$ into $S^{2}$ . It is easy to see
that these maps of $M$ into $S^{2}$ give the Gauss map of $M$ into $S^{2}\times S^{2}$ .
From this point of view, we may regard Calabi lifting as ”Gauss map”.

In this paper, we investigate some relations between an isometric
immersion into $S^{4}(1)$ and its Calabi lifting. In the sections 1, 2 and 3,
we review the results of Chern [7] and Barbosa [2] on minimal surfaces
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of $S^{4}(1)$ , the results of Lawson [13] on the Frenet frame field of a
holomorphic curve in $P_{8}$ and the results of Eells and Wood [9] on the
isotropic harmonic maps into $P_{8}$ . In the sections 4, $\cdots,$

$7$ , we give thesummary of the definition and properties of the twistor space of $S^{4}(1)$ .
In the section 8, we define the Calabi lifting of an orientable Riemannian
surface $M$ isometrically immersed in $S^{4}(1)$ . Let $d_{1}$ and $d_{2}$ be the degrees
of the positive and negative Calabi liftings. We denote by $\chi(M)$ and
$\chi(N(M))$ the Euler numbers of $M$ and its normal bundle $N(M)$ , respec-
tively. Then we obtain

$d_{1}+d_{2}=x(M)$ and $d_{1}-d_{2}=x(N(M))$ .
This formula is well-known on surfaces in $R^{4}$ (see, for example, [8]).
Furthermore the energy $E$ of the Calabi lifting is given by

$E=4\int(1+|\mathfrak{h}|^{2})^{*}1-4\pi(\chi(M)+\chi(N(M)))$ ,

where $\mathfrak{h}$ is the mean curvature vector of $M$. In the section 9, we can
prove that the positive Calabi lifting is holomorphic if and only if the
ellipse of curvature (See, for example, [11].) is a positive circle. This
fact is obtained by Atiyah and Lawson (See [11].) and, together with the
formula of $E$, gives a result in [11] in the case that the ambient space
is $S^{4}(1)$ . Furthermore, we see that the positive Calabi lifting of a super-
minimal surface is holomorphic and horizontal. In the section 10, we can
prove that the constancy of “the second curvature” of a holomorphic
curve in $P_{8}$ is equivalent to its horizontality. In the section 11, we can
prove that the positive Calabi lifting is harmonic if and only if the mean
curvature vector of $M$ is a holomorphic cross section of the normal bundle.
In particular, each Calabi lifting of an orientable minimal surface in $S^{4}(1)$

is a conformal minimal immersion into $P_{s}$ . In the Section 12, we can show
that the positive Calabi lifting is a non-holomorphic isotropic harmonic
map if and only if the negative Calabi lifting is holomorphic and horizontal
and hence $M$ is a superminimal surface of $S^{4}(1)$ . Furthermore the non-
holomorphic isotropic harmonic map is constructed from the negative
Calabi lifting by the method of Eells and Wood [9] etc. Using the result
of [9], we see that, for a minimal surface $T^{2}$ of genus 1, if the Euler
number of $N(T^{2})$ is not zero, $T^{2}$ is a superminimal surface. We generalize
this fact as follows: Let $M$ be a compact orientable minimal surface of
genus $p$ of $|\chi(N(M))|\geqq 2p-1$ . Then $M$ is a superminimal surface.

Let $M$ be a holomorphic curve in $P_{8}$ such that the image of $M$ by
the Hopf fibration is a regular surface $N$. Then
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(0.1) $\int(1+|\mathfrak{h}|^{2})^{*}1$

attains the minimum among the regularly homotopic immersions of $N$

into $S^{4}(1)[11]$ . However, in general, the centroid of $M$ is not zero. On
the other hand, Weiner posed a question wheather the only closed
orientable surfaces immersed in $S^{n}(1)$ with centroid $0$ which satisfy the
Euler-Lagrange equation of (0.1) are minimal surfaces in $S^{n}(1)$ . In spite
of a counter example given in [10], it is interesting to consider this
question in a restricted case. But we see that this question is negative
even in the restricted case.

In the section 15, we give an application of a holomorphic, horizontal
curve in $P_{8}$ . From [12], we note that a cone of an n-dimensional sub-
manifold $M$ in $S^{2n+1}(1)$ is special Lagrangian ([12]) if and only if $M$ is an
integral, minimal submanifold ([3]) in $S^{2n+1}(1)$ . On the other hand, it is
well-known that the image of an n-dimensional integral, minimal sub-
manifold $M$ by Hopf fibration $S^{2n+1}(1)\rightarrow P_{n}(4)$ is totally real and minimal
([6]) in $P_{n}(4)$ . Conversely, for a simply connected n-dimensional totally
real, minimal submanifold $M$ in $P_{n}(4)$ , there exists a lifting map of $M$

into $S^{2n+1}(1)$ which gives an integral, minimal submanifold such that its
image by Hopf fibration is a totally real, minimal submanifold. Thus it is
very interesting to study n-dimensional totally real, minimal submanifolds
in $P_{n}$ . We can prove that the circle bundle of $S^{2}$ of positive even Chern
number $(\geqq 6)$ can be immersed in $P_{3}$ as a totally real, minimal submanifold.

The author expresses his deep gratitude to Professor K. Ogiue who
encouraged him and gave him a lot of valuable suggestions.

\S 1. Elementary surface geometry.

Let $M$ be a Riemannian surface with a fixed orientation isometrically
immersed in $S^{4}(1)$ and $\chi$ the immersion. Let $J^{1}$ be a complex structure
compatible with the fixed orientation of $M$. We denote by $\nabla,\overline{\nabla}$ and $\nabla^{N}$

the connections of $T(M),$ $T(S^{4}(1))$ and the normal bundle $N(M)$ of $M$ in
$S^{4}(1)$ , respectively. Let $\sigma$ be the second fundamental form of $M$ given
by

$\sigma(X, Y)=\overline{\nabla}_{X}Y-\nabla_{X}Y$

and $\nabla\sigma$ the differentiation of $\sigma$ defined by

$(\nabla_{X}^{\prime}\sigma)(Y, Z)=\nabla_{X}^{N}\sigma(Y, Z)-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$ .
Then the Gauss, Ricci and Codazzi equations are given by
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(1.1) $ K\{\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle\}=\langle X, Z\rangle\langle Y, W\rangle-\langle X, W\rangle\langle Y, Z\rangle$

$+\langle\sigma(X, Z), \sigma(Y, W)\rangle-\langle\sigma(X, W), \sigma(Y, Z)\rangle$ ,

(1.2) $\langle R_{XY}^{N}\xi, \eta\rangle=\sum_{j=1}^{2}\{\langle\xi, \sigma(X, e_{j})\rangle\langle\eta, \sigma(Y, e_{\dot{f}})\rangle$

$-\langle\xi, \sigma(Y, e_{l})\rangle\langle\eta, \sigma(X, e_{i})\rangle\}$ ,

(1.3) $(\nabla_{X}\sigma)(Y, Z)=(\nabla_{Y}^{\prime}\sigma)(X, Z)$ ,

where $K$ is the Gauss curvature of $M,$ $R^{N}$ is the curvature tensor of $\nabla^{N}$

defined by $R_{XY}^{N}=\nabla_{[X,Y]}^{N}-\nabla_{X}^{N}\nabla_{Y}^{N}+\nabla_{I^{\prime}}^{N}\nabla_{X}^{N}$ and $\{e_{1}, e_{2}\}$ is an oriented orthonormal
basis of $M$. We denote by $K_{N}$ the normal curvature with respect to the
given orientation of $N(M)$ .

Now we fix the orientation of $S^{4}(1)$ . Let $e_{1},$ $e_{2},$ $e_{8},$ $e_{4}$ be an oriented
orthonormal basis of $S^{4}(1)$ and $e_{1},$ $e_{8}$ the oriented basis of $M$. Then $N(M)$

has the natural orientation determined by the orientations of $M$ and $S^{4}(1)$

and we can define an orthogonal complex structure $J^{2}$ of $N(M)$ by

$J^{2}e_{2}=e_{4}$ and $J^{2}e_{4}=-e_{2}$ .
It is easy to see that

$\nabla J^{2}=0$ ,

which gives the Hermitian connection of $N(M)$ such that $N(M)$ is a
holomorphic line bundle (see, for example, [9, page 221]). Let $\xi$ be a
cross section of $N(M)$ and $D$ the operator of $N(M)$ defined by

$ D_{X}\xi=J^{2}\nabla_{X}^{N}\xi-\nabla_{J^{1}X}^{N}\xi$ .
Then $\xi$ is holomorphic if and only if $D\xi=0$ . We put $ h_{\dot{g}k}^{\alpha}=\langle\sigma(e_{j}, e_{k}), e_{\alpha}\rangle$

for $j,$ $k=1,3$ and $\alpha,$ $\beta=2,4$ . For a point $x$ of $M$, we define a map of
the unit circle $S_{x}^{1}$ of $T.(M)$ into $R_{+}$ by $X\rightarrow||\sigma(X, X)||^{2}$ . Let $e_{1}$ be a unit
vector at which the function attains a maximum and $e_{8}=J^{1}e_{1}$ . Then if
$\sigma(e_{1}, e_{1})$ is non-zero, we can take the unit normal vector $e_{2}$ as

$e_{2}=\frac{\sigma(e_{1},e_{1})}{\Vert\sigma(e_{1},e_{1})||}$

and $e_{4}=J^{2}e_{2}$ . With respect to the basis, we obtain

$h_{\dot{g}k}^{2}=\left|\begin{array}{ll}\lambda & 0\\0 & \mu\end{array}\right|$ , $h_{\dot{g}k}^{4}=\left|\begin{array}{ll}0 & \nu\\\nu & \delta\end{array}\right|$

and $\lambda\neq 0$ . If $\sigma(e_{1}, e_{1})=0$ , then $x$ is a geodesic point and hence we may
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consider $x=\mu=\nu=\delta=0$ . We call this basis an E-frame. We easily see
that $K=1+x\mu-\nu^{2}$ and $K_{N}=\nu(x-\mu)$ . Next we define the map of $S_{x}^{1}$ into
$N.(M)$ by $X\rightarrow\sigma(X, X)$ whose image is called the ellipse of curvature (see,
for example, [11] and [20]). We call the map the ellipse of curvature in
this paper.

