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Introduction

E. Calabi [1] proved that a complex linear space, a complex hyperbolic
space and a complex projective space can not be holomorphically and iso-
metrically immersed in each other. In this paper we show that Kaehler
submanifolds of complex space forms of different types are essentially
different from each other. Namely we prove the following:

THEOREM. Any two of complex space forms of different types have
no Kaehler submanifold in common, that is,

(1) A Kaehler submanifold of $C^{N}$ can not be a Kaehler submanifold
of any complex hyperbolie space.

(2) A Kaehler submanifold of $C^{N}$ can not be a Kaehler submanifold
of any complex projective space.

(3) A Kaehler submanifold of a complex hyperbol$ic$ space can not
be a Kaehler submanifold of any complex projective space.

It should be remarked that no global assumption is made in the
theorem, namely it is local in nature. In the proof of the theorem, the
notion “diastasis” introduced by E. Calabi [1] plays an essential r\^ole.
Though the diastasis depends only on the metric, it is compatible with
that of an ambient space. Using this property of diastasis, a necessary
and sufficient condition for a Kaehler manifold to be holomorphically and
isometrically immersed into a complex space form has been obtained by
E. Calabi [1]. Then the proof of our theorem reduces to the local
rigidity theorem for isometric mappings of Kaehler submanifolds of $C^{N}$

into the Hilbert space $l^{2}$ .
The idea of the diastasis here can be applied to a wider class of
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complex manifold with a tensor field similar to a Kaehler metric, and a
decomposition theorem on real analytic functions in some class will be
obtained in [3]. Further applications will be made to Einstein Kaehler
submanifolds of complex space forms. The author proves in [4] that any
Einstein Kaehler submanifold is always totally geodesic in a complex
linear or hyperbolic space.

In this paper, $C^{N}$ denotes the complex linear N-space and $CH^{N}(b)$

(resp. $CP^{N}(b)$) the complex hyperbolic (resp. projective) N-space of holo-
morphic sectional curvature $b<0$ (resp. $b>0$). Submanifolds are always
assumed to be positive dimensional.

\S 1. Preliminaries.

In this section we review several facts in the paper [1]. Let $M$ be
an analytic Kaehler n-manifold, that is, a complex manifold with a real
analytic Kaehler metric $g$ . Every Kaehler submanifold of complex space
form is analytic. Then, locally, there exists a real analytic function $f$

such that

$\partial^{2}f/\partial z^{\alpha}\partial\overline{z}^{\beta}=g_{\alpha\overline{\beta}}$ $(\alpha, \beta=1, \cdots, n)$ ,

where $(z^{1}, \cdots, z^{n})$ is a local complex coordinate. Such a function $f$, which
is said to be primitive, is not uniquely determined. In fact, for any
holomorphic function $h,$ $f+h+\overline{h}$ is primitive as well.

Now we recall the diastasis introduced by E. Calabi [1]. The
diastasis $D_{r}(p, q)$ is a real analytic function defined on some neighborhood
of the diagonal set $\{(p, p);p\in M\}$ in $M\times M$ and symmetric in $p$ and $q$ .
It can be characterized as follows: (See Appendix.) For fixed $peM$,
$\tilde{f}(q)=D_{H}(p, q)$ is a unique primitive function which satisfies

(1.1) $\partial^{|I|}\tilde{f}/\partial z^{I}=0$ and $\partial^{|I|}\tilde{f}/\partial\overline{z}^{I}=0$ at $p$ ,

for each multi-index $I=\{i_{1}, \cdots, i_{n}\}(i_{1}, \cdots, i_{n}\geqq 0)$ .
EXAMPLE 1. Let $(\xi^{1}, \cdots, \xi^{N})$ be the canonical complex coordinate in

$C^{N}$ . Then the diastasis of $C^{N}$ is given by

(1.2) $D^{N}(p, q)=\sum_{\sigma=1}^{N}|\xi^{\sigma}(p)-\xi^{\sigma}(q)|^{2}$ $(p, q\in C^{N})$ ,

namely the square of the Euclidean distance.

