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Introduction

In this paper, we shall construct the complete and effectively para-
metrized complex analytic family of small deformations of a Blanchard
manifold. Let P® be the complex projective space of dimension 3 with
the system of homogeneous coordinates [z, z;: 2,: 2;]. We define a projec-
tive line in P?® by

l={[z,: 2.:: 2,: 2] € P®: 2,=2,=0}

and Z by P*—1l. Let a=%a, ay as ), B=B1 B Bs B.) be vectors in
C* such that det(w 8 & B)#0. Then the matrices A, (i=1, 2, 8, 4) defined
by

i O

Ai=(_gf B‘) eGL(2, C)

satisfy the condition det(3}i, ,4,)*#0 for any (r,, r,, 75, 7. € R*—{(0, 0, 0, 0)}.
We put

10
A,

G_01
Y0 0 1 0
0 0 0 1

and denote by g, the automorphism of Z determined by G, for 71=1, 2, 3, 4.
Then it is easy to see that the group of automorphisms I” generated by
g; (2=1, 2, 3, 4) acts on Z properly discontinuously and without fixed points.

DEFINITION 0.1. We define a Blanchard manifold X by the quotient
space of Z by I.
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This manifold is thought out by Blanchard [2]. The construction
here is due to M. Inoue.

DEFINITION 0.2. A complex 8-fold M is called of Class L if there
exists a holomorphic open embedding of {[z: 2,: 2,: z,] € P* 122+ 2,2 <
7(|2,)*+|2,]*)} into M for some r>0.

PROPOSITION 0.8. A Blanchard manifold X is of Class L.
We verify this proposifion later in §2.
REMARK. X is a twistor space (see [4]).

The author would like to express his hearty thanks to Dr. Masahide
Kato for his stimulating and helpful discussions.

S1. Cohomology groups.

In the following, we denote by 2 (resp. O, resp. 2°) the structure
sheaf (resp. the tangent sheaf, resp. the sheaf of p-forms). First we have

PROPOSITION 1.1. H*X, 6)=0.
PrOOF. By the result in [5], we have
H(M, (2")®™Q(2%)2™(RQ)(2°)8™s) =0
for any Class L manifold M and any non-negative integers m,, m,, m,
which are not all zero. Using the Kodaira-Serre duality, we have
HY(X, 6)= H'(X, P®2")=0 . O

Let V, be domains in P* on which 2,0 for 1=2,3. We take the
system of local coordinates on V, (resp. V,) as
Uy =2y/2, , V,=2,/2, , W, =2/2,
(resp. Us=2/25, Vs=2,/2;, Ws=2,/2,) .

LEMMA 1.2. A wvector field on P® (resp. on Z) 18 expressed on V, by
the following form.

(@, +bu, +c,v, + dyw, + eui + fu,v, + gu,w,) aa

2

+(ay + byu, + v, + dyw, + eu,v, + foi+ gvzwz)—é‘%—

2

0

+ (@5 + bsu, + cv, + dsw, + eu,w, + fo,w, + gw?) P
2
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where a;, b, ¢, dx, e, f, g are complex numbers for k=1, 2, 3. Conversely
any vector field on V, of the above form 1is extended to a wector field
on P°.

PROOF. Almost the same as the proof of Lemma 2.1 in [9]. O
ProprosITION 1.3. dim HY X, ©)=4.

PROOF. An element 7 of H(X, 0) is identified with a g,-invariant
vector field on Z, i.e., g, n=7 for i=1, 2, 3,4. We may assume that 7
is a |vector field as the one in Lemma 1.2. Then it is easy to check
that

g ={a,—ab,+B.c;+oie—a.B.f + Bias—abs+ BiCs)
+ (0, —2a.e+ Bof + Bib)u, + (e, —auf + Bica)v,
+(d,—B.b,—a.c,+a.B.e+ |l f—ag+ Bilds— Bibs— @ cs))w,
0
oW,

+{a,— b, + B.c,— a.Bie+ Bif + @ (as— abs+ Bics)
+(b2+gie+a’ib3)u2+(02_ate+zn§if+aics)v2
+(dy—Bb,— @ic,— |B:lPe—a.,B.f + Etg +a,(ds— B:bs— & .Cy))w,

+eus + fu,v, + (g — Bie — &, f)u,w,}

U0, +fo+ (g — Bee—Af Yo}
2
+{a;—abs+ Eics + bsu, + €50, + (ds — B0y — Xics— e + Eif)'wz

+ eu,w, + fo,w,+ (g —B.e—a.f )w%}gz)— .