LEMMA 1.1. The image of the ellipse of curvature is a circle if and
only if

$\nu=\pm\frac{x-\mu}{2}$ .

In particular, the ellipse of curvature preserves or reverses the orienta-
tion according as $\nu=(x-\mu)/2$ or $\nu=-(x-\mu)/2$ .

The ellipse of curvature preserving (resp. reversing) the orientation
is called the positive (resp. negative) circle. In particular a minimal
surface in $S^{4}(1)$ is called superminimal [4] or R-surface [20] if and only
if the image of the ellipse of curvature is a positive circle.

\S 2. Superminimal surfaces in $S^{4}(1)$ .
We review the results of Chern [7] and Barbosa [2] on a superminimal

surface in $S^{4}(1)$ .
Let $M$ be a superminimal surface in $S^{4}(1)$ and $\chi$ the immersion. Let

$z$ be an isothermal coordinate of $M$ and $(, )$ the symmetrical product in
the 5-dimensional complex Euclidean space $C^{b}$ . Then vector valued func-
tions on $M$ are locally defined by

$G_{0}=x$

$ G_{1}=\overline{\partial}\chi$

$G_{2}=\overline{\partial}^{2}\chi-aG_{1}$ ,

where $a$ is choosen in such a way that $(G_{2},\overline{G}_{1})=0$ . They satisfy the
following.

LEMMA 2.1 ([2, (3.7) Lemma, page 80]).

(1) $\overline{\partial}G_{1}=G_{2}+$ ( $\overline{\partial}$ log $|G_{1}|^{2}$) $G_{1}$ ,

(2) $\partial G_{1}=-|G_{1}|^{2}G_{0}$ ,

(3) $\overline{\partial}G_{2}=$ ( $\overline{\partial}$ log $|G_{2}|^{2}$) $G_{2}$

and hence $\xi=G_{2}/|G_{2}|^{2}$ is holomorphic. In particular, $\xi$ satisfies
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(2.1) $(\xi, \xi)=(\xi^{\prime}, \xi^{\prime})=0$ .
LEMMA 2.2 ([2, (3.12) Proposition, page 81]). $\xi$ has at most isolated

singularities with poles and gives a holomorphic map $\Xi$ of $M\dot{j}ntoP_{4}$

which is called the directrix curve.

We define $\psi$ by $\xi\wedge\xi^{\prime}\wedge\overline{\xi}\wedge\overline{\xi}^{\prime}$ . Since $\wedge^{4}C^{f}$ is $C^{\epsilon},$
$\psi$ is parallel to $\chi$ . Con-

versely let $\Xi$ be a full holomorphic map of $M$ into $P$ whose local ex-
pression satisfies (2.1) (it is called totally isotropic). Then we can construct
$\psi$ and obtain the following.

PROPOSITION 2.1 ([2, (3.7) and (3.8) Propositions, pages 83, 85]).
$\psi/|\psi|$ is independent of $z$ and gives the global map $\chi$ of $M$ into $S^{4}(1)$ and

$(\partial\chi,\overline{\partial}\chi)=\frac{|\xi_{1}\wedge\xi_{1}^{l}|^{2}}{|\xi_{1}|^{4}}$ ,

where $\xi_{1}=\xi$ A $\xi^{\prime}$ (it gives holomorphic map of $M$ into $P_{9}$ which is called
the first associated holomorphic curve of $\Xi$).

Generally $\chi$ constructed as above is a branched immersion (see, for
example, [2]). Consequently we obtain

THEOREM 2.1 ([2, (3.30) Theorem, page 88]). There exists a canonical
1-1 correspondence between the set offull superminimal branched immer-
sions $\chi$ of $M$ into $S^{4}(1)$ and the set of full and totally isotropic holomor-
phic maps $\Xi$ of $M$ into $P_{4}$ . The correspondence is the one that associates
with a superminimal immersion $\chi$ its directrix curve.

Since $M$ is superminimal, we obtain $\lambda=\nu,$ $\mu=-x$ and $\sigma=0$ for E-
frame $ei=1,$ $\cdots,$

$4$ . Furthermore we obtain

LEMMA 2.3.

$G_{1}=\frac{\rho}{2}\overline{E}_{1}$ and $G_{2}=\frac{\rho^{2}}{2}x\overline{E}_{2}$ ,

where $\rho^{2}dzd\overline{z}$ is the metric and $E_{1}=e_{1}-ie_{S},$ $E_{2}=e_{2}-ie_{4}$ .
\S 3. Holomorphic curves in $P_{3}$ and isotropic maps into $P_{8}$ .
Let $M$ be a compact orientable Riemannian surface fully and holomor-

phically immersed in $P_{s}$ . Then, except for isolated points of $M$, we can
define the second and third fundamental forms $\sigma_{2}$ and $\sigma_{3}$ , respectively.
We easily obtain $l_{1}$ and $l_{2}$ such that

$\langle\sigma_{2}(e_{1}, e_{1}), \sigma_{2}(e_{1}, e_{2})\rangle=0$ ,
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$\Vert\sigma_{2}(e_{1}, e_{1})\Vert=\Vert\sigma_{2}(e_{2}, e_{2})\Vert=l_{1}\neq 0$ ,

$\langle\sigma_{3}(e_{1}, e_{1}, e_{1}), \sigma_{3}(e_{1}, e_{1}, e_{2})\rangle=0$ ,

$\Vert\sigma_{3}(e_{1}, e_{1}, e_{1})\Vert=\Vert\sigma_{3}(e_{1}, e_{1}, e_{2})\Vert=l_{2}\neq 0$ ,

where $\{e_{1}, e_{2}\}$ is an oriented orthonormal frame field of $M$. Set

$e_{8}=\sigma_{2}(e_{1}, e_{1})/l_{1}$ , $e_{4}=\sigma_{2}(e_{1}, e_{2})/l_{1}=J\sigma_{2}(e_{1}, e_{1})/l_{1}$ ,

$e_{f}=\sigma_{8}(e_{1}, e_{1}, e_{1})/l_{2}$ , $e_{6}=\sigma_{3}(e_{1}, e_{1}, e_{2})/l_{2}=J\sigma_{3}(e_{1}, e_{1}, e_{1})/l_{2}$

and $\kappa_{1}=l_{1}$ and $\kappa_{2}=l_{2}/l_{1}$ . Then we have

$\tilde{\nabla}e_{2\cdot-1}=-\kappa_{-1}\omega_{1}e_{2\epsilon-8}+\kappa_{\epsilon-1}\omega_{2}e_{2\epsilon-2}+\omega_{2\epsilon-1,2}.e_{2*}+\kappa.\omega_{1}e_{2\epsilon+1}+\kappa_{\epsilon}\omega_{2}e_{+2}$ .
$\tilde{\nabla}e_{2\epsilon}=-\kappa_{-1}\omega_{1}e_{2\epsilon-2}-\kappa_{-1}\omega_{2}e_{2\epsilon-3}-\omega_{2\cdot-1,2}.e_{2*-1}+\kappa.\omega_{1}e_{2\epsilon+2}-\kappa_{\epsilon}\omega_{2}e_{2*+1}$ ,

where $s=1,2,$ $\kappa_{0}=\kappa_{3}=0$ and $\omega_{2\epsilon-1,2\epsilon}(e_{j})=\langle\tilde{\nabla}_{\ell}je_{2\iota-1}, e_{2\epsilon}\rangle$ . We call $\kappa$. the s-th
curvature of $M$. Next we put $\theta_{-1}=\omega_{2\iota-1,2\epsilon}-s\omega_{1,2}$ . Then

$\theta_{\epsilon}=d^{0}$ log $\kappa_{1}\cdots\kappa_{\epsilon}$

holds and we get

$\frac{1}{2}\Delta\log(\kappa_{1}\cdots\kappa_{\epsilon})+\kappa^{2}.-\kappa_{+1}^{2}-\frac{s+1}{2}K+\frac{1}{4}=0$ for $s=1,2$ ,

$\kappa_{1}^{2}=\frac{1}{2}(1-K)$ .

For these results, see [13, page 92]. We remark that $\kappa^{2}$. is equel to $K$.
given in [13].

LEMMA 3.1. If $\kappa_{2}$ is constant, then $\kappa_{2}=1/2$ .
Next we review the results of Eells and Wood [9].
Let $f$ be a full holomorphic map of $M$ into $P_{3}$ and $(z_{0}, z_{1}, z_{2}, z_{s})$ the

homogeneous coordinates of $P_{3}$ and $z$ an isothermal coordinate on an open
set $U$ of $M$. We define $f_{U}:U\rightarrow C^{4}$ such that $f(x)=\{f_{U}(x)\}\in P_{s}(f_{U}$ is called
a local lift of $f$). Let $f_{1}$ and $f_{2}$ be the associated curves of $f$ defined by
$\{f_{U}, \partial f_{U}\}$ and $\{f_{\sigma}, \partial f_{\sigma}, \partial^{2}f_{\sigma}\}$ , respectively, and $g$ the polar of $f$ [ $9$ , page 226]
defined by $f_{2}$ . Then $\phi(x)=f_{1}(x)^{\perp}\cap f_{2}(x)$ or $f(x)^{\perp}\cap f_{1}(x)$ gives a full harmonic
map of $M$ into $P_{8}$ , where $f(x)^{\perp}$ is the subspace orthogonal to $f(x)$ , etc.
On the other hand, let $\varphi$ be a map of $M$ into $P_{3}$ . Then $\varphi$ is called the
isotropic map if
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$\langle D^{\prime\alpha}\varphi, D^{\prime\prime\rho}\varphi\rangle=0$ for $\alpha$ and $\beta\geqq 1$ ,

where $\langle, \rangle$ is the metric and $D$ is the connection of $\varphi^{-1}T’ P_{s}(T’ P_{s}$ is the
holomorphic tangent bundle of $P_{8}$) and $D^{\prime}=D_{\partial/\partial g},$ $D‘‘=D_{\partial/\partial*}-$ .