EXAMPLE 2. The complex hyperbolic space $CH^{N}(2b)$ is a ball {$qeC^{N}$ ;
$\sum_{\sigma=1}^{N}|\xi^{\sigma}(q)|^{2}<1\}$ , whose diastasis is given by



COMPLEX SPACE FORMS 205

(1.3) $D(p, q)=\frac{1}{b}\log(1-\sum_{\sigma=1}^{N}|\xi^{\sigma}(q)|^{2})$ ,

where $p=(0, \cdots, 0)$ .
Though the diastasis is globally defined in $C^{N}$ or $CH^{N}$ , it is not always

so in general.

EXAMPLE 3. By using the homogeneous coordinate $(\zeta^{0}, \cdots, \zeta^{N})$ , the
diastasis $D$ of $CP^{N}(2b)$ is given by

(1.4) $D(p, q)=\frac{1}{b}\log(1+\sum_{\sigma=1}^{N}|\zeta^{\sigma}(q)|^{2}/|\zeta^{0}(q)|^{2})$ ,

where $p=(1,0, \cdots, 0)$ and $\zeta^{0}(q)\neq 0$ .
The diastasis has the following property:

LEMMA 1.1 (E. Calabi). Let $\phi$ be a holomorphic mapping of an
analytic Kaehler manifold $M$ into another analytic Kaehler manifold $\tilde{M}$.
Then $\phi$ is isometric if and only if the diastasis of $M$ is a restriction of
that of $\tilde{M}$, i.e.,

(1.5) $D_{H}(p, q)=D_{f}^{\sim}(\phi(p), \phi(q))$ ,

for $p$ and $q$ in the region of definition, where $D_{H}$ and $D_{\tilde{H}}$ are the
diastases of $M$ and $\tilde{M}$ respectively.

PROOF. Suppose that $\phi$ is isometric. For $peM$ fixed, $D_{\tilde{H}}(\phi(p), \phi(q))$

is obviously a primitive function of the metric $g$ of $M$. Moreover since
$\phi$ is holomorphic, $ f\circ\phi$ also satisfies the condition (1.1) if so does $f$.
Hence we have $D_{H}(p, q)=D_{\tilde{H}}(\phi(p), \phi(q))$ . The converse is easily shown by
differentiating (1.5) with respect to the variable $q$ .

By using the lemma, we shall give criterions for a given Kaehler
manifold to be holomorphically and isometrically immersed in complex
space forms. We denote by $\tilde{M}^{N}(b)$ the complpte and simply connected
Kaehler N-manifold of constant holomorphic sectional curvature $b$ .

LEMMA 1.2. Let $M$ be an analytic Kaehler manifold, and $peM$ an
arbitrarily fixed point. Then a neighborhood $U$ of $p$ is a Kaehler sub-
manifold of $\tilde{M}^{N}(2b)$ if and only if there exist holomorphic functions
$\phi^{1},$

$\cdots,$
$\phi^{N}$ defined on $U$ such that $\phi^{\sigma}(p)=0(\sigma=1, \cdots, N)$ and
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(1.6) $D.(p, q)=\left\{\begin{array}{ll}\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2} & if b=0\\\frac{1}{b}\log(1-\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2}) & if b<0\end{array}\right.$

$\frac{1}{b}\log(1+\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2})$ if $b>0$ ,

for all $qeU$.
PROOF. Suppose $U$ is a Kaehler submanifold of $\tilde{M}^{N}(2b)$ immersed by

$\phi$ In case $b\leqq 0$ , by a suitable motion in $\tilde{M}^{N}(2b)$ , we may put $\phi(p)=0$ .
If we put $\phi=(\phi^{1}, \cdots, \phi^{N})$ , then by (1.2) and (1.3), we see that (1.6) holds
if and only if the diastasis of $U$ is the restriction of that of $\tilde{M}^{N}(2b)$ .
So we have (1.6) by Lemma 1.1. Similarly in case $b>0$ , using the
homogeneous coordinate, we may 8uppose $\phi(p)=(1,0, \cdots, 0)$ . Then $\phi=$

$(1, \phi^{1}, \cdots, \phi^{N})$ satisfies (1.6). The converse is now obvious.

The following lemma is easily proved.