2
By the condition that det(a 8 & B3)+*0, we have
as:bkzckzdsze:fzgzo

for k=1, 2, 3, comparing the coefficients of g,,7 with those of 7. This
proves that dim H(X, 0)=4. ]

PROPOSITION 1.4. dim H*(X, ©)=5.
To prove the above proposition, first we remark

PROPOSITION 1.5. X 18 a fibre space over P' with the fibres of 2-
dimensional complex tori.

PROOF. Let 7 be a projection of Z to P' defined by p(z)=[z,: 2]
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Then we have Peog,(z)=p() for ©=1,2,8,4 and any z€Z. Hence »
induces a projection p of X to P'. The fibre 77'([z, : z5]) is nothing other
than C®. Suppose z,#0. Then we take u,, v, as a system of fibre co-
ordinates. We see that the induced action of g, on the fibre 77'([2,: z])
is the one sending (uy, v,) to (a;+Bw,+u, —B.+@&w,+v,) for =
1,2, 8,4. It is easy to see that the vectors ‘(a,+Bw, —B,+a&w, are
linearly independent over R. In fact, suppose that we have >} r, ‘(a,+
Bw, —Bi+a&w,)=0 with r,€ R. The right-hand side of the above equa-

tion is equal to
4 a, B 1
(‘Z‘f rt("',@z ai>)<w2> )

det(g'r{( % B‘));so

—Bi ai

Since

for any (r, 7., 75 7)€ R*—{(0, 0, 0, 0)}, we have (r, 7, 75 r)=0. This
verifies the linear independence of the four vectors over R. Hence the
quotient space p~!([2,: 2,]) of the fibre 77'([2,: z;]) is a 2-dimensional com-
plex torus if z,#0. In the case z;#0, we can discuss in the same way.

[

Applying the Kodaira-Serre duality and the Leray’s spectral sequence,
we have

HY(X, 6)=HX, Q)= EM*+E}*

where E¢"=H'P!, R"p,(2'QR2°%)) and E{*=Ker(E}*— E}°)/Im(E;"*— E*).
Since E;'?*=FE?»"=0, we get

HY{(X, 2'Q*)=E}"+E3° .
LEMMA 1.6. 23=p*(Q:)**)=p*(Tn(—4)).

PrOOF. Let the system of local coordinates on V,={z,#0} (k=2, 3)
as before. As we easily have

du, = dus/w, — udws/ws ,
dv, = dvg/w; —udws/w; , dw,= —dw,/w} ,
and

du2 A d'Uz A\ d’u)z = - (dus/\ d'vs/\ d’bUg)/wg ’
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the lemma is obvious. O
LEMMA 1.7. R, 2%=Qn=Cpn(—2).

PROOF. By the definition, (Rp,2%)., the stalk of R’p,2% at z=
[2,: z,] € P, is equal to H(p™(z), 2%). We assume that 2,0 and that a
neighbourhood of z does not contain the point [1:0]€P'. Then an
element ¢(u,, v, Ws) = fUsy Vo We)dU, + Gy, Vyy Wa)AV, + B(Uy, Vyy We)dw, OFf
H(p (), 2%) induces an element of H(p~*(z), 2%) if and only if ¢(u,, v, w.)
is gX-invariant for 7=1, 2, 8, 4. Since

9¥o=Jfla;+ Bw,+Uyy — B+ AWy vy We)dU,
+g(a+ Baw, + Uy, — Byt A, + 0, W),
+(B.f (a,+ Bw, +Us, — B+ AW, + v, W)
+ @ g9(a;+ Baw,+ U,y — B+ Wy, W)
+ ko, + Bw, + Uy — B+ AW, + v, w,))dw, ,

gf¢=¢ if and only if
f(at +RBw,+u;, — E-t + & W, + v, Wy) = f(Usyy Vs W)
9o+ Baw,+uy — B+ T W,y ~+ vy, Wy)=g(Uy, Vey W)
B f (Ot + Bws+ Uy, — B+ AWy +V,y, W)
+a.g(a,+ Law,+u, — Et + &, W, + vy, W,)
+ k(a4 Bw, +uyy — B+ @ wy+ vz W,)
= h(uz’ Vg wz) .