PROPOSITION 3.1 ([9, Lemma 3.7, page 226]). $\phi$ is isotropic.

Conversely let $\phi$ be a full isotropic harmonic map of $M$ into $P_{3}$ . Then
D’-order $s$ and D”-order $r$ are defined by

$s=MaxxeK$ dim $span\{D^{\alpha}\phi:1\leqq\alpha<\infty\}$ ,

$r=MaxxeK$ dim $span\{D^{\prime\prime a}\phi:1\leqq\alpha<\infty\}$ ,

respectively.

PROPOSITION 3.2 ([9, Lemma 6.2, page 240]).

$r+s=3$ .
It is easy to define the maps $\phi!$ and $\phi$, of $M$ into the $s$ and r-dimensional
complex Grassmann manifolds $G.(C^{4})$ and $G_{f}(C^{4})$ by

$\phi!(x)=\{D^{\prime}\phi, D^{\prime 2}\phi, \cdots, D’\phi\}$ and
$\phi^{\prime\prime}(x)=\{D^{\prime\prime}\phi, D_{\phi}^{\prime\prime 2}, \cdots, D’’\phi\}$ ,

respectively. Furthermore maps $\tilde{\phi}^{\prime}$. and $\tilde{\phi}$, of $M$ into $G_{+1}(C^{4})$ and $G_{+1}(C^{4})$

are defined by $\phi\oplus\phi^{\prime}$. and $\phi\oplus\phi_{r}^{ll}$ , respectively. Then we have the following.

THEOREM 3.1 ([9, Theorem 6.9, page 244)]. Let $M$ be a R,iemannian

surface. Then the set of full $\dot{\tau}sotropic$ harmonic maps $\phi$ of $M$ into $P_{8}$

and the set of pairs of full holomorphic map $f$ and integer $r(0\leqq r<3)$

have the bijective correspondence as follows:
(1) $r=D$“-order of $\phi$ and $f=\tilde{\phi}_{-1}^{\prime\prime_{1}}\cap\tilde{\phi}^{\prime\prime}$,

(2) $\phi=f_{r-1}^{\perp}\cap f_{f}$ .
\S 4. Orthogonal complex structures of $R^{4}$.
Let $R^{4}$ be the 4-dimensional Euclidean space with a fixed orientation

and $(x^{1}, x^{2}, x^{8}, x^{4})$ oriented orthogonal coordinates of $R^{4}$ . Let $J_{0}$ be an
orthogonal complex structure defined by

$J_{0}=\left(\begin{array}{ll}0 & -l\\I & 0\end{array}\right)$ ,
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where $I$ is the $2\times 2$-identity matrix. Then the orientation is compatible
with $J_{0}$ . Let $SO(4)$ be the special orthogonal group and $0$ the set of
orthogonal complex structures compatible with the fixed orientation of
$R^{4}$ . Then $SO(4)$ acts transitively on $0$ as the adjoint action

$J\rightarrow gJg^{-1}$ .
Since the isotropy group is the unitary group $U(2)$ , we obtain $0=$

$SO(4)/U(2)$ . We denote by so(4) and $u(2)$ the Lie algebras of $SO(4)$ and
$U(2)$ , respectively, which are given by

so(4) $=\{\left(\begin{array}{ll}A & C\\-{}^{t}C & B\end{array}\right)$ , where $A$ and $B$ are skew-symmetric $2\times 2$-matrices

$C$ is a $2\times 2$-matrix ,

$u(2)=\{\left(\begin{array}{ll}A & -B\\B & A\end{array}\right)$ , where $A$ is a skew-symmetric $2\times 2$-matrix and

$B$ is a symmetric $2\times 2$-matrix .

We have the canonical decomposition

so(4) $=u(2)+\mathfrak{p}$ ,

where $\mathfrak{p}$ if given by

$\mathfrak{p}=\{\left(\begin{array}{ll}A & B\\B & -A\end{array}\right)$ , where $A$ and $B$ are skew-symmetric $2\times 2-matrices\}$ .

Since the metric I I and the complex structure $J$ on $\mathfrak{p}$ are given by

$\Vert\left(\begin{array}{ll}A & B\\B & -A\end{array}\right)\Vert^{2}=-2tr(A^{2}+B^{2})$ ,

$J\left(\begin{array}{ll}A & B\\B & -A\end{array}\right)=\left(\begin{array}{ll}-B & A\\A & B\end{array}\right)$ ,

we obtain the $SO(4)$-equivariant metric and complex structure of $SO(4)/U(2)$

and it is easy to see that $SO(4)/U(2)$ is $S^{2}(1)$ . The reverse orientation of
$R^{4}$ gives another equivalence between $SO(4)/U(2)$ and $S^{2}(1)$ . These
equivalences are given by
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$SO(4)/U(2)$ $\rightarrow S^{2}(1)$ ,
$(l)$

$(e_{1}, e_{2},e_{s}, e_{4})U(2)(l)\rightarrow\left(\begin{array}{ll}\langle e_{1}\wedge e_{\epsilon} & E_{1}\wedge E_{2}\pm E_{\epsilon}\wedge E\rangle\\\langle e_{1}\wedge e_{\epsilon},E_{1}\wedge E_{0}\mp E_{2}\wedge E_{4}\rangle & \\\langle e_{1}\wedge e_{\epsilon} & E_{1}\wedge E_{4}\pm E_{2}\wedge E_{8}\rangle\end{array}\right)$

where $E_{j}=(\cdots,$ $0,l,0j- th\ldots)$ .

\S 5. Twistor space $P_{s}$ of $S^{4}(1)$ .
Fix an orientation of $S^{4}(1)$ . Let $F$ be the oriented frame bundle of

$S^{4}(1)$ compatible with the orientation. Then, using the $SO(4)$-action on $0$ ,
we construct the associated bundle $H$. We denote by $(x, e_{1}, e_{2}, e_{8}, e_{4})U(2)$

an element of $H$. We obtain the diagram:
$F\ni(x, e_{1}, \cdots, e_{4})$

$(x, e_{1}, \cdots, e_{4})U(2)eH\backslash _{\backslash }\prime^{\pi}\pi_{S^{4}(1)\ni X}/\downarrow^{1_{\pi}}$

For $x\in S^{4}(1)$ , the fiber $H_{g}$ of $H$ gives the space of orthogonal complex
structures of $T.(S^{4}(1))$ . Let $\ovalbox{\tt\small REJECT}$ be the horizontal distribution of $H$

defined by the connection of $F$. Then, for $p\in H$, identifying $T_{n(p)}S^{4}(1)$

with $\ovalbox{\tt\small REJECT}_{p}$ , we obtain the innerproduct and the orthogonal complex structure
of $\ovalbox{\tt\small REJECT}_{p}$ . Since the fiber has the metric and the orthogonal complex
structure induced by $0$ , we can define the almost Hermitian structure of
$H$. The following fact is well-known ([1]).

$H$ is the 3-dimensional complex projective space $P_{8}$ of holomorphic
sectional curvature 1 and $\pi$ is the Hopf fibration.
We note that $F=SO(5)$ and $H$ is the reductive homogeneous space

$SO(5)/1\times U(2)$ . In fact, let so(5) be the Lie algebra of $SO(5)$ . Then the
Lie algebra $1\times u(2)$ of $1\times U(2)$ given by

$\{\left(\begin{array}{lll}0 & & \\ & A & B\\ & -B & A\end{array}\right)$ : A $isaskew- symmetric2\times 2- matri_{X\}}andBisasymmetric2\times 2- matrix$

Let $\tilde{p}$ be

$\{\left(\begin{array}{lll}0 & \xi & \eta\\-{}^{t}\xi & A & C\\-{}^{t}\eta & C & -A\end{array}\right)$ : $A$ and $C$ are
$skew- symm\xi,\eta\in R^{2}$

etrIc $2\times 2- matrices\}$ .
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Then so(5) $=1\times u(2)+\tilde{\mathfrak{p}}$ and $SO(5)/1\times U(2)$ is a reductive homogeneous
space. The metric and the complex structure are given by

$\Vert\left(\begin{array}{lll}0 & \xi & \eta\\-{}^{t}\xi & A & C\\-{}^{t}\eta & C & -A\end{array}\right)\Vert^{2}=|\xi|^{2}+|\eta|^{2}+2|A|^{2}+2|C|^{2}$ and

$J\left(\begin{array}{lll}0 & \xi & \eta\\-{}^{t}\xi & A & C\\-{}^{t}\eta & C & -A\end{array}\right)=\left(\begin{array}{lll}0 & -\eta & \xi\\{}^{t}\eta & -C & A\\-{}^{t}\xi & A & C\end{array}\right)$ .

$P_{3}\rightarrow S^{4}(1)$ is the Riemannian submersion (See, for example, [16].) and the
fundamental tensor $A$ is given by

$\langle A_{\tilde{X}}\tilde{Y}, V\rangle=-\frac{1}{2}\langle(\langle R_{XY}e_{\dot{f}}, e_{k}\rangle), V\rangle$ ,

where $\tilde{X}$ and $\tilde{Y}\in\ovalbox{\tt\small REJECT}_{p}$ are the horizontal lifts of $X$ and Ye $T_{\pi(p)}S^{4}(1),$ $V$

is an element of the tangent space of the fiber (vertical vector) at $p$

identified with $\mathfrak{p}$ , $p=(\pi(p), e_{1}, \cdots, e_{4})U(2);(\langle R_{XY}e_{j}, e_{k}\rangle)$ is a $4\times 4$ skew-
symmetric matrix which is the curvature tensor of $SO(5)/SO(4)$ . For
$H(=P_{3})$ , we obtain the well-known fact [1]

LEMMA 5.1. A conformal transformation of $S^{4}(1)$ induces a holomor-
phic bundle automorphism of $P_{3}$ .