LEMMA 1.3. If there exist holomorphic functions $\phi^{1},$
$\cdots,$

$\phi^{N}$ satisfy-
ing (1.6) and $\phi^{\sigma}(p)=0(\sigma=1, \cdots, N)$ , then a mapping of $U$ into $C^{N}$ defined
by $\phi=(\phi^{1}, \cdots, \phi^{N})$ is an immersion.

Next we consider holomorphic mappings into an infinite dimensional
space. The space $l^{2}$ consists of the points with coordinates $(\xi^{1}, \xi^{2}, \xi^{\epsilon}, \cdots)$

such that $\sum_{\sigma=1}^{\infty}|\xi^{\sigma}|^{2}<\infty(\xi^{\sigma}\in C)$ . The Hermitian inner product $\langle$ $\rangle$ is
given by

$\langle p, q\rangle=\sum_{\sigma=1}^{\infty}\xi^{\sigma}(p)\overline{\xi^{t}(q)}$ $(p, qel^{2})$ .
DEFINITION (cf. [1; p. 5]). Let $M$ be a complex manifold and $\phi$ a

mapping of $M$ into $l^{2}$ . Then $\phi$ is said to be holomorphic if it satisfies
the following two conditions:

(1) $\phi^{\sigma}=\xi^{\sigma}\circ\phi(\sigma=1,2,3, \cdots)$ are all holomorphic.
(2) $\phi$ is locally bounded, that is, for every $peM$, there exists a

neighborhood $U$ of $p$ and a positive number $m$ such that $|\phi|=\langle\phi, \phi\rangle^{1/2}\leqq m$

on $U$.
The condition (2) is equivalent to the continuity of $\phi$ by the follow-

ing lemma.

LEMMA 1.4. Let $\phi$ and $\psi$ be holomorphtC mappings of a complex
n-manifold $M$ into $l^{2}$ . If we define a function $f$ by
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$ f(p, q)=\langle\phi(p), \psi(q)\rangle$ $(p, q\in M)$ ,

then $f$ is a holomorphic function on $M\times\overline{M}$, where $\overline{M}$ denotes the conjugate
manifold of M. In particular, if $\psi$ is a constant function $\psi\equiv e(eel^{2})$ ,
then the projection $\langle\phi, e\rangle$ is a holomorphic function on $M$.

PROOF. (This proof is suggested by H. Tasaki.) Let $p_{0}$ and $q_{0}$ be
arbitrary points on $M$ and $\overline{M}$ respectively. Then there exist complex
coordinate systems $(U;z^{1}, \cdots, z^{n})$ and (V; $\overline{w}^{1},$ $\cdots,\overline{w}^{n}$) of $p_{0}eM$ and $q_{0}e\overline{M}$

so that

$z^{\alpha}(p_{0})=0$ , $\overline{w}^{\beta}(q_{0})=0$ $(\alpha, \beta=1, \cdots, n)$ ,
$U=\{(z^{1}, \cdots, z^{n});|z^{\alpha}|<r_{0}(\alpha=1, \cdots, n)\}$ ,
$V=\{(\overline{w}^{1}, \cdots,\overline{w}^{n});|\overline{w}^{\beta}|<r_{0}(\beta=1, \cdots, n)\}$ ,
$|\phi|<C_{1}$ on $U$ and $|\psi|<C_{2}$ on $V$ .

We take numbers $0<r_{1}<r_{2}<r_{0}$ . Let $U_{1}=\{|z^{\alpha}|<\gamma_{1}\}$ and $V_{1}=\{|\overline{w}^{\beta}|<r_{1}\}$ . On
putting

$f_{m}(p, q)=\tilde{\sum_{\sigma=1}}\phi^{\sigma}(p)\overline{\psi^{\sigma}(q)}$ $(m=1,2,3, \cdots)$ ,

$f_{-}$ are holomorphic functions on $M\times\overline{M}$. We show that $\{f_{n}\}$ converges
uniformly to $f$. By Cauchy’s integral formula, we have