The first two mean that f and g are independent of the variables u, and
v,, in other words, f and g are holomorphic functions of w,. As for h,
we differentiate the last equation by «, and get

—'Q—'h(at'[‘ﬁiwz + Uy, —Et'*"ath"*’vz’ wz):‘a—'h(uz, Vg Wy) -

au2 au2
Therefore oh/ou, is constant with respect to u, and v,. Similarly oh/ov,
is constant with respect to u, and v,. Thus we have

h(uy v,y W,) =ho(w,) + by (W)U, + ko (Wo)v, .

This equation, the relations among f, g and h, and the assumption
det(a B @ B)+0 imply that f=g=h,,=h,,=0. This concludes that R°p, Q2%
is isomorphic to 2%: stalkwise. It is trivial that the isomorphism is
extended globally. |
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LEmMMA 1.8. dim H'(P*, R'p,.(2'®02%)=>5.

PROOF. Since R, (2'Q2°)=Rp,2'QTp(—4)=Pun(—2)Rp(—4)=
Zpn(—6), H(P', Rp,(2'®2*) is isomorphic to H°(P!, ~’m(4)), which is of
dimension 5. O

Next we study R'p,.2'.
LEMMA 1.9. We have the following exact sequence of sheaves:
00— p* W — Qs —— (P*OPr(—1))—0 .

PrOOF. Let x be a point of XN {z,#0}. It is trivial that the homo-
morphism a, of (p*Q}1),, the stalk of p*Qi: at x, into 2%, defined by
sending f(u,, v,, w,)QRdw, to flu, v, w,)dw, is injective. It is also trivial
that a homomorphism B, of 2%, to (P*Zm(—1))®* defined by sending
Jdu,+gdv,+hdw, to (f, g) is surjective. Moreover we easily have Im a,=
Ker B,. For x € XN {z,0}, the homomorphisms «,, 8, are similarly defined.
Then it is easy to see that «a, and B, are well-defined, in other words,
defined independently of the choice of the local coordinates and we have
the proposition. O

LEmMA 1.10. R'p, i8 a rank two vector bundle over P'.

PROOF. Let zeP' and m, the maximal ideal in #m,. Then it is
obvious that for any zeP', the ringed space (p~'(z), Px/p*m, ;) is
isomorphic to a 2-dimensional complex torus 7T,=(T.,, #;). Hence the
mapping

B'p O [m(B'py T) — H (p7H(2), Pa[p*.x)=R'P ([ p*0,T%)

is bijective for any ze P' and ¢=0, 1. Applying the statement in [1] p.
151, we see that R'p,~ is locally free and

dim R'p, (2./p*m,0r)=dim H(p7'(2), Ox/0*Mm. ) =2. |
LEMMA 1.11. R'p.o7=74Q).
ProOOF. We define C-valued C= functions ¢,, q, of Z by
0= (2%, +2:2:)/(|2:]" +12]") ,
&= (—2Zs +Z:2.)/(|2:/* + |24]*) -

Then an easy calculation shows that ¢,c¢g,=¢,+«; and ¢,og,=¢q,+ 8, for
1=1, 2, 3, 4. Hence aq,, 07,, 99, 93, induce C* 3-closed (0, 1)-forms on X.
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Since R'p,” is locally free of rank 2, Rp,2y, (resp. R'p,2,) is isomor-
phic to &7, (resp. #77,) where V,={[z,: z,] € P*; 2,0} for [=2,3. On the
other hand, by Dolbeault’s theorem, I'(V,, Rp,c”) is isomorphic to
L'(p~(Vy), 070/ (p%(V,), 5°°. We show that the classes [dg,] and
(03] (resp. [9g.], [8G;]) form a basis of I'(p~(V,), 37" (p™(V,), ™)
(resp. I'(p7H(V3), 0.7 ")/oI (p~(Vy), ™) as a I'(V,, @y=1v,)-module (resp.
I'(Vy, @p-1py)-module). For that, it suffices to show that [d¢,] and [ag,]
(resp. [d¢,] and [07,]) form a basis at each stalk

(p(2), 0.97*)[0I (p~'(2), 7> ,

which we denote by M,. Since M, is a module over a local ring #, with
the maximal ideal m,, it is sufficient to prove that the images x,[dq,] and
7.[0g,] (resp. m,[dq,] and x,[3G,]) in M,/m M, form a basis in it for every
ze V, (resp. z€ V,), where =, is the projection of M, onto M,/m,M,. We
apply the following sublemma to show that.

