Small Deformations of Certain Compact Manifolds of Class L, II

Asahiko YAMADA

Sophia University
(Communicated by R. Takahashi)

Introduction

In this paper, we shall construct the complete and effectively parametrized complex analytic family of small deformations of a Blanchard manifold. Let P^3 be the complex projective space of dimension 3 with the system of homogeneous coordinates $[z_0: z_1: z_2: z_3]$. We define a projective line in P^3 by

$$l = \{ [z_0: z_1: z_2: z_3] \in P^3: z_2 = z_3 = 0 \}$$

and Z by P^3-l . Let $\alpha={}^t(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$, $\beta={}^t(\beta_1, \beta_2, \beta_3, \beta_4)$ be vectors in C^4 such that $\det(\alpha \beta \overline{\alpha} \overline{\beta}) \neq 0$. Then the matrices A_i (i=1, 2, 3, 4) defined by

$$A_{i} = \begin{pmatrix} \alpha_{i} & \beta_{i} \\ -\overline{\beta}_{i} & \overline{\alpha}_{i} \end{pmatrix} \in GL(2, C)$$

satisfy the condition $\det(\sum_{i=1}^{l} r_i A_i) \neq 0$ for any $(r_1, r_2, r_3, r_4) \in \mathbb{R}^4 - \{(0, 0, 0, 0)\}$. We put

and denote by g_i the automorphism of Z determined by G_i for i=1, 2, 3, 4. Then it is easy to see that the group of automorphisms Γ generated by g_i (i=1, 2, 3, 4) acts on Z properly discontinuously and without fixed points.

DEFINITION 0.1. We define a Blanchard manifold X by the quotient space of Z by Γ .

Received January 17, 1986

This manifold is thought out by Blanchard [2]. The construction here is due to M. Inoue.

DEFINITION 0.2. A complex 3-fold M is called of Class L if there exists a holomorphic open embedding of $\{[z_0: z_1: z_2: z_3] \in P^s; |z_0|^2 + |z_1|^2 < r(|z_2|^2 + |z_3|^2)\}$ into M for some r > 0.

PROPOSITION 0.3. A Blanchard manifold X is of Class L.

We verify this proposition later in §2.

REMARK. X is a twistor space (see [4]).

The author would like to express his hearty thanks to Dr. Masahide Kato for his stimulating and helpful discussions.

§1. Cohomology groups.

In the following, we denote by \mathcal{O} (resp. Θ , resp. Ω^p) the structure sheaf (resp. the tangent sheaf, resp. the sheaf of p-forms). First we have

Proposition 1.1. $H^3(X, \Theta) = 0$.

PROOF. By the result in [5], we have

$$H^{0}(M, (\Omega^{1})^{\otimes m_{1}} \otimes (\Omega^{2})^{\otimes m_{2}} \otimes (\Omega^{3})^{\otimes m_{3}}) = 0$$

for any Class L manifold M and any non-negative integers m_1 , m_2 , m_3 which are not all zero. Using the Kodaira-Serre duality, we have

$$H^{\mathfrak{s}}(X,\,\Theta)\!\cong\!H^{\mathfrak{o}}(X,\,\Omega^{\mathfrak{s}}\!\otimes\!\Omega^{\mathfrak{s}})\!=\!0$$
 .

Let V_i be domains in P^3 on which $z_i \neq 0$ for i=2, 3. We take the system of local coordinates on V_2 (resp. V_3) as

$$u_2 = z_0/z_2$$
, $v_2 = z_1/z_2$, $w_2 = z_3/z_2$
(resp. $u_3 = z_0/z_3$, $v_3 = z_1/z_3$, $w_3 = z_2/z_3$).

LEMMA 1.2. A vector field on P^s (resp. on Z) is expressed on V_2 by the following form.

$$(a_1+b_1u_2+c_1v_2+d_1w_2+eu_2^2+fu_2v_2+gu_2w_2) -rac{\partial}{\partial u_2} \ +(a_2+b_2u_2+c_2v_2+d_2w_2+eu_2v_2+fv_2^2+gv_2w_2) -rac{\partial}{\partial v_2} \ +(a_3+b_3u_2+c_3v_2+d_3w_2+eu_2w_2+fv_2w_2+gw_2^2) -rac{\partial}{\partial w_2}$$

where a_k , b_k , c_k , d_k , e, f, g are complex numbers for k=1, 2, 3. Conversely any vector field on V_2 of the above form is extended to a vector field on P^3 .