$\phi^{\sigma}(p)\overline{\psi^{\sigma}(q})=\frac{1}{(2\pi\sqrt{}-1)^{2n}}\oint_{A}\frac{\phi^{\sigma}(z)\overline{\psi^{\sigma}(\overline{w}})}{\prod_{\gamma=\iota}^{n}(z^{\gamma}-z^{\gamma}(p))(\overline{w}^{r}-\overline{w}^{\gamma}(q))}d(z)d(\overline{w})$

,

where $\Delta=\{|z^{\alpha}|=r_{2}, |\overline{w}^{\beta}|=r_{2}(\alpha, \beta=1, \cdots, n)\}$ . If we denote

$L_{\sigma}=\frac{1}{\{2\pi(r_{2}-r_{1})\}^{2n}}\oint_{\Delta}|\phi^{\sigma}(z)||\psi^{\sigma}(\overline{w})||d(z)||d(\overline{w})|$ ,

then $|\phi^{\sigma}(p)\overline{\psi^{\sigma}(q)}|<L_{\sigma}(peU_{1}, qeV_{1})$ . Since

$\sum_{\sigma=1}^{n}|\phi^{\sigma}||\psi^{\sigma}|\leqq(\sum_{\sigma=1}^{n}|\phi^{\sigma}|^{2})^{1/2}(\sum_{\sigma=1}^{m}|\psi^{\sigma}|^{2})^{1/2}\leqq C_{1}C_{2}$ ,

we have

$\sum_{\sigma=1}^{n}L_{\sigma}\leqq\frac{C_{1}C_{2}}{\{2\pi(r_{2}-r_{1})\}^{2n}}\oint_{\Delta}|d(z)||d(\overline{w})|$

$\leqq C_{1}C_{2}\{\frac{\gamma_{2}}{(r_{2}-r_{1})}\}^{2n}$ .
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This estimate implies that the sequence $\{f_{\alpha}\}_{*=1,2,8}\ldots$ converges uniforml]

to $f$ in the wider sense on $M\times\overline{M}$. Hence $f$ is a holomorphic function on
$M\times\overline{M}$.

Now we define a diastasis of $l^{2}$ by $D^{\infty}(p, q)=|p-q|^{2}(p, q\in l^{2})$

DEFINITION. Let $M$ be an analytic Kaehler manifold. Then a holo
morphic mapping $\phi$ of $M$ into $l^{2}$ is said to be isometric if the diastasif
of $M$ is the restriction of that of $l^{2}$ , that is

$D_{r}(p, q)=D^{\infty}(\phi(p), \phi(q))$ $(p, qeM)$ .
Then we have the following:

LEMMA 1.5. Let $\phi$ be a holomorphtC mapping of an analytic Kaehlei
manifold $M$ into $l^{2}$ . Then $\phi$ is isometric if and only if $|\phi|^{2}$ is a primi
$t$ive function of the Kaehler metric of $M$.

PROOF. We have

(1.7) $ D^{\infty}(\phi(p), \phi(q))=\langle\phi(p), \phi(p)\rangle+\langle\phi(q), \phi(q)\rangle$

$-\langle\phi(p), \phi(q)\rangle-\langle\phi(q), \phi(p)\rangle$ .
If $|\phi|^{2}$ is a primitive function of $g$ , then by the alternative definition 01
diastasis (See Appendix.) and Lemma 1.4, we have $D^{\infty}(\phi(p), \phi(q))=D_{r}(p, q)$

On the other hand, for $peM$ fixed, (1.7) implies that $D^{\infty}(\phi(p), \phi(q))ane$

$|\phi|^{2}$ differ by the real part of some holomorphic function with respect $t($

the variable $q$ . Hence the converse is obvious.

The following lemma is easily proved by using the relation $\langle pq, pq\rangle\rightarrow\rightarrow=$

$\rightarrow$

$D^{\infty}(p, q)(p, qel^{2})$ , where $pq=q-p$ .
LEMMA 1.6. The diastasis of $l^{2}$ satisfies

$\frac{1}{2}\{D^{\infty}(p, q_{1})+D^{\infty}(p, q_{2})-D^{\infty}(q_{1}, q_{2})\}={\rm Re}\langle pq_{1}, pq_{2}\rangle\rightarrow\rightarrow$ ,

for all $p,$ $q_{1},$ $q_{2}el^{2}$ . Similarly, above identity holds for the djastasis $D^{f}$

of $C^{N}$ .
PROPOSITION 1.7. Let $M$ be a Kaehler n-submanifold of $C^{N}$ immersec

by $\phi$ , and $\psi$ a holomorphic and isometric mapping of $M$ into $l^{2}$ . Then
$\psi(M)$ lies in some complex N-plane in $l^{2}$ , and hence $\psi$ is rigid.