SUBLEMMA ([8], (6.1)). Let A be a local ring with the maximal ideal
m and M a finite A-module. Let m be the dimension of M/mM over A/m.
Take a basis of M/mM over A/m, say {u,, u, *--, u,} and choose inverse
images %, of u, in M for each i. Then {%, &, ---, #,} 15 a basis of M.
Conversely any basis of M is obtained in the above way.

By easy calculations, we have

= dav. U, +v,w
00.= 2 . W 222 _dip, ,
T At lw

3q di, Vy— W W, dw,
T T @ gy

éq — dﬁs us’—’l_)-gw$ —
Ul |wef (L

8

éq- —_ d"/_lis 'v3+'b-ll3u)3 —
T Il ()

8
and in M,/m,M,,

mibg)=| 7 2r |, w2 ],

m.log.]= [1frss|2]’ ”'[56212_[1f@s|2]‘
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In the last two lines, w, and w, are values, not coordinates. These
asserts that the classes [dq,] and [07,] (resp. [dg,] and [07,]) form a basis
of I'(p~Y(V,), a0 (p~™(V,), ™) (resp. I'(p~(Vy), 7)ol (p~(Vy),
7%%). Hence we can now define an isomorphism «, (resp. a;) of
L(p™(V,),d )0l (p7(V,), ) (vesp. I'(p™(V,),0.7°)[a (p~( V), %))
to &, (resp. &) by sending f,[0g,]+.[0q.] to (f, g,) (resp. fildg,]+
9:[0q,] to (f gs)). Since

[0¢.]= 'ws[ah] ’ [5(7 J= ws[a—q N|

on p(V)Np Y(Vy), a, and a; give an isomorphism of R'p,”” onto ~i(1).
O

LEMMA 1.12. We have the following exact sequence:
Oi(—5)— R'p, (2'Q2°) — Th(—4) .

PROOF. Tensoring 2%=p*~m(—4) with the exact sequence in
Lemma 1.9, we get

0— p*Qu@p*n(—4) — 25 Q2%
— (p*Or(—1)PQp*Pp(—4)—0,

which is exact. From this, we obtain the exact sequence
— R'p,(p* & pn(—6)) — R'p, (25Q02%) — R'p,(p* Pr(—5))'— .

Since R'D,(0.Zpn(—6))=Tp(—6)QR'D,Tx=5H(—b) and R'p,(p*Zn(—5b))®
=(Zn(—B)QRp, 7)) =4(—4), we have the conclusion. O

LEmMMA 1.13. H°(P!, R'p, (2'Q2%))=0.

PROOF. Let & (resp. &) be the kernel (resp. image) of the first
(resp. second) arrow in Lemma 1.12. Then we obtain the cohomology
exact sequence:

0— H(P', & )— HY(P', R'p(2'Q2))— H'(P*, &) .

Since & (resp. &) is a subsheaf of ~3:(—5) (resp. #(—4)) and
H(PY, o4(—5))=H(P', &t(—4))=0, we have

HP', & )=HP, £)=0. [l

By Lemma 1.8 and Lemma 1.13, we obtain Proposition 1.4. As for
HY(X, 6), we have
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PropoOSITION 1.14. dim H'(X, @)=09.

To prove the proposition, first we apply the Riemann-Roch formula:

S (— 1) dim 1,19, 1
Zé( 1) dlmH(X,@)—201+240102 203.

From the results we have already got, the above equation reduces to the
next:

9—dim HY(X, @)=%cf+%gclca——-;—cs .

It is known that X is diffeomorphic to 7“xS? where 7T* is a real 4-
dimensional torus so the following lemma is proved easily.

LEMMA 1.15. ¢,=0.

LEMMA 1.16. ¢;i=0.

ProoF. Obvious by Lemma 1.6. O
Lastly we study c,c,.

LEmMMA 1.17. c¢c,=0.