\S 6. The complex contact structure of $P_{8}$ .
Let $(z^{0}, z^{1}, z^{2}, z^{8})$ be homogeneous coordinates of $P_{3}$ . For complex

coordinates $(z^{1}, z^{2}, z^{8})$ on $\{z\in P_{3}:z^{0}=1\}$ , we define a holomorphic l-form $\omega$

by

$\omega:=dz_{1}-z_{3}dz_{2}+z_{2}dz_{3}$ .
Then $\omega$ gives the horizontal distribution $\ovalbox{\tt\small REJECT}$ of $P_{3}$ in the section 5 (see,
[4, Proposition 3.1, page 468]). $\omega$ is called the complex contact structure.
In this section, we give the differential equation which $\omega$ satisfies.

Let $\mathfrak{n}$ be a unit vertical vector field of the submersion $P_{8}\rightarrow S^{4}(1)$ .
Then a tensor field $G$ of type $(1, 1)$ defined by $G(X)=2A_{X}\mathfrak{n}$ satisfies

$G$(vertical vector) $=0$

$G$ is an endomorphism of $\ovalbox{\tt\small REJECT}_{p}$ which satisfies $G^{2}=-I_{\ovalbox{\tt\small REJECT}_{p}},$ . By a simple
calculation, we get
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$(\tilde{\nabla}_{X}^{G)Y=-\frac{1}{2}\langle X},$ $Y\rangle$ $\mathfrak{n}-\frac{1}{2}\langle JGX, GY\rangle J\mathfrak{n}+\langle\tilde{\nabla}_{X}\mathfrak{n}, J\mathfrak{n}\rangle JG(Y)$ ,

$(\tilde{\nabla}_{X}^{G)\mathfrak{n}=\frac{1}{2}}X$ ,

$(\tilde{\nabla}_{V}^{G)X=-\frac{1}{2}\langle V,J\mathfrak{n}\rangle JX-\langle\tilde{\nabla}_{X}\mathfrak{n},J\mathfrak{n}\rangle\tilde{\nabla}_{V}\mathfrak{n}+\langle\tilde{\nabla}_{V}\mathfrak{n},J\mathfrak{n}\rangle J_{\tilde{\nabla}_{X}}\mathfrak{n}}$ ,

where $X$ and $Y$ are horizontal. $\tilde{\nabla}$ is the connection of $P_{8}$ .
\S 7. Holomorphic isotropic planes of $C^{f}$.
Let $l$ be a complex plane of $C^{f}$ . Then $l$ is called a totally isotropic

plane if \langle X, $Y\rangle$ $=0$ for all $X,$ $Y\in l$ . It is well known that the space $H_{2}$

of totally isotropic planes is $SO(5)/1\times U(2)$ ( $[2$ , page 89]). The corre-
spondence is given by

$(e_{0}, e_{1}, e_{2}, e_{8}, e_{4})\in SO(5)\rightarrow\{B_{1}, B_{2}\}\in H_{2}$ ,

where $B_{1}=(e_{1}+ie_{8})/\sqrt{2}$ and $B_{2}=(e_{2}+ie_{4})/\sqrt{2}$ . Thus $H_{2}$ is $H(=P_{8})$ .
Furthermore the Hopf fibration is given by

$\{B_{1}, B_{2}\}\rightarrow B_{1}\wedge B_{2}\wedge\overline{B}_{1}\wedge\overline{B}_{2}$ ,

where $B_{1}\wedge B_{2}\wedge\overline{B}_{1}\wedge\overline{B}_{2}$ is a real vector of $\wedge^{4}C^{f}$ (that is, $R^{f}$). $H_{2}$ is a
Kaehler submanifold in the complex Grassmann manifold and hence is
immersed in $P_{9}(2)$ by using Plucker coordinates ([2, (4.5) Proposition, page
89]). $S(5, C)$ acts on C’ and hence on $\wedge^{2}C^{f}$ in the standard way. Thus
$SO(5, C)$ acts holomorphically on $P_{9}(2)$ and preserves $H_{2}$ . Hence $SO(5, C)$

acts holomorphically on $H_{2}$ . Let $M$ be a superminimal surface of $S^{4}(1)$ ,
$\chi$ the immersion and $\Xi$ the directrix curve of $P_{4}$ . Let $\xi$ be a local ex-
pression of $\Xi$ . Then by (2.1), $\xi$ A $\xi^{\prime}$ is an element of $H_{2}$ and gives
a global holomorphic map $\tilde{\chi}$ of $M$ into $H_{2}$ . By Proposition 2.1, the
projection of $\tilde{\chi}$ into $S^{4}(1)$ by $\pi$ is $\chi$ . Since the metric of the superminimal
surfrce is induced by $\tilde{\chi},\tilde{\chi}$ is horizontal. Let $A\in SO(5, C)$ . Then $ A\xi\wedge A\xi$

is totally isotropic and hence the projection of $A\tilde{\chi}$ by $\pi$ gives a super-
minimal surface. Thus $A\tilde{\chi}$ is horizontal.

\S 8. Calabi lifting.

Let $M$ be a Riemannian surface immersed in $S^{4}(1)$ with a complex
structure $J^{1}$ . We denote by $\langle, \rangle$ and $\nabla$ the metric and the connection,
respectively. Let $\chi$ be the immersion of $M$ into $S^{4}(1)$ . Fix an orientation
of $S^{4}(1)$ . Then, for a point $x$ of $M,$ $T.(S^{4}(1))$ has an orthogonal complex
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structure $J_{x}=J_{x}^{1}+J_{x}^{2}$ . By the definition of the twistor space, we obtain
a map $\tilde{\chi}$ of $M$ into $P_{3}$ defined by $xeM\rightarrow J$. $GP_{s}$ . This map is called the
positive Calabi lifting ([15]). The map $\chi\approx$ defined by the reverse orienta-
tion is called the negative Calabi lifting. Let $e_{1},$ $e_{2},$ $e_{3},$ $e_{4}$ be an oriented
frame field of $S^{4}(1)$ such that $e_{1},$ $e_{3}$ is an oriented frame field of $M$. Then
$e_{3}=J^{1}e_{1}$ and $e_{4}=J^{2}e_{2}$ hold and hence the positive Calabi lifting is given by:

$M\ni x\rightarrow(e_{1}(x), e_{2}(x),$ $e_{3}(x),$ $e_{4}(x))U(2)eP_{3}$ .
Let $\gamma$ be a curve of $M$ which satisfies $\gamma(0)=x$ . Then we may regard
$e_{1},$ $e_{3}$ as a parallel frame field along $\gamma$ in $M$ and $e_{2},$ $e_{4}$ as a parallel frame
field along $\gamma$ in $N(M)$ . Furthermore we denote by $f_{1},$ $f_{2},$ $f_{3},$ $f_{4}$ the parallel
frame field along $\gamma$ in $S^{4}(1)$ such that $f_{j}(0)=e_{j}(0)$ for $1\leqq j\leqq 4$ . There-
fore there exist functions $a_{j}^{k}$ of the parameter $s$ of $\gamma$ such that

$e_{j}=\sum_{j=1}^{4}a_{j}^{k}f_{k}$

and hence

$\tilde{\chi}(\gamma(s))=(f_{1}(s), \cdots, f_{4}(s))(a_{\dot{f}}^{k}(s))U(2)$ .
Since

$\overline{\nabla}_{\gamma_{*(0)}}e_{j}=\sum_{k=1}^{4}(a_{j}^{k})^{\prime}(0)e_{k}$

holds, we get

$(\tilde{\chi}_{*}\gamma_{*}(0))‘‘=\tilde{\gamma}_{*}(0)$ and $(\tilde{\chi}_{*}\gamma_{*}(0))^{\nu}=((a_{j}^{k})(0))$ .
Let $\sigma$ be the second fundamental form of $M$. Then we obtain

$((a_{\dot{f}}^{k})(0))=[+\langle\sigma(\gamma_{*}(0),e_{8}),e_{4}\rangle-\langle\sigma(\gamma_{*}(0),e_{1}),e_{2}\rangle$ : $-\langle\sigma(\gamma_{*}(0),e_{8}),e_{2}\rangle-\langle\sigma(\gamma_{*}(0),e_{1}),e_{4}\rangle]$

where $[A:B]$ is an element of $\mathfrak{p}$ such that $A$ is the $(1, 2)$-component of $\mathfrak{p}$

and $B$ is the $(1, 4)$-component of $\mathfrak{p}$ . Now assume that $\gamma(s)$ is a geodesic
in $M$ with $\gamma(0)=x$ and $\gamma_{*}(0)=e_{1}$ . Let $\gamma(s, t)$ be a family of geodesics
with $\gamma(s, O)=\gamma(s)$ and $\gamma_{*}(s, 0)=e_{3}(s)$ . Let $e_{1}(s, t),$ $e_{2}(s, t),$ $e_{3}(s, t),$ $e_{4}(s, t)$ be
a frame field along $\gamma(s, t)$ , where $e_{1}(s, t),$ $e_{3}(s, t)$ is a parallel frame field
along $\gamma(s, t)$ with respect to the connection of $T(M)$ such that $e_{1}(s, 0)=$

$e_{1}(s),$ $e_{3}(s, 0)=e_{3}(s)$ and $e_{2}(s, t),$ $e_{4}(s, t)$ is a parallel frame field along $\gamma(s, t)$

with respect to the connection of $N(M)$ such that $e_{2}(s, 0)=e_{2}(s),$ $e_{4}(s, 0)=$

$e_{4}(s)$ . Furthermore let $f_{j}(s, t)$ be a parallel frame field along $\gamma(s, t)$ with
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respect to the connection of $T(S^{4}(1))$ such that $f_{j}(s, 0)=f_{j}(s)$ . Then there
exists a matrix $A(s, t)=(A_{\dot{f}}^{k}(s, t))$ such that

(8.1) $(e_{1}(s, t),$ $e_{2}(s, t),$ $e_{8}(s, t),$ $e_{4}(s, t))$

$=(f_{1}(s, t),$ $f_{2}(s, t),$ $f_{\epsilon}(s, t),$ $f_{4}(s, t))A(s, t)$ .
Let $V$ be a vector of $\mathfrak{p}$ . Then we have a variation $\tau:I\times I\times I\rightarrow P_{8}$ of
$\tilde{\chi}(\gamma(s, t))$ defined by

$\tau:(s, t, \theta)=(f_{1}(s, t),$ $\cdots,$ $f_{4}(s, t))(\exp\theta V)A(s, t)U(2)$ .
It is easy to see that, at $x$ ,

$(\tilde{\nabla}_{\partial/\partial}.\frac{\partial}{\partial s})^{\nu}=(\frac{\partial^{2}A}{\partial s^{2}})$ , $(\tilde{\nabla}_{\text{\‘{e}}/\partial\iota}\frac{\partial}{\partial t})^{\nu}=(\frac{\partial^{2}A}{\partial t^{2}})$ , $(\tilde{\nabla}_{\partial/\partial}.\frac{\partial}{\partial t})^{\nu}=(\frac{\partial^{2}A}{\partial s\partial t})$ .