PROOF. Almost the same as the proof of Lemma 2.1 in [9].

PROPOSITION 1.3. dim $H^0(X, \Theta) = 4$.

PROOF. An element η of $H^0(X,\Theta)$ is identified with a g_{i*} -invariant vector field on Z, i.e., $g_{i*}\eta = \eta$ for i=1,2,3,4. We may assume that η is a vector field as the one in Lemma 1.2. Then it is easy to check that

$$\begin{split} g_{i*}\eta = & \{a_1 - \alpha_i b_1 + \overline{\beta}_i c_1 + \alpha_i^2 e - \alpha_i \overline{\beta}_i f + \beta_i (a_3 - \alpha_i b_3 + \overline{\beta}_i c_3) \\ & + (b_1 - 2\alpha_i e + \overline{\beta}_i f + \beta_i b_3) u_2 + (c_1 - \alpha_i f + \beta_i c_3) v_2 \\ & + (d_1 - \beta_i b_1 - \overline{\alpha}_i c_1 + \alpha_i \beta_i e + |\alpha_i|^2 f - \alpha_i g + \beta_i (d_3 - \beta_i b_3 - \overline{\alpha}_i c_3)) w_2 \\ & + e u_2^2 + f u_2 v_2 + (g - \beta_i e - \overline{\alpha}_i f) u_2 w_2 \} \frac{\partial}{\partial u_2} \\ & + \{a_2 - \alpha_i b_2 + \overline{\beta}_i c_2 - \alpha_i \overline{\beta}_i e + \overline{\beta}_i^2 f + \overline{\alpha}_i (a_3 - \alpha_i b_3 + \overline{\beta}_i c_3) \\ & + (b_2 + \overline{\beta}_i e + \overline{\alpha}_i b_3) u_2 + (c_2 - \alpha_i e + 2\overline{\beta}_i f + \overline{\alpha}_i c_3) v_2 \\ & + (d_2 - \beta_i b_2 - \overline{\alpha}_i c_2 - |\beta_i|^2 e - \overline{\alpha}_i \overline{\beta}_i f + \overline{\beta}_i g + \overline{\alpha}_i (d_3 - \beta_i b_3 - \overline{\alpha}_i c_3)) w_2 \\ & + e u_2 v_2 + f v_2^2 + (g - \beta_i e - \overline{\alpha}_i f) v_2 w_2 \} \frac{\partial}{\partial v_2} \\ & + \{a_3 - \alpha_i b_3 + \overline{\beta}_i c_3 + b_3 u_2 + c_3 v_2 + (d_3 - \beta_i b_3 - \overline{\alpha}_i c_3 - \alpha_i e + \overline{\beta}_i f) w_2 \\ & + e u_2 w_2 + f v_2 w_2 + (g - \beta_i e - \overline{\alpha}_i f) w_2^2 \} \frac{\partial}{\partial v_2} \end{split} .$$

By the condition that $\det(\alpha \beta \overline{\alpha} \overline{\beta}) \neq 0$, we have

$$a_3 = b_k = c_k = d_3 = e = f = g = 0$$

for k=1, 2, 3, comparing the coefficients of $g_{i*}\eta$ with those of η . This proves that dim $H^0(X, \Theta)=4$.

PROPOSITION 1.4. dim $H^2(X, \Theta) = 5$.

To prove the above proposition, first we remark

PROPOSITION 1.5. X is a fibre space over P^1 with the fibres of 2-dimensional complex tori.

PROOF. Let \tilde{p} be a projection of Z to P^1 defined by $\tilde{p}(z) = [z_2 : z_3]$.