PROOF. First we regard $l^{2}$ as a real vector space. Suppose thal
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$\psi(M)$ does not lie in any real $2N$-plane. Then there exist points
$-\rightarrow$

$p,$ $q_{1},$ $\cdots,$ $q_{2N+1}eM$ such that $\{\psi(p)\psi(q_{i})\}_{i=1,\cdots,2N+1}$ are R-linearly indepen-
$-\rightarrow$

dent. On the other hand, $\{\phi(p)\phi(q_{i})\}_{i=1,\cdots,2N+1}$ are R-linearly dependent.
So there exists a $(2N+1)$-tuple of real numbers $(a^{1}, \cdots, a^{2N+1})\neq 0$ such

$-\rightarrow$

that $\sum_{i=1}^{2N+1}a^{i}\phi(p)\phi(q)=0$ . By Lemmas 1.1, 1.5 and 1.6, we have

$ 0={\rm Re}\langle\sum_{i=1}^{2N+1}a\overline{\phi(p)}\phi(q_{i})\sum_{j=1}^{2N+1}a^{\dot{f}}\overline{\phi(p)}\rightarrow,\rightarrow\phi(q_{\dot{g}})\rangle$

$=\sum_{i,j=1}^{2N+1}a^{i}a^{j}{\rm Re}\langle\overline{\phi(p)}\phi(q_{i})\overline{\phi(p)}\phi(q_{j})\rangle\rightarrow,\rightarrow$

$=\frac{1}{2}\sum_{i,j=1}^{2N+1}a^{i}a^{\dot{f}}\{D^{N}(\phi(p), \phi(q_{i}))+D^{N}(\phi(p), \phi(q_{j}))-D^{N}(\phi(q_{i}), \phi(q_{j}))\}$

$=\frac{1}{2}\sum_{=i,j1}^{2N+1}a^{i}a^{\dot{f}}\{D_{H}(p, q_{i})+D_{H}(p, q_{j})-D_{H}(q_{i}, q_{j})\}$

$=\frac{1}{2}\sum_{i,\dot{g}=1}^{2N+1}a^{i}a^{j}\{D^{\infty}(\psi(p), \psi(q_{i}))+D^{\infty}(\psi(p), \psi(q_{\dot{g}}))-D^{\infty}(\psi(q_{i}), \psi(q_{j}))\}$

$={\rm Re}\langle\sum_{i=1}^{2N+1}a^{i}\overline{\psi(p)}\psi(\rightarrow q_{i}),\sum_{j=1}^{2N+1}a^{j}\overline{\psi(p)}\psi(\rightarrow q_{;})\rangle$ .

Hence $\sum_{i=1}^{2N+1}a^{\overline{i}}\psi(p)\psi(q_{i})=0\rightarrow$ , which yields a contradiction. So $\psi(M)$ lies
in some real $2N$-plane. In particular $\psi(M)$ lies in some complex $2N$-plane.
By applying Calabi’s local rigidity theorem of finite dimensional version
([1; Theorem 2]), we conclude that $\psi(M)$ lies in some complex N-plane.

REMARK. E. Calabi [1] proved that a Kaehler submanifold immersed
in a complex space form is locally rigid. Furthermore he asserted that
this is valid for an infinite dimensional case without details.

\S 2. Kaehler submanifolds of complex space forms.

First of all, we prove the following:

PROPOSITION 2.1. Let $M$ be a Kaehler n-submanifold of $C^{N}$ . Then
any open subset of $M$ can not be a Kaehler submanifold of $CP^{N^{\prime}}(b^{\prime})$ for
any $N$ and $b^{\prime}>0$ .