Again applying the Riemann-Roch formula, we have
6, =24 3 (—1)f dim H(X, &) .
=0

Since X is a compact Class L manifold, we have H%X, #)=C, H¥ X, &)=
H(X, 29)=0. As for HY(X, ), the Leray spectral sequence shows that
H'(X, )= H'(P', R'p,~)+ H'(P', Rp,Z). Since R'p,”7 = (1) and
Rp, 7=, as we have already seen, we get

dim H(X, ~)=dim H(P!, 77:(1))=4 .
As for H*(X, ), again by the Leray spectral sequence, we have
H*X, ©)=H'(P', R'p, )+ H(P', B*p, )
= H'(P', Q1))+ H'(P', R*p, )
~ H'(P', R°p,. ) .
LEMMA 1.18. R, 0 =m(2).

Proor. This lemma is proved in almost the same way as Lemma
1.11. First remark that R*p,” is a line bundle which is proved in almost
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the same way as Lemma 1.10. Secondly we remark that the class [dg, A 37,]
(resp. [0¢;A\0q,]) forms a basis of I'(p~%(V,), 0.7V /oI (p~(V,), ) (resp.
L(p~(Vy), o) oI (p™(Vy), ) over I(V, &,) (esp. I(V, ).
This is proved by applying the sublemma in the proof of Lemma 1.11.
Thirdly we define a mapping B, (resp. B;) of I'(»~(V,), 0.7 °Y)/al(p~(V,),
) (resp. I'(~Y(Vy), 0.°H)or(p~(Vy), ™)) to I[(V, &,) (resp.
I'(Vy, &y,) by sending f,[09.A0q,] (resp. f,[0¢,A37,]) to f, (resp. f;), which
is isomorphic. Lastly since

[5% A 5‘71] = w§[5Q1 A\ éq-z]

on pV,)Np ™ (V,), {B: Bs} forms an isomorphism of R*p,”” onto £Zm(2).
|

By Lemma 1.18, we see
dim H¥ (X, &)=dim H(P!, &n(2))=3 .

Therefore we obtain Lemma 1.17 and Proposition 1.14.

§2. Small deformations of a Blanchard manifold.

Let 6 be a sufficiently small positive number. We define a polydise
B in C° by

B={t=(t1’ tz’ A tn) eco; Itkl<3; k=1’ 2’ * 9} .

We can assume that

a B a
(*) det|a, B, @ ]#0, a,#0
a; [ O

without loss of generality since det(a 8@ B)+#0. We define A,(t) e GL(2, C)
for ©=1,2,3,4 and te B by

Al(t>=(“‘+f‘ f‘), A2<t>=(“*+_t” e )
—B: .+t _

1 a,

At)= (as 'tt4 Bs )

_ , A4(t)=( a4+te B4+t’r>.
—Bs Qs+t

—Bitts @+t
We define G,(t) e PGL(4, C) for i=1,2, 8,4 and te B by
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1
01Ai(t)

G.(t)=
«®) 0 01 0
0 0 01

and denote the corresponding automorphisms of Z by g.(t).

We construct a complex manifold X as follows. Let §, be automor-
phisms of Zx B defined by §.(2, t)=(g,t)(2), t). We denote by I’ the
group of automorphisms of Zx B generated by §,. Then it is easy to see
that I’ acts on Zx B properly discontinuously and has no fixed points.
Therefore the quotient space X of Zx Bby I" is a complex manifold. We
define a projection w of X to B by sending a point represented by (z, t)
to t. We have the following theorem.

THEOREM. (%, B, w) s the complete and eﬁectively parametrized
complex family of small deformations of X=w"%0).

Before proving the theorem, we define an open covering of X as
follows. We put J={—1, 0, 1}. We define real 3-dimensional submanifolds
W(i,i) by

W= {[s(aizz +.8:25): 8(— B2+ a23): 73 28] € Z;

— L+t

4 3 4 3

where jeJ and t€({l, 2, 3,4}. For z'=[zi:zi:2i:2i]e W, with [2¢:2f]=
[2.:25] for all 1€{1, 2, 8, 4}, we define

4 4
Zz*=|:2 z}‘,:; zi:z2:z3:| .

=1 i=1 =1

Put
4
Viinininio = {§ 25 [ziz] e P 20 Wu',i)}

for (44, Ju J» JJ) €J* which are open subsets in Z. For j=(4, Ju Js 7.),
j’=(j;: j;’ j;: j:) eJ" we define

|7 — 4’| =max|j,—7 .
1514
Then the following is easy.

l7—7'1=0 if and only if V;=V,,
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Ij—'j,l =1 if and Only if If_,,rré er and Vj n le;e o,
j—il=2 if and only if V,nV,=0 .