Then we have $\tilde{p} \circ g_i(z) = \tilde{p}(z)$ for i=1, 2, 3, 4 and any $z \in Z$. Hence \tilde{p} induces a projection p of X to P^1 . The fibre $\tilde{p}^{-1}([z_2:z_3])$ is nothing other than C^2 . Suppose $z_2 \neq 0$. Then we take u_2 , v_2 as a system of fibre coordinates. We see that the induced action of g_i on the fibre $\tilde{p}^{-1}([z_2:z_3])$ is the one sending (u_2, v_2) to $(\alpha_i + \beta_i w_2 + u_2, -\overline{\beta}_i + \overline{\alpha}_i w_2 + v_2)$ for i=1, 2, 3, 4. It is easy to see that the vectors ${}^t(\alpha_i + \beta_i w_2, -\overline{\beta}_i + \overline{\alpha}_i w_2)$ are linearly independent over R. In fact, suppose that we have $\sum_{i=1}^4 r_i {}^t(\alpha_i + \beta_i w_2, -\overline{\beta}_i + \overline{\alpha}_i w_2) = 0$ with $r_i \in R$. The right-hand side of the above equation is equal to

$$\left(\sum_{i=1}^4 r_i \begin{pmatrix} \alpha_i & \beta_i \\ -\overline{\beta}_i & \overline{\alpha}_i \end{pmatrix}\right) \begin{pmatrix} 1 \\ w_2 \end{pmatrix}$$
.

Since

$$\det\left(\sum_{i=1}^{4} r_{i} \begin{pmatrix} \alpha_{i} & \beta_{i} \\ -\overline{\beta}_{i} & \overline{\alpha}_{i} \end{pmatrix}\right) \neq 0$$

for any $(r_1, r_2, r_3, r_4) \in \mathbb{R}^4 - \{(0, 0, 0, 0)\}$, we have $(r_1, r_2, r_3, r_4) = 0$. This verifies the linear independence of the four vectors over \mathbb{R} . Hence the quotient space $p^{-1}([z_2:z_3])$ of the fibre $\tilde{p}^{-1}([z_2:z_3])$ is a 2-dimensional complex torus if $z_2 \neq 0$. In the case $z_3 \neq 0$, we can discuss in the same way.

Applying the Kodaira-Serre duality and the Leray's spectral sequence, we have

$$H^2(X,\Theta)\cong H^1(X,\Omega^1\otimes\Omega^3)\cong E_3^{0,1}+E_2^{1,0}$$

where $E_2^{q,r} = H^q(\mathbf{P}^1, R^r p_*(\Omega^1 \otimes \Omega^3))$ and $E_3^{0,1} = \operatorname{Ker}(E_2^{0,1} \to E_2^{2,0}) / \operatorname{Im}(E_2^{-1,2} \to E_2^{0,1})$. Since $E_2^{-1,2} = E_2^{2,0} = 0$, we get

$$H^{\scriptscriptstyle 1}(X, \Omega^{\scriptscriptstyle 1} \otimes \Omega^{\scriptscriptstyle 3}) \cong E_{\scriptscriptstyle 2}^{\scriptscriptstyle 0,1} + E_{\scriptscriptstyle 2}^{\scriptscriptstyle 1,0}$$
.

LEMMA 1.6. $\Omega_X^3 \cong p^*((\Omega_{P^1}^1)^{\otimes 2}) \cong p^*(\mathcal{O}_{P^1}(-4)).$

PROOF. Let the system of local coordinates on $V_k = \{z_k \neq 0\}$ (k=2, 3) as before. As we easily have

$$du_2\!=\!du_3/w_3\!-\!u_3dw_3/w_3^2$$
 , $dv_2\!=\!dv_3/w_3\!-\!u_3dw_3/w_3^2$, $dw_2\!=\!-dw_3/w_3^2$,

and

$$du_{\scriptscriptstyle 2}\!\wedge dv_{\scriptscriptstyle 2}\!\wedge dw_{\scriptscriptstyle 2}\!=-(du_{\scriptscriptstyle 3}\!\wedge dv_{\scriptscriptstyle 3}\!\wedge dw_{\scriptscriptstyle 3})/w_{\scriptscriptstyle 3}^4$$
 ,

the lemma is obvious.