PROOF. We suppose that some open subset $U$ of $M$ is a Kaehler
submanifold of $CP^{N^{\prime}}(2b)(b^{\prime}=2b)$ . Throughout this proof, we fix a point
$peU$. By Lemma 1.2, there exist holomorphic functions $\phi^{1},$

$\cdots,$
$\phi^{N^{\prime}}$

defined on $U$ such that
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$\exp\{bD_{r}(p, q)\}=1+\sum_{\sigma=1}^{N^{\prime}}|\phi^{\sigma}(q)|^{2}$ $(qeU)$ ,

and

$\phi^{\sigma}(p)=0$ $(\sigma=1, \ldots, N)$ .
By Lemma 1.3, we can define a holomorphic immersion of $U$ into $C^{N^{\prime}}$ by
$\phi=(\phi^{1}, \cdots, \phi^{N^{\prime}})$ . Then the new diastasis $D$, of the induced metric $g$’ is
given by

(2.1) $D,(p, q)=\sum_{\sigma=1}^{N^{\prime}}|\phi^{\sigma}(q)|^{2}$ .
On the other hand, since $b>0$ and $M$ is a Kaehler submanifold of $C^{N}$ , by
Lemma 1.2, there exist holomorphic functions $h^{1},$

$\cdots,$
$h^{N}$ such that

$bD_{r}(p, q)=\sum_{r=1}^{N}|h^{r}(q)|^{2}$ $(qeU)$ ,

$h^{f}(p)=0$ $(r=1, \cdots, N)$ .
Now we obtain the following expression:

$\exp\{bD_{r}(p, q)\}=1+\sum_{l=1}^{\infty}|\psi^{l}(q)|^{2}$ ,

where $\psi^{l}(l=1,2,3, \cdots)$ are holomorphic functions which are determined
as terms of the series expansion

(2.2)
$=_{i_{1}+}\sum_{n=1}^{\infty}(\sum_{\sum_{+}^{=1}}^{N}|h^{\prime}|^{l})\infty N^{=1}|_{\frac{\sim/m!1}{\sqrt i_{1}!\cdots i_{N}!}(h^{1})^{1}\cdots(h^{N})}N|^{2}$

.
So we can define a holomorphic mapping of $U$ into $l^{2}$ by $\psi=(\psi^{1}, \psi^{2}, \psi, \cdots)$ .
Since

$\sum_{\sigma=1}^{N^{\prime}}|\phi^{\sigma}(q)|^{2}=D_{i}(p, q)=\sum_{l=1}^{\infty}|\psi^{l}(q)|^{2}$ ,

$\psi$ is an isometric mapping of the Kaehler manifold $(U, g,)$ into $l^{2}$ . Hence
by Proposition 1.7, $\psi(U)$ lies in 8ome complex N-plane of $l^{2}$ . On the othel
hand, $\{\psi^{l}\}_{l=12.\theta}:\ldots$ . has the subsequence of the functions $\{(h^{1})^{*}/\sqrt{m!}\}.=1.2,8,\cdot$ .
which are linearly independent. This yields a contradiction.

PROPOSITION 2.2. Let $M$ be a Kaehler n-submanifold of $C^{N}$ . Then
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any open subset of $M$ can not be a Kaehler submanifold of $CH^{N^{\prime}}(b^{\prime})$ for
any $N$ and $b’<0$ .

PROOF. We suppose that some open subset $U$ of $M$ is a Kaehler
submanifold of $CH^{N^{\prime}}(2b)(b^{\prime}=2b)$ . Throughout this proof, we fix a point
$peU$. Then by Lemma 1.2, there exist holomorphic functions $\phi^{1},$

$\cdots,$
$\phi^{N^{\prime}}$

defined on $U$ such that

$D_{H}(p, q)=\frac{1}{b}\log(1-\sum_{\sigma=1}^{N^{\prime}}|\phi^{t}(q)|^{2})$ $(q\in U)$ ,

$\phi^{\sigma}(p)=0$ $(\sigma=1, \cdots, N^{\prime})$ .
Since $b<0$ , we have the following expression:

(2.3) $D_{H}(p, q)=\sum_{t=1}^{\infty}|\psi^{l}(q)|^{2}$ $(q\in U)$ ,

where $\psi^{\iota}(1=1,2,3, \cdots)$ are holomorphic functions which are determined
as terms of the series expansion