By (8.1), we obtain

$\sigma(e_{1}(s, 0),$ $e_{1}(s, 0))=\sum_{j=1}^{4}\frac{\partial A_{1}^{\dot{f}}}{\partial s}(s)f_{j}(s)$

and hence

$(\nabla_{e_{1}}^{\prime}\sigma)(e_{1}, e_{1})-\sum_{a=1,8}\langle\sigma(e_{1}, e_{1}), \sigma(e_{1}, e_{a})\rangle e_{a}=\sum_{j=1}^{4}\frac{\partial^{2}A_{1}^{j}}{\partial s^{2}}(0)e_{j}$ , etc.

Using the formulas of the submersion ([16]), we obtain

LEMMA 8.1.

$\tilde{\chi}_{*}(X)=x_{*}(x)+\frac{1}{2}[-\langle\sigma(X, e_{1}),e_{2}\rangle+\langle\sigma(X,e_{8}),e_{4}\rangle$ : $-\langle\sigma(X,e_{1}),e\rangle-\langle\sigma(X,e_{8}), e_{2}\rangle]$

$\tilde{\nabla}_{\partial/\partial}.\frac{\partial}{\partial s}=\langle\sigma(e_{1}, e_{s}), e_{4}\rangle e_{2}-\langle\sigma(e_{1}, e_{8}), e_{2}\rangle e_{4}$

$+\frac{1}{2}[-\langle(\nabla_{1}\sigma)(e_{1},e_{1}),e_{2}\rangle+\langle(\nabla_{c_{1}}^{\prime}\sigma)(e_{1},e_{8}),e_{4}\rangle$ : $-\langle(\nabla_{e_{1}}\sigma)(e_{1},e_{8}),e_{2}\rangle-\langle(\nabla_{\epsilon_{1}}^{\prime}\sigma)(e_{1},e_{1}),e_{4}\rangle]$

$\tilde{\nabla}_{\partial/\partial t}\frac{\partial}{\partial t}=-\langle\sigma(e_{1}, e_{8}), e\rangle e_{a}+\langle\sigma(e_{8}, e_{1}), e_{2}\rangle e_{4}$

$+\frac{1}{2}[-\langle(\nabla_{e_{8}}^{\prime}\sigma)(e_{8},e_{1}),e_{2}\rangle+\langle(\nabla_{\iota_{3}}\sigma)(e_{8}, e_{8}),e_{4}\rangle$ ; $-\langle(\nabla^{\prime}\sigma)(e_{3},e_{1}),e\rangle-\langle(\nabla_{\ell_{3}}\sigma)(e_{8},e_{8}),e_{l}\rangle$

$\tilde{\nabla}_{\partial/\partial}.\frac{\partial}{\partial t}=\frac{1}{2}(\langle\sigma(e_{s}, e_{8}), e_{4}\rangle-\langle\sigma(e_{1}, e_{1}), e_{4}\rangle)e_{2}$
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$+\frac{1}{2}(\langle\sigma(e_{1}, e_{1}), e_{2}\rangle-\langle\sigma(e_{3}, e_{8}), e_{2}\rangle)e_{4}$

$+_{\frac{1}{2}[}+\langle(\nabla_{e_{1}}^{\prime}\sigma)(e_{8},e_{8}),e_{4}\rangle-\langle(\nabla_{\ell_{1}}\sigma)(e_{s},e_{1}),e_{2}\rangle$ : $-\langle(\nabla_{e_{1}}\sigma)(e_{3},e_{8}),e_{2}\rangle-\langle(\nabla_{e_{1}}\sigma)(e_{8},e_{1}),e_{4}\rangle]$ .
Let $\omega$ be the Kaehler form of $P_{3}$ . Then we obtain

$\tilde{\chi}^{*}\omega=\langle J\tilde{\chi}_{*}e_{1},\tilde{\chi}_{*}e_{3}\rangle^{*}1$ ,

where *1 is the volume form. Using an E-frame in the section 1, we
get

$\langle J\tilde{\chi}_{*}e_{1},\tilde{\chi}_{*}e_{8}\rangle=K+K_{N}$

and hence
$\tilde{\chi}^{*}\omega=(K+K_{N})^{*}1$ .

For the negative Calabi lifting, we obtain
$\chi^{*}\omega=(K-K_{N})^{*}1\approx$ .

THEOREM 8.1.

degree of $\tilde{x}+degree$ of $ x=x(M)\approx$ ,

degree of $\tilde{\chi}$ -degree of $ x=x(N(M))\approx$ .
Furthermore we obtain

THEOREM 8.2. $\tilde{\chi}$ is totally real if and only if $K+K_{N}=0$ . In parti-
cular the Calabi lifting of a flat torus isometrically immersed in $S^{4}(1)$ with
trivial normal connection is totally real.

Using an E-frame, we obtain

$\langle\tilde{\chi}_{*}e_{1},\tilde{\chi}_{*}e_{1}\rangle=1+(x-\nu)^{2}$ ,
$\langle\tilde{\chi}_{*}e_{1},\tilde{\chi}_{*}e_{8}\rangle=\delta(-\lambda+\nu)$ ,

$\langle\tilde{\chi}_{*}e_{s},\tilde{\chi}_{*}e_{8}\rangle=1+(\mu+\nu)^{2}+\delta^{2}$

Thus we get

THEOREM 8.3. $\tilde{\chi}$ is conformal at $x\in M$ if and only if $\chi$ is minimal
at $x$ or the ellipse of curvature at $x$ is a positive circle.
Furthermore, since the energy function $E$ of $\tilde{\chi}$ is given by

$2+(\lambda-\nu)^{2}+(\mu+\nu)^{2}+\delta^{2}$ ,
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we have the following.

THEOREM 8.4.

$E=4\int(1+|\mathfrak{h}|^{2})^{*}1-4(\chi(M)+\chi(N(M)),$

where $\mathfrak{h}$ is the mean curvature vector of $M$.
For a map $f$ of $M$ into $P_{3}$ , it is well-known that

the energy of $ f\geqq 4\pi\times$ ldegree of $f|$ ,

the equality holds if and only if $f$ is holomorphic. This, together with
the formula of $E$ for the positive and negative Calabi liftings, implies

the following.

COROLLARY 8.1.

$\int(1+|\mathfrak{h}|^{2})^{*}1\geqq 2\pi(\chi(M)+|\chi(N(M))|)$ ,

the equality holds if and only if the Calabi $lift\dot{j}ng$ for the orientation of
$N(M)$ with $\chi(N(M))\geqq 0$ is holomorphic.

This gives a result in [11] for the case that the ambient space is $S^{4}(1)$ .

\S 9. Holomorphic Calabi lifting.

The Calabi lifting is holomorphic if and only if

$J(\tilde{\chi}_{*}X)=\tilde{\chi}_{*}(J^{1}X)$ ,

which is equivalent to
$J(\tilde{\chi}_{*}X)^{x\prime}=(\tilde{\chi}_{*}J^{1}X)^{Z^{\prime}}$ and $J(\tilde{\chi}_{*}X)^{\nu}=(\tilde{\chi}_{*}J^{1}X)^{\nu}$ .

Using an E-frame and Lemma 8.1, we have $\delta=0$ and $\nu=(1/2)(\lambda-\mu)$ and
hence we obtain

THEOREM 9.1. (1) The positive Calabi lifting is holomorphic if and
only if the ell,ipse of curvature is a positive circle.

(2) Let $M$ be a holomorphic curve in $P_{8}$ whose image of the Hopf

fibration is a regular surface. Then the posit,ive Calabi lifting of the
regular surface is a holomorphic map of $M$.

This result is obtained by Atiyah and Lawson (see [11]).
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The horizontal condition of the Calabi lifting is equivalent to $\delta=0$ ,
$\nu=\lambda,$ $x+\mu=0$ in terms of an E-frame. Thus, combined with the result
of the section 7, we have

THEOREM 9.2. The poitive Calabi lifting is horizontal if and qnly if
$M$ is a superminimal surface. Furthermore the Calabi lifting $is^{\backslash }given$

by the associated map $\Xi_{1}$ of the directrix curve $\Xi$ .
Using [17] or the author’s unpublished result on the first eigenvalue of
Kaehler submanifolds in $P_{n}$ , we have

COROLLARY 9.1. Let $M$ be a not-totally geodesic superminimal surface
of $S^{4}(1)$ . Then the first eigenvalue of the Laplacian of $M$ is smaller
than 2.