LEMMA 1.7. $R^0p_*\Omega^1_X\cong\Omega^1_{P^1}\cong\mathcal{O}_{P^1}(-2)$.

PROOF. By the definition, $(R^0p_*\Omega^1_X)_z$, the stalk of $R^0p_*\Omega^1_X$ at $z=[z_2:z_3]\in P^1$, is equal to $H^0(p^{-1}(z),\Omega^1_X)$. We assume that $z_2\neq 0$ and that a neighbourhood of z does not contain the point $[1:0]\in P^1$. Then an element $\phi(u_2,v_2,w_2)=f(u_2,v_2,w_2)du_2+g(u_2,v_2,w_2)dv_2+h(u_2,v_2,w_2)dw_2$ of $H^0(\widetilde{p}^{-1}(z),\Omega^1_Z)$ induces an element of $H^0(p^{-1}(z),\Omega^1_X)$ if and only if $\phi(u_2,v_2,w_2)$ is g_i^* -invariant for i=1,2,3,4. Since

$$\begin{split} g_{i}^{*}\phi = & f(\alpha_{i} + \beta_{i}w_{2} + u_{2}, \quad -\overline{\beta}_{i} + \overline{\alpha}_{i}w_{2} + v_{2}, \quad w_{2})du_{2} \\ & + g(\alpha_{i} + \beta_{i}w_{2} + u_{2}, \quad -\overline{\beta}_{i} + \overline{\alpha}_{i}w_{2} + v_{2}, \quad w_{2})dv_{2} \\ & + (\beta_{i}f(\alpha_{i} + \beta_{i}w_{2} + u_{2}, \quad -\overline{\beta}_{i} + \overline{\alpha}_{i}w_{2} + v_{2}, \quad w_{2}) \\ & + \overline{\alpha}_{i}g(\alpha_{i} + \beta_{i}w_{2} + u_{2}, \quad -\overline{\beta}_{i} + \overline{\alpha}_{i}w_{2} + v_{2}, \quad w_{2}) \\ & + h(\alpha_{i} + \beta_{i}w_{2} + u_{2}, \quad -\overline{\beta}_{i} + \overline{\alpha}_{i}w_{2} + v_{2}, \quad w_{2}))dw_{2} \end{split},$$

 $g_i^*\phi = \phi$ if and only if

$$\begin{split} f(\alpha_{i}+\beta_{i}w_{2}+u_{2},\ -\bar{\beta}_{i}+\bar{\alpha}_{i}w_{2}+v_{2},\ w_{2})=&f(u_{2},\ v_{2},\ w_{2})\ ,\\ g(\alpha_{i}+\beta_{i}w_{2}+u_{2},\ -\bar{\beta}_{i}+\bar{\alpha}_{i}w_{2}+v_{2},\ w_{2})=&g(u_{2},\ v_{2},\ w_{2})\ ,\\ \beta_{i}f(\alpha_{i}+\beta_{i}w_{2}+u_{2},\ -\bar{\beta}_{i}+\bar{\alpha}_{i}w_{2}+v_{2},\ w_{2})\\ +\bar{\alpha}_{i}g(\alpha_{i}+\beta_{i}w_{2}+u_{2},\ -\bar{\beta}_{i}+\bar{\alpha}_{i}w_{2}+v_{2},\ w_{2})\\ +h(\alpha_{i}+\beta_{i}w_{2}+u_{2},\ -\bar{\beta}_{i}+\bar{\alpha}_{i}w_{2}+v_{2},\ w_{2})\\ =&h(u_{2},\ v_{2},\ w_{2})\ .\end{split}$$

The first two mean that f and g are independent of the variables u_2 and v_2 , in other words, f and g are holomorphic functions of w_2 . As for h, we differentiate the last equation by u_2 and get

$$\frac{\partial}{\partial u_0}h(\alpha_i+\beta_iw_2+u_2, -\overline{\beta}_i+\overline{\alpha}_iw_2+v_2, w_2)=\frac{\partial}{\partial u_0}h(u_2, v_2, w_2).$$

Therefore $\partial h/\partial u_2$ is constant with respect to u_2 and v_2 . Similarly $\partial h/\partial v_2$ is constant with respect to u_2 and v_2 . Thus we have

$$h(u_2, v_2, w_2) = h_0(w_2) + h_{1.0}(w_2)u_2 + h_{0.1}(w_2)v_2$$
.