(2.4) $\frac{1}{b}\log(1-\sum_{\sigma=1}^{N^{\prime}}|\phi^{\sigma}|^{2})$

$=\sum_{N^{\prime}}^{\infty}i_{1}+\cdots+=1|\sqrt{\frac{(i_{1}+\cdot.\cdot.\cdot.+i_{N^{\prime}}-1)!}{i_{1}!i_{N^{\prime}}!(-b)}}(\phi^{1})^{i_{1}}\cdots(\phi^{N^{\prime}})^{i_{N^{\prime}}}|^{2}$ .
So we can define an isometric mapping of $U$ into $l^{2}$ by $\psi=(\psi^{1}, \psi^{2}, \psi^{\epsilon}, \cdots)$ .
Then by Proposition 1.7, $\psi(U)$ lies in some complex N-plane of $l^{2}$ .
On the other hand $\{\psi^{l}\}_{l=1,2,3},\cdots$ has the subsequence of functions
$\{(\phi^{1})\eta\sqrt{-bm}\}_{n=1,2,3},\cdots$ which are linearly independent. This makes a
contradiction.

PROPOSITION 2.3. Let $M$ be a Kaehler n-submanifold of $CH^{N}(b^{\prime})$ .
Then any open subset of $M$ can not be a Kaehler submanifold of $CP^{N^{\prime}}(c^{\prime})$

for any $N$ and $c’>0$ .
PROOF. Since $M$ is a Kaehler submanifold of $CH^{N}(2b)(b‘=2b)$ , for

fixed $p\in M$, there exist holomorphic functions $\phi^{1},$
$\cdots,$

$\phi^{N}$ defined on some
sufficiently small neighborhood $U$ of $p\in M$ such that

$D_{H}(p, q)=\frac{1}{b}\log(1-\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2})$ $(q\in U)$ ,

$\phi^{\sigma}(p)=0$ $(\sigma=1, \cdots, N)$ .
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Now we assume that $U$ is a Kaehler submanifold of $CP^{N^{\prime}}(2c)(c^{\prime}=2c)$ . $B$

Lemma 1.2, there exist holomorphic functions $h^{1},$
$\cdots,$

$h^{N^{\prime}}$ defined on 1
such that

$1+\sum_{t=1}^{N^{\prime}}|h^{r}(q)|^{2}=\exp\{cD_{r}(p, q)\}$

$=\exp\{\frac{c}{b}\log(1-\sum_{\sigma=1}^{N}|\phi^{\sigma}(q)|^{2})\}$ .

Let $\{\psi^{l}\}_{l=1,2,\$},\cdots$ be the system of holomorphic functions determined a
terms of the series expansion (2.4) in which $N^{\prime}$ is replaced by $N$. The

\langle 2.5) $\sum_{\prime=1}^{N^{\prime}}|h^{r}|^{2}=\exp(\sum_{l=1}^{\infty}c|\psi^{\iota}|^{2})-1$

$=\sum_{k=1i_{1\cdots\cdot\cdot k}}^{\infty}\sum^{\infty}|c^{k/2}\psi^{1}\cdots\psi^{i_{k}}|^{2}=1$

Using this we have the following expression:

$\sum_{\prime=1}^{N^{\prime}}|h^{\prime}|^{2}=\sum_{l=1}^{\infty}|\tilde{\psi}^{l}|^{2}$ ,

where $\tilde{\psi}^{\iota}(l=1,2,3, \cdots)$ are holomorphic functions determined by $(2.5_{d}^{\backslash }$

By Lemma 1.3, we can define a holomorphic immersion of $U$ into $C^{N^{\prime}}b$

$h=(h^{1}, \cdots, h^{N^{\prime}})$ . The new diastasis $D_{h}$ of the induced metric $g_{h}$ is give
by

$D_{h}(p, q)=\sum_{r=1}^{N^{\prime}}|h^{\prime}(q)|^{2}$ $(qeU)$ .
Then the holomorphic mapping $\psi=(\tilde{\psi}^{1},\tilde{\psi}^{2},\tilde{\psi}^{\epsilon}, \cdots)$ of the Kaehler manifol
$(U, g_{h})$ into $l^{2}$ is isometric. Hence $\tilde{\psi}(U)$ lies in some complex N’-plane $0$

$l^{2}$ by Proposition 1.7. But we can easily take a subsequence of $\{\tilde{\psi}^{l}\}_{l=1.2,\theta},\cdot$

which are linearly independent. This makes a contradiction.