COROLLARY 9.2. $SO(5, C)$ preserves the horizontal distribution $\ovalbox{\tt\small REJECT}$

of $P_{3}$ .
PROOF. For a point $p\in P_{3}$ and a horizontal holomorphic plane $T$ of

$T_{p}(P_{3})$ , we have the Veronese surface $x;S^{2}(1/8)\rightarrow S^{4}(1)$ whose Calabi lifting
is tangent to $T$ at $p$ . Any $A\in SO(5, C)$ makes $A\tilde{\chi}$ horizontal because $A\tilde{\chi}$

is the Calabi lifting of a superminimal surface. Thus $AT$ is a holomor-
phic plane. Q.E.D.

\S 1O. A characterization of horizontal holomorphic curves in $P_{3}$ .
We note that a horizontal holomorphic curve is the positive Calabi

lifting of a superminimal surface $M$. Let $e_{1},$ $e_{3}$ be a frame field of $M$.
Then $\tilde{\chi}_{*}e_{1}=x_{*}e_{1}$ and $\tilde{\chi}_{*}e_{3}=x_{*}e_{3}$ . Set $ f_{1}=e_{1}\sim$ and $ f_{2}=e_{3}\sim$ . For the second
fundamental form $\tilde{\sigma}_{2}$ of $\tilde{\chi}$ , we have

$\sigma_{2}(f_{1}, f_{1})=\kappa_{1}e_{2}\sim$ , $\tilde{\sigma}_{2}(f_{2}, f_{2})=-\kappa_{1}e_{2}\sim$ , $\tilde{\sigma}_{2}(f_{1}, f_{2})=A_{e_{1}}^{\sim}e_{3}+\kappa_{1}e_{4}\sim\sim$ .
Since

$A_{e_{1}}^{\sim}e_{3}\sim=\frac{1}{2}(\langle R_{\iota_{13}}.e_{k}, e_{\dot{f}}\rangle)=0$ ,

we obtain $f_{3}=e_{2}\sim,$ $ f_{4}=e_{4}\sim$ and $\kappa_{1}=x$ as the Frenet frame field. It follows
that

$\tilde{\nabla}_{f_{1}}f_{8}=-\kappa_{1}f_{1}+\omega_{3,4}(f_{1})f_{4}+\kappa_{2}f_{\delta}$ .
Since $A_{f_{1}}f_{3}=(1/4)[-1:0]$ , we obtain $\kappa_{2}^{2}=(1/4)$ . The converse also holds,
that is, we have the following.
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THEOREM 10.1. $M$ is a holomorphic curve of $P_{8}$ of constant $\kappa_{2}$ if and
only if $M$ is horizontal. In particular $\kappa_{1}=x$ , where $\lambda$ is defined for the
superminimal surface $\pi(M)$ .

PROOF. By Lemma 3.1, we obtain $\kappa_{2}=(1/2)$ . Let $U$ be an open
subset of $M$ where a Frenet framd $f_{1},$

$\cdots,$
$f_{t}$ is defined. Put $\mathfrak{n}=2f_{f}$ and

define a tensor field $G$ of $P_{\epsilon}$ over $U$ by

$G(f_{1})=-f_{8}$ , $G(f_{2})=f_{4}$ , $G(f_{8})=f_{1}$ , $G(f_{4})=-f_{2}$ , $G(f_{f})=G(f_{0})=0$ .
Then we obtain

$G^{2}=-I$ over the distribution spanned by $f_{1},$ $f_{2},$ $f_{8}$ and $f_{4}$

and
$\nabla_{f_{\dot{f}}}\mathfrak{n}=G(f_{j})+\omega_{b,t}(f_{j})J\mathfrak{n}\simeq$ .

Using $\omega_{\iota.0}=\omega_{3.4}+\omega_{1.2}$ , we find that the differential equation of $(\mathfrak{n}, G)$ is
the same one as the complex contact structure of $P_{8}$ satisfies. Making
a holomorphic isometry of $P_{8}$ acting on $\omega$ , we obtain a new complex
contact structure whose initial condition is the same one as $(\mathfrak{n}, G)$ . By
the uniqueness of solution, the map over $U$ is horizontal in $P_{s}$ with the
new complex contact structure and by analiticity of $M,$ $M$ is horizontal.

Q.E.D.

\S 11. Harmonic Calabi lifting.

The harmonicity condition of the Calabi lifting is equivalent to

$\nabla_{\partial/\partial}.\frac{\partial}{\partial s}+\nabla_{\partial/\partial t}\frac{\partial}{\partial t}=0\simeq\simeq$ .

It follows from Lemma 8.1 that the left-hand-side of the above equation
is give by

$[-\langle D_{1}\mathfrak{h}, e_{4}\rangle:+\langle D_{1}\mathfrak{h}, e_{2}\rangle]$

and hence we have

THEOREM 11.1. The positive Calabi lifting is harmonic if and only
if $\mathfrak{h}$ is a holomorphic section on $N(M)$ .
If $\chi$ is minimal, it is clear that $\chi$ is harmonic, which, together with
Theorem 8.2, implies the following.

COROLLARY 11.1. If $\chi$ is minimal, then the positive and negative
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Calabi lifting are conformal and minimal.

Since $S^{8}(1)$ admits an orientable embedded minimal surface of genus $p$

[14], we obtain

COROLLARY 11.2. $P_{8}$ admits an oriented embedded minimal surface
of genus $p$ and degree $1-p$ .

\S 12. Isotropic harmonic Calabi lifting.

Let $M$ be an orientable Riemannian surface with a fixed orientation
isometrically immersed in $S^{4}(1)$ with a fixed orientation. Let $\chi$ be the
immersion of $M$ into $S^{4}(1)$ . Then if $\tilde{\chi}$ is non-holomorphic and isotropic
harmonic, the isotropy condition implies that $\tilde{\chi}$ is conformal (see, [9, page
237]). By Theorem 8.3, $M$ has the decomposition $M=M_{1}\cup M_{2}$ such that $M$

is minimal on $M_{1}$ and the ellipse of curvature is a positive circle on $M_{2}$ .
If $M_{2}$ contains an open subset of $M$, then $\tilde{\chi}$ is holomorphic on the open
subset and hence so is on $M$ because $\tilde{\chi}$ is analytic. Thus $M_{1}$ is dense in
$M$ and hence $M$ is minimal. Fix a point $p$ which has a neighborhood
where its ellipse of curvature is not a positive circle. Let $z=x+iy$ be
an isothermal coordinate of the neighborhood such that

$\frac{\partial}{\partial x}=\frac{\partial}{\partial s}$
$\frac{\partial}{\partial y}=\frac{\partial}{\partial t}$ at $p$ ,

where $(s, t)$ is the coordinate defined in the section 8.

LEMMA 12.1. If we set

$\frac{\partial}{\partial x}=a\frac{\partial}{\partial s}+b\frac{\partial}{\partial t}$ , $\frac{\partial}{\partial y}=c\frac{\partial}{\partial s}+d\frac{\partial}{\partial t}$ ,

then we obtain at $x$

$\frac{\partial a}{\partial s}=\frac{\partial d}{\partial s}$ , $\frac{\partial a}{\partial t}=\frac{\partial d}{\partial t}$ , $\frac{\partial c}{\partial s}+\frac{\partial b}{\partial s}=0$ , $\frac{\partial c}{\partial t}+\frac{\partial b}{\partial t}=0$ ,

in particular

$(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(a+ic+ib-d)=0$ .

Set $\phi=\chi\approx$ . Now we calculate $ D’\phi$ , $(D’)^{2}\phi,$
$\cdots,$ $ D’\phi$ , $(D^{\prime})^{2}\phi,$ $\cdots$ to

investigate the isotropy condition of $\chi\approx$ .
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$D_{\phi}=\frac{1}{2}D_{(\partial/\partial\cdot-(\partial/\partial t))}^{\prime}\phi=\frac{1}{2}(e_{1}\sim-ie_{\epsilon}\sim)^{(1,0)}$

$+\frac{1}{2}[-(\sigma(E_{1},\overline{E}_{2}),\overline{E}_{2}):i(\sigma(E_{1},\overline{E}_{1}),\overline{E}_{2})]$ ,

where $E_{1}=e_{1}-ie_{S},$ $E_{2}=e_{2}-ie_{4}$ and $X^{(l0)}$ is the component of type $(1, 0)$ of
a vector $X$. By the minimality of $M$, we get

(12.1) $D^{\prime}\phi=\frac{1}{2}(e_{1}\sim-ie_{3}\sim)$ .

Similarly we get

(12.2) $D^{\prime}’\phi=\frac{1}{4}[-(\sigma(\overline{E}_{1},\overline{E}_{1}),\overline{E}_{2}):i(\sigma(\overline{E}_{1},\overline{E}_{1}),\overline{E}_{2})]$ .

Since

$\frac{\partial}{\partial z}=\frac{1}{2}((a-ic)\frac{\partial}{\partial s}+(b-id)\frac{\partial}{\partial t})$

holds, we get

$\simeq\nabla_{\epsilon/\partial e}(\phi_{*}(\frac{\partial}{\partial z})^{(1,0)})$

$=\frac{1}{8}\{(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)\frac{\partial}{\partial s}-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)iJ\frac{\partial}{\partial s}$

$+(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)\frac{\partial}{\partial t}-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)iJ\frac{\partial}{\partial t}\}$

$+\frac{1}{4}\nabla_{(\partial/\partial)-(\partial/\partial t)}\simeq.\phi(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})^{(1,0)}$ ,

$\nabla_{\partial/\partial_{l}^{-}}\phi_{*(\frac{\partial}{\partial\overline{z}})^{(1.0)}}\simeq$

$=\frac{1}{8}\{(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(a+ic)\frac{\partial}{\partial s}-(\frac{\partial}{\partial s}+\frac{\partial}{\partial t})(a+ic)iJ\frac{\partial}{\partial s}$

$+(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(b+id)\frac{\partial}{\partial t}-(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(b+id)iJ\frac{\partial}{\partial t}$

$+\frac{1}{4}\simeq\nabla_{(\partial/\partial)+i(\partial/\partial t)}\phi(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})^{(1,0)}$ .