This equation, the relations among f, g and h, and the assumption $\det(\alpha \beta \overline{\alpha} \overline{\beta}) \neq 0$ imply that $f = g = h_{0,1} = h_{1,0} = 0$. This concludes that $R^0 p_* \Omega^1_X$ is isomorphic to $\Omega^1_{P^1}$ stalkwise. It is trivial that the isomorphism is extended globally.

LEMMA 1.8. dim $H^1(\mathbf{P}^1, R^0p_*(\Omega^1 \otimes \Omega^3)) = 5$.

PROOF. Since $R^0p_*(\Omega^1 \otimes \Omega^8) \cong R^0p_*\Omega^1 \otimes \mathcal{O}_{P^1}(-4) \cong \mathcal{O}_{P^1}(-2) \otimes \mathcal{O}_{P^1}(-4) \cong \mathcal{O}_{P^1}(-6)$, $H^1(P^1, R^0p_*(\Omega^1 \otimes \Omega^8))$ is isomorphic to $H^0(P^1, \mathcal{O}_{P^1}(4))$, which is of dimension 5.

Next we study $R^1p_*\Omega^1$.

LEMMA 1.9. We have the following exact sequence of sheaves:

$$0 \longrightarrow p^* \Omega^1_{P^1} \longrightarrow \Omega^1_X \longrightarrow (p^* \mathcal{O}_{P^1}(-1))^{\oplus 2} \longrightarrow 0.$$

PROOF. Let x be a point of $X \cap \{z_2 \neq 0\}$. It is trivial that the homomorphism α_x of $(p^*\Omega_{P^1}^1)_x$, the stalk of $p^*\Omega_{P^1}^1$ at x, into $\Omega_{X,x}^1$ defined by sending $f(u_2, v_2, w_2) \otimes dw_2$ to $f(u_2, v_2, w_2) dw_2$ is injective. It is also trivial that a homomorphism β_x of $\Omega_{X,x}^1$ to $(p^*\mathcal{O}_{P^1}(-1))_x^{\oplus 2}$ defined by sending $fdu_2 + gdv_2 + hdw_2$ to (f, g) is surjective. Moreover we easily have Im $\alpha_x = \text{Ker } \beta_x$. For $x \in X \cap \{z_3 \neq 0\}$, the homomorphisms α_x , β_x are similarly defined. Then it is easy to see that α_x and β_x are well-defined, in other words, defined independently of the choice of the local coordinates and we have the proposition.

LEMMA 1.10. $R^1p_*\mathscr{O}$ is a rank two vector bundle over P^1 .

PROOF. Let $z \in P^1$ and m_s the maximal ideal in $\mathcal{O}_{P^1,s}$. Then it is obvious that for any $z \in P^1$, the ringed space $(p^{-1}(z), \mathcal{O}_X/p^*m_s\mathcal{O}_X)$ is isomorphic to a 2-dimensional complex torus $T_s = (T_s, \mathcal{O}_T)$. Hence the mapping

$$R^{i}p_{*}\mathcal{O}_{z}/\mathfrak{m}_{z}(R^{i}p_{*}\mathcal{O}_{z}) \longrightarrow H^{i}(p^{-1}(z), \mathcal{O}_{X}/p^{*}\mathfrak{m}_{z}\mathcal{O}_{X}) = R^{i}p_{*}(\mathcal{O}_{z}/p^{*}\mathfrak{m}_{z}\mathcal{O}_{X})$$

is bijective for any $z \in P^1$ and i=0, 1. Applying the statement in [1] p. 151, we see that $R^1p_*\mathcal{O}$ is locally free and

$$\dim R^1p_*(\mathcal{O}_x/p^*\mathfrak{m}_z\mathcal{O}_X) = \dim H^1(p^{-1}(z), \mathcal{O}_X/p^*\mathfrak{m}_z\mathcal{O}_X) = 2.$$

LEMMA 1.11. $R^1p_{\star}\mathcal{O}\cong\mathcal{O}_{P^1}^2(1)$.