From Propositions 2.1, 2.2 and 2.3, the theorem stated in the intr $($

duction is directly obtained.

Appendix

Here we introduce ”diastasis”, following Calabi [1], and prove tha
it is equivalent to ours.

LEMMA. Let $f$ be a real analytic function on a complex n-manifol
M. Then there exists a unique $holomorph\dot{w}$ function $F$ on an $ope^{l}$

neighborhood of the diagonal set in $M\times\overline{M}$ such that
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$F(p, p)=f(p)$ $(peM)$ ,

where $\overline{M}$ is the conjugate manifold of $M$.
PROOF. For a sufficiently small coordinate neighborhood ( $U;z^{1},$ $\cdots,$

$ z^{n}\rangle$

of $M,$ $f$ has a power series expansion:

$f(p)=\sum_{I,J}b_{IJ}(z(p))^{t}\overline{(z(p))}^{J}$ $(p\in U)$ ,

where by $\sum_{I,J}$ we mean the infinite sum for multi-indices $I,$ $J$ ranging
over all n-tuples of non-negative integers. Then $F$ should be expressed
as follows:

$F(p, q)=\sum_{I,J}b_{IJ}(z(p))^{I}\overline{(z(q))}^{J}$ $(p, qeU)$ .
Such a function $F$ is called the complexification of $f$. Let $M$ be an

analytic Kaehler manifold with the metric $g$ , and $f$ a primitive function
of $g$ defined on some open subset $U$ of $M$. Then the functional element
of diastasis is defined by

$D_{H}(p, q)=F(p, p)+F(q, q)-F(p, q)-F(q, p)$ $(p, q\in U)$ ,

where $F$ is the complexification of $f$. Since the primitive functions are
differ by the real part of some holomorphic functions, $D_{H}$ is uniquely
determined. Obviously $D_{H}(p, q)$ is symmetric in $p$ and $q$ . On the other
hand, since $f$ is real analytic, we have $\overline{F(p,q}$) $=F(p, q)(p, q\in U)$ . Hence
$D_{H}$ is real valued. We prove the following.

PROPOSITION. Let $M$ be an analytic Kaehler n-manifold and $p\in M$

any fixed point. Then there exists a unique primitive function $\tilde{f}$ defined
on some neighborhood $U$ of $p$ such that for each multi-index $I=\{i_{1}, \cdots, i_{n}\}$

$(i_{1}, \cdots, i_{n}\geqq 0)$

(1) $\partial^{|I|}\tilde{f}/\partial z^{I}=0$ and $\partial^{|I|}\tilde{f}/\partial\overline{z}^{I}=0$ at $p$ ,

where $(z^{1}, \cdots, z^{n})$ is a local complex coordinate. Moreover $f$ satisfies the
following:

$\tilde{f}(q)=D_{H}(p, q)$ $(qeU)$ .
PBOOF. Let $(z^{1}, \cdots, z^{n})$ be a local complex coordinate with the origin

$p\in M$ and $f$ a primitive function of the metric $g$ , which has a following
power series expansion:

$f(q)=\sum_{I,J}b_{IJ}(z(q))^{I}\overline{(z(q))}^{J}$ $(qeU)$ .
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Then the diastasis $D_{r}(p, q)$ is expressed by

$D_{r}(p, q)=\sum_{I.J\neq 0}b_{IJ}(z(q))^{I}(\overline{z(q))}^{J}$ $(qeU)$ ,

where $0=\{0, \cdots, 0\}$ . Hence $f(q)=D_{r}(p, q)$ satisfies (1) obviously. On $thl$

other hand, since primitive functions are differ by the real part of $som\langle$

holomorphic function, uniqueness of $\tilde{f}$ is also obvious.
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