Using Lemma 8.1 and the minimality, we easily obtain
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$D_{\phi}^{2}=\frac{1}{8}\{(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)\frac{\partial}{\partial s}-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)iJ\frac{\partial}{\partial s}$

$+(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)\frac{\partial}{\partial t}-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)iJ\frac{\partial}{\partial t}\}$

$+\frac{1}{4}(\sigma(e_{1}, E_{1}),\overline{E}_{2})\tilde{E}_{2}$ ,

and

$D_{\phi}^{\prime 2}=\frac{1}{8}\{(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(a+ic)\frac{\partial}{\partial s}-(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(a+ic)iJ\frac{\partial}{\partial s}$

$+(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(b+id)\frac{\partial}{\partial t}-(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t})(b+id)iJ\frac{\partial}{\partial t}\}$

$-\frac{1}{4}(\sigma(e_{1},\overline{E}_{1}),\overline{E}_{2})\tilde{E}_{2}$

$-\frac{1}{8}[(\nabla_{e_{1}}^{\prime}\sigma)(\overline{E}_{1},\overline{E}_{1}),\overline{E}_{2}) : i((\nabla_{e_{1}}^{\prime}(\overline{E}_{1},\overline{E}_{1}),\overline{E}_{2})]$ .

It follows from Lemma 12.1 that

(12.3) $D’ 2\phi=-\frac{1}{4}(\sigma(e_{1},\overline{E}_{1}),\overline{E}_{2})\tilde{E}_{2}+vertical$ part.

The isotropy condition implies $\langle D^{\prime 22}\phi, D’\phi\rangle=0$ and hence
$(\sigma(e_{1}, E_{1}),\overline{E}_{2})(\sigma(e_{1},\overline{E}_{1}),\overline{E}_{2})=0$ .

For an E-frame,

$(\sigma(e_{1}, E_{1}),\overline{E}_{2})=x+\nu$ and $(\sigma(e_{1},\overline{E}_{1}),\overline{E}_{2})=\lambda-\nu$

hold. Since $\lambda\neq\nu$ , we get $\lambda+\nu=0$ and hence, for the reverse orientation
of $S^{4}(1),$ $M$ is a superminimal surface. Thus we can calculate the vertical
of $ D^{\prime 2}\phi$ given by

$(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)(\frac{\partial A}{\partial s})-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(a-ic)iJ(\frac{\partial A}{\partial s})$

$+(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)(\frac{\partial A}{\partial t})-(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t})(b-id)iJ(\frac{\partial A}{\partial t})$ .

Since

$(\frac{\partial A}{\partial s})=[-\lambda : 0]$ and $(\frac{\partial A}{\partial t})=[0;\lambda]$
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hold, we obtain $J(\partial A/\partial s)=-(\partial A/\partial t)$ . Therefore the vertical part of $ D^{\prime 2}\phi$

vanishes and we obtain

(12.4) $ D^{\prime}\phi$ is parallel to $ D^{2}\phi$ .
Conversely if $M$ is superminimal for the reverse orientation of $S^{4}(1)$ , then
(12.1), $\cdots,$ $(12.4)$ hold. Using the induction, we obtain $\langle D^{\prime}\phi, D^{\prime\prime\rho}\phi\rangle=0$ for
$\beta\geqq 1$ . Therefore the positive Calabi lifting becomes a non-holomorphic
isotropic harmonic map with $r=2$ . On the other hand, the negative Calabi
lifting is holomorphic. Next we show that the positive Calabi lifting is
constructed from the negative Calabi lifting by the method of Eells and
Wood. Let $\tilde{\chi}_{\sigma}$ be the local lift of $\tilde{\chi}$ , that is, the map of an open set $U$

of $M$ into $C^{4}$ such that the projection of $\tilde{\chi}_{\sigma}$ by $C^{4}-\{0\}\rightarrow P_{8}(=C^{4}-\{O\}/C^{*})$

is $\tilde{\chi}$ . Let $ E_{2}\approx$ be the horizontal lift of $\tilde{E}_{2}$ . Then the map $f$ defined by
$ x\rightarrow\tilde{\chi}_{\sigma}\rightarrow\{E\}\approx$

is well defined and gives a holomorphic map by the definition. Using an
E-frame, we obtain

$\nabla_{\partial/\partial}.\tilde{E}_{2}=-i\omega_{4,2}(e_{1})\tilde{E}_{2}-x(e_{1}\sim+ie_{\epsilon}\sim)+xe_{1}\sim+ix^{\sim}e_{\epsilon}\simeq$

$+\frac{1}{4}[-1:i]$

$=-\omega_{4,2}(e_{1})\tilde{E}_{2}+\frac{1}{4}[-1:i]$ .

It is easy to see that, at $x$ , the metric induced by $f$ is equal to the metric
of $M$, that is, the metric induced by the negative Calabi lifting. Using
a Calabi’s rigidity theorem [5], the holomorphic curve constructed by the
positive Calabi lifting is the negative Calabi lifting. Furthermore it is
easy to see that the polar of the negative Calabi lifting is itself.

THEOREM 12.1. Let $\chi$ be a full minimal immersion of an orientable
Riemannian surface with a fixed orientation into $S^{4}(1)$ with a fixed
orientation. The positive Calabi lifting is non-holomorphic and isotropic
harmonic if and only the negative Calabi lifting is holomorphic. Then
the D”-order is 2 and the positive Calabi lifting is eonstructed by the
method of [9] from the negative Calabi lifting. Furthermore the polar
of the negative Calabi lifting is itself.

COROLLARY 12.1. Let $\chi$ be an isometric immersion of $S^{2}$ into $S(1)$

whose mean curvature vector is a holomorphic section of $N(S^{2})$ . Then
$\chi(S^{2})$ is the image of a holomorphic curve in $P_{s}$ by the Hopf fibration.
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COROLLARY 12.2. Let $\chi$ be an isometric immersion of $T^{2}$ into $S^{4}(1)$

whose mean curvature vector is a holomorphic section of $N(M)$ . If
$\chi(N(T^{2}))$ is not zero, then $\chi(T^{2})$ is the image of a holomorphic curve in
$P_{3}$ by the Hopf fibration.

PROOF. Using Proposition 7.3 and Corollary 7.7 in [11], we obtain
the result.

REMARK. The Veronese surface $S^{2}(1/3)\rightarrow S^{4}(1)$ gives the positive
Calabi lifting $S^{2}(1/3)\rightarrow P_{8}$ . Furthermore the negative Calabi lifting is a
non-holomorphic isotropic harmonic map: $S^{2}(1/6)\rightarrow P_{3}$ . Generally we note
that the holomorphic immersion $S^{2}(1/m)\rightarrow P$. gives non-holomorphic iso-
tropic harmonic maps:

$S^{2}(\frac{1}{(2s+1)m-2s^{2}})\rightarrow P_{m}$ for all $1\leqq s\leqq m-1$ .

In particular, the above is totally real if and only if $m=2s$ .
From Corollary 12.2, we note that a minimal immersion of $T^{2}$ into

$S^{4}(1)$ with $\chi(N(T^{2}))\neq 0$ is a superminimal surface. This fact has the
following generalization.

THEOREM 12.2. Let $M$ be a compact orientable Riemannian surface
of genus $p$ minimally immersed in $S^{4}(1)$ with

$|\chi(N(M))|\geqq 2p-1$ .
Then $M$ is a superminimal surface.

PROOF. Assume that $M$ is not a superminimal surface for any
orientation. Let $L$ be the complex vector bundle on $M$ defined by
assigning to a point $x$ of $M$ the vertical space at $\tilde{\chi}(x)$ of $T(P_{8})$ . Then
using the connection induced from $T(P_{8})$ , we make $L$ a holomorphic line
bundle. Since $\tilde{\chi}(\partial/\partial\overline{z})$ is a non-zero section of $L^{c}$ ,

$\tilde{\chi}(\frac{\partial}{\partial\overline{z}})d\overline{z}$

defines a global section of $\Omega^{(0,1)}\otimes L$ . It is easy to see that $\tilde{\chi}(\partial/\partial\overline{z})$ is anti-
holomorphic. Furthermore the curvature form is given by

$\frac{1}{2}\tilde{\chi}^{*}\omega$ .

Since $\overline{L\otimes\Omega^{(0.1)}}$ has a global section, the Chern number of $\overline{L\otimes\Omega^{(0,1)}}$ is non-
negative and hence
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$\frac{1}{2}\{(\chi(M))+\chi(N(M))\}-2(1-p)\geqq 0$ .
Using the negative Calabi lifting, we obtain

$|\chi(N(M))|\leqq 2(p-1)$ .
Q.E.D.