Note that ze V; and 2’ € V;, |j—j'|=2, represent the same point in X if
and only if

r__ j1—31)/2 (do—33)/2 (F3—d3) /2 (54—30/2
2 _gE(Jl J1/]°g£J2 72/]og§’3 13/]og£14 .14/](z)

where [ ] denotes the Gauss symbol. In the following, we denote p(V;)
by V; for simplicity. Then 7"={V};.,» forms an open covering of X.

REMARK. V.00 contains U, with » sufficiently small. Since
P(Vio000)X is biholomorphic to V4,4, X is a Class L manifold. We
remark also that all V; ;, ;. ;, are biholomorphic to V-

PrOOF OF THEOREM. First we decompose the Kodaira-Spencer map
into three maps: ¢ of T(B) to Z'(7,6) and ¢q, the quotient map of
ZV( 7, 60) to H( 7, 0), and the inclusion map ¢ of H'(7;6) to H'(X, 6).
Suppose that we have a relation

9
0 \_
kz;l'r,,q 6 a—)—O

where 7, are complex numbers. It is enough to show that all v, vanish.
The above equation is equivalent to the following equation

(*x) g’ykﬁ(-a—ai:):aﬂ

with 7 e C( 7; 8). Since the support of 6(3/ot,) does not contain V;N V;
with |7—3'|<1, 7 is an element of H°(Z, 8). Let 6; (resp. 7*) denote the
value of 6(3/ot,) (resp. 6n) on V;N V; with |7;—Ji|=2 and j,=j. for ¢+#1.
Here 7' is equal to the value of g.np—7n on V;NV; and g.7 is already
calculated in the proof of Proposition 1.3. Then it is easy to see that

ONV. AV =S| de=Ti g
0<at,,)(v’nv’) gﬁ[ 2 ]0"
and that
oN(V;N Vi)=((gl9+ 0 « e e 0 gl 2 p—m)(V;0 V)
_a[i—=3d1
—Z;[ 2 :177 '

Hence it suffices to consider the equation (*x) only on V;N V; with
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|j,—7i|=2 for only one ¢ and j.=j for ¢#i. So (x*) reduces to the
equations below:

0
716% =771 on V(o'j27j3!j4) n V(zyj2,53,.7'4) ’
2
Oyt =p v nv
726% +78w‘2a’v - on (41,0,33,94) (91,2,78,9¢)
2 2
: 2 14 nv
743% +'75wzav =7 on (91,92,0,34) (G1,d02,00)
2 2
0 0 0 0
Vﬁau +'Y7w26u +78 a_rv +’\/9w2 a—v = 4 on V(jl’j2’-7'3!0) n V(jl’jZ’janz) .
2 2 2 2

In the abbve,

N'={—ab,+ Eicl +ate—a,B.f + Bias— a;b;+ Etcﬁ)
+(—2a.e+ Eif + Bdou, +(—a.f + BiCs)V;
+(—Bb,—a.c,+aBe+ ol f—ag+ Bids—B:bs— &C3))W,
+(—Be—a.f Yoy} —0—
ou

+{—a;b,+ ,-éicz - at,-éte =+ E%f +a(as—abs+ Etca)

+ (Eie + &b Hu,+(—ae+ 2B.f +acs)v,

+(—Bdb,—ac,— |B:|°e — &i,éif + Eig + @ (ds— Bibs— & iC))w,

+(—B.e— aif)vzwz}‘i—
ov

2

+{"aibs+,§ica+(—Biba_&ica“‘aie'l‘_ﬁ_if)wz
+(—B¢e—év'if)w§}-56—— .
w

2

Comparing the coefficients of w,3/0w, of both sides of the above four
equations, we have

(aB&E)t(e’ b3, Cs,y —f)::O .

Hence b,=c¢,—=e=f=0. Next we compare the coefficients of w.,0/du, and
9/0v, of the three equations except the fourth and we have

o, B @ g
a, B, Q. bl"da)::o,

a; B Qs (671
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a B a ¢ |=0.
723 Es as/ \— bz

the assumption (), ay=b,=¢,=¢,=g=0b,—d,=0. Comparing the

coefficients of w,0/0v, of the first equation, we have d,=0 since a,#0,
and we also get b,=0. Therefore the right-hand side of the four equa-
tions vanish and we have v,=0 for all %. O

(1]
(2]
[3]
[4]
(5]
(6]
(71
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