\S 13. Holomorphic transformations of $P_{3}$ .
Let $M$ be a full, horizontal holomorphic curve in $P_{s}$ and $f$ the map

of $M$ into $P_{3}$ . Then, in terms of homogeneous coordinates $z^{0},$ $z^{1},$ $z^{2},$ $z^{\epsilon}$ ,
$M$ is horizontal if and only if

(13.1) $(z^{1})^{\prime}-z^{S}(z^{2})+z^{2}(z^{3})^{\prime}=0$ .
Let $T=(T_{k}^{\dot{f}})$ be a holomorphic transformation of $P_{8}$ . Then $T\cdot f$ is horizontal
if and only if

$(T_{1}^{1}T_{0}^{0}+T_{1}^{0}T_{0}^{1}+T_{1}^{3}T_{0}^{2}+T_{1}^{2}T_{0}^{3})(z^{1})^{\prime}$

$+(T_{1}^{1}T_{2}^{0}-T_{1}^{0}T_{2}^{1}+T_{1}^{3}T_{2}^{2}-T_{1}^{2}T_{2}^{3})((z^{1})^{\prime}z^{2}-(z^{2})^{\prime}z^{1})$

$+(T_{1}^{1}T^{0}-T_{1}^{0}T_{3}^{1}+T_{1}^{3}T_{8}^{2}-T_{1}^{2}T_{s}^{3})((z^{1})z^{s}-(z^{\epsilon})^{\prime}z^{1})$

$+(T_{2}^{1}T_{0}^{0}-T_{2}^{0}T_{0}^{1}+T_{2}^{3}T_{0}^{2}-T_{2}^{2}T_{0}^{3})(z^{2})^{\prime}$

$+(T_{2}^{1}T_{8}^{0}-T_{2}^{0}T_{3}^{1}+T_{2}^{3}T_{3}^{2}-T_{2}^{2}T_{3}^{3})((z^{2})z^{8}-(z^{\epsilon})^{\prime}z^{2})$

$+(T_{s}^{1}T_{0}^{0}-T_{s}^{0}T_{0}^{1}+T_{3}^{3}T_{0}^{2}-T_{3}^{2}T_{0}^{3})(z^{s})=0$ .
Since

$(z^{1})^{\prime}$ , $(z^{2})$ , $(z^{s})^{\prime}$ , $((z^{1})z^{2}-(z^{2})^{\prime}z^{1})$ . $((z^{1})z^{s}-(z^{s})z^{1})$

are the Pl\"ucker coordinates of the associated map $f_{1}:M\rightarrow P$ , by horizontali-
ty of $f$, we get

$f_{1}:M\rightarrow P_{4}\subset P_{f}$ .
$\pi\cdot f$ gives a superminimal immersion of $M$ into $S^{4}(1)$ and its local
representation $\xi$ is given by $G_{2}/|G_{2}|^{2}$ . Thus the induced metric of the
directrix curve $\Xi$ of $\pi\cdot f$ is given by

$\frac{|G_{2}|^{2}}{|G_{1}|^{2}}dzd\overline{z}$ .
Using Lemma 2.3, we get the metric $\lambda^{2}dzd\overline{z}$ . On the other hand, since
$f$ is holomorphic and horizontal,
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$Df=\frac{1}{2}(e_{1}\sim-ie_{3}\sim)$ ,

$D^{2}f=the$ part of $(e_{1}\sim-ie_{3}\sim)+\frac{\lambda}{2}\tilde{E}_{2}$ ,

the metric induced by $f_{1}$ is $x^{2}dzd\overline{z}$ . Using the result of the section 7,
the directrix curve is the associated curve of the horizontal holomorphic
curve. Since the directrix curve is full, we obtain the condition on $T$:
(13.2) $T_{1}^{1}T_{0}^{0}+T_{1}^{0}T_{0}^{1}+T_{1}^{3}T_{0}^{2}+T_{1}^{2}T_{0}^{3}+T_{2}^{1}T_{3}^{0}-T_{2}^{0}T_{3}^{1}+T_{2}^{3}T_{3}^{2}-T_{2}^{2}T_{3}^{3}=0$ ,

(13.3) $T_{2}^{1}T_{0}^{0}+T_{2}^{0}T_{0}^{1}+T_{2}^{3}T_{0}^{2}+T_{2}^{2}T_{0}^{3}=0$ ,

(13.4) $T_{3}^{1}T_{0}^{0}-T_{3}^{0}T_{0}^{1}+T_{3}^{3}T_{0}^{2}-T_{3}^{2}T_{0}^{3}=0$ ,

(13.5) $T_{1}^{1}T_{2}^{0}-T_{1}^{0}T_{2}^{1}+T_{1}^{3}T_{2}^{2}-T_{1}^{2}T_{2}^{3}=0$ ,

(13.6) $T_{1}^{1}T_{3}^{0}-T_{1}^{0}T_{3}^{1}+T_{1}^{3}T_{3}^{2}-T_{1}^{2}T_{3}^{3}=0$ .
Thus $T$ transforms any horizontal holomorphic curve into a horizontal
holomorphic curve. Let $G$ be the subset of the holomorphic transforma-
tions of $P_{3}$ which satisfy (13.2). . . (13.6). Then $G$ is closed and hence a
Lie subgroup. We see that dim $G=10$ . Since $G$ contains $SO(5, C)$ by
Corollary 9.2, $SO(5, C)$ is the identity component of $G$ .

THEOREM 13.1. Let $M$ be a full horizontal holomorphic curve in $P_{3}$

and $T$ a holomorphic transformation of $P_{3}$ such that $T\cdot M$ is horizontal.
Then $T\in G$ .

\S 14. Critical surfaces in $S^{4}(1)$ .
Let $M$ be an orientable Riemannian surface isometrically immersed in

$S^{4}(1)$ . Assume that its positive Calabi lifting is holomorphic. Then we
find that

(14.1) $\int(1+|\mathfrak{h}|^{2})^{*}1$

attains a minimum value among the regularly homotopic immersions of
$M$ into $S^{4}(1)$ . On the other hand, Weiner posed the following problem:
Are the only closed orientable surfaces immersed in $S^{n}$ with centroid $0$

which satisfy the Euler-Lagrange equation for (14.1) minimal surfaces
in $S^{n}$? We gave a counter example [10]. But it is interesting to consider
this problem for $M$ with holomorphic, positive Calabi lifting. Now assume
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that $M$ is horizontal in $P_{8}$ . Let $T$ be a holomorphic transformation of
$P_{8}$ which is close to the identity transformation. Then $T\cdot M$ is a regular
surface in $S^{4}(1)$ . Using the argument of Li and Yau [15, Theorem 1,
page 273], we obtain a conformal transformation $S$ such that $S\cdot\pi\cdot T(M)$

has the centroid at $0$ . It follows from Lemma 6.1 that there exists a
holomorphic transformation $Q$ of $P_{8}$ such that $\pi\cdot Q=S\cdot\pi$ and hence $\pi\cdot Q$ .
$T(M)$ is a regular surface with centroid $0$ . If $\pi\cdot Q\cdot T\cdot\tilde{\chi}$ is a minimal
immersion, then $\pi\cdot Q\cdot T\cdot\tilde{\chi}$ is a superminimal immersion and hence $Q\cdot T\cdot\tilde{\chi}$

is horizontal. By Theorem 13.1, $Q\cdot T\in G$ holds. Since the dimensions of
the holomorphic transformation group of $P_{8}$ and $G$ are 15 and 10, respec-
tively, the Iwasawa decomposition of the conformal transformation group
of $S^{4}(1)$ implies that there exists $T$ such that $Q\cdot T\in G$ . Using the ex-
amples constructed in [4, Corollary $H$ , page 470], we get

THEOREM 14.1. Let $M$ be an orientable Riemannian surface of genus
$p$ . Then there exists a non-minimal immersion such that (14.1) attains
the minimum among the regularly homotopic immersions of $M$ into $S^{4}(1)$

and the centroid is $0$ .

\S 15. Totally real submanifolds in $P,$.
We gave a characterization of a horizontal and holomorphic curve in

$P_{3}$ of constant $\kappa_{2}$ in the section 10. Moreover we found that the basis
$\{f_{f}, f_{\mathfrak{g}}\}$ of the second normal bundle is one of the tangent space of the
fiber of $P_{8}$ . Let $T$, be the tube of radius $r$ in the direction of the second
normal bundle. In this section, we investigate $T,$ .

Let $(\phi, \xi, \eta, \langle, \rangle)$ be the Sasakian structure of $S^{\tau}(1)$ (See, for example,
[18].) and $\overline{\pi}$ be the Hopf fibration of $S^{7}(1)$ onto $P_{\epsilon}(4)$ . Then for a
horizontal holomorphic curve, the second curvature is 1. Let $\overline{M}$ be the
induced bundle over $M$ and $\overline{N}_{2}$ the horizontal lift of the second normal
bundle of $M$. We denote by $T$, the tube of $\overline{M}$ in the direction of $\overline{N}_{2}$ .
Then $\overline{\pi}(\overline{T},)$ is $T,$ . Let $U$ be an open set where $\{f_{f}, f_{6}\}$ is well-defined.
Thus $T_{r}$ is locally given by

$\overline{\pi}^{-1}(U)\times S^{1}$ $\rightarrow S^{7}(1)$

(1) $tD$

$(x, \theta)\rightarrow(\cos r)x+(\sin r)\{(\cos\theta)\overline{f}_{f}+(\sin\theta)\overline{f}_{6}\}$ .
Therefore we obtain

$F_{r^{*}}\overline{f}=(\cos r)\overline{f}_{1}-(\sin r)(\cos\theta)\overline{f_{s}}+(\sin r)(\cos\theta)\omega_{fQ}(f_{1})\overline{f}_{0}$

$-(\sin r)(\sin\theta)\overline{f_{4}}-(\sin r)(\sin\theta)\omega_{5,0}(f_{1})\overline{f}_{f}$ ,
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etc, which imply that $T$, is totally real if and only if

$\{\overline{\pi}_{*}F_{r^{*}}\overline{f}_{j},\overline{\pi}_{*}F_{*}\frac{\partial}{\partial\theta}$ : $j=1,2\}$

is perpendicular to

$\{J\overline{\pi}_{*}F_{r^{*}}\overline{f}_{j},$
$J\overline{\pi}_{*}F_{*}\frac{\partial}{\partial\theta}$ : $j=1,2\}$ .

Using the properties of the Sasakian structure, we can investigate the
totally real codition. Furthermore, by a long calculation, we obtain

THEOREM 15.1. $T_{r}$ is totally real and minimal in $P_{3}$ if and only if
$r=\pi/2$ .
We can calculate the Chern number of the second normal bundle. Since

$d\omega_{b,6}=3d\omega_{12}+$ ( $\Delta$ log $\kappa_{1}$) $\omega_{1}\wedge\omega_{2}$

holds, it follows from the result in the section 3 that the curvature of
the normal bundle is 1. Hence we obtain

$c_{1}=\frac{1}{2\pi}$ Volume $(M)$ .
From the example $\xi_{k2}$ of Barbosa [2, page 101], we obtain

COROLLARY 15.1. The circle bundle of even Chern $number\geqq 6$ can be
immersed in $P_{\theta}$ as a totally real and minimal submanifold.
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