PROOF. We define C-valued C^{∞} functions q_1 , q_2 of Z by

$$q_1 = (z_0\overline{z}_2 + \overline{z}_1z_3)/(|z_2|^2 + |z_3|^2)$$
,
 $q_2 = (-z_0\overline{z}_3 + \overline{z}_1z_2)/(|z_2|^2 + |z_3|^2)$.

Then an easy calculation shows that $q_1 \circ g_i = q_1 + \alpha_i$ and $q_2 \circ g_i = q_2 + \beta_i$ for i=1, 2, 3, 4. Hence $\bar{\partial}q_1$, $\bar{\partial}\bar{q}_1$, $\bar{\partial}q_2$, $\bar{\partial}\bar{q}_2$ induce C^{∞} $\bar{\partial}$ -closed (0, 1)-forms on X.

Since $R^1p_*\mathcal{O}$ is locally free of rank 2, $R^1p_*\mathcal{O}_{V_2}$ (resp. $R^1p_*\mathcal{O}_{V_3}$) is isomorphic to $\mathcal{O}_{V_2}^2$ (resp. $\mathcal{O}_{V_3}^2$) where $V_l = \{[z_2:z_3] \in P^1; z_l \neq 0\}$ for l=2,3. On the other hand, by Dolbeault's theorem, $\Gamma(V_1,R^1p_*\mathcal{O})$ is isomorphic to $\Gamma(p^{-1}(V_1),\bar{\partial}\mathscr{N}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_1),\mathscr{N}^{0,0})$. We show that the classes $[\bar{\partial}q_2]$ and $[\bar{\partial}\bar{q}_1]$ (resp. $[\bar{\partial}q_1]$, $[\bar{\partial}\bar{q}_2]$) form a basis of $\Gamma(p^{-1}(V_2),\bar{\partial}\mathscr{N}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_2),\mathscr{N}^{0,0})$ (resp. $\Gamma(p^{-1}(V_3),\bar{\partial}\mathscr{N}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_3),\mathscr{N}^{0,0})$) as a $\Gamma(V_2,\mathcal{O}_{p^{-1}(V_2)})$ -module (resp. $\Gamma(V_3,\mathcal{O}_{p^{-1}(V_3)})$ -module). For that, it suffices to show that $[\bar{\partial}q_2]$ and $[\bar{\partial}\bar{q}_1]$ (resp. $[\bar{\partial}q_1]$ and $[\bar{\partial}q_2]$) form a basis at each stalk

$$\Gamma(p^{-1}(z), \bar{\partial} \mathscr{N}^{0,0})/\bar{\partial}\Gamma(p^{-1}(z), \mathscr{N}^{0,0})$$
,

which we denote by M_z . Since M_z is a module over a local ring \mathcal{O}_z with the maximal ideal m_z , it is sufficient to prove that the images $\pi_z[\bar{\partial}q_2]$ and $\pi_z[\bar{\partial}\bar{q}_1]$ (resp. $\pi_z[\bar{\partial}q_1]$ and $\pi_z[\bar{\partial}\bar{q}_2]$) in M_z/m_zM_z form a basis in it for every $z \in V_2$ (resp. $z \in V_3$), where π_z is the projection of M_z onto M_z/m_zM_z . We apply the following sublemma to show that.

SUBLEMMA ([8], (5.1)). Let A be a local ring with the maximal ideal m and M a finite A-module. Let n be the dimension of M/mM over A/m. Take a basis of M/mM over A/m, say $\{u_1, u_2, \dots, u_n\}$ and choose inverse images \tilde{u}_i of u_i in M for each i. Then $\{\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_n\}$ is a basis of M. Conversely any basis of M is obtained in the above way.

By easy calculations, we have

$$egin{aligned} &ar{\partial} q_2 \!=\! rac{dar{v}_2}{1+|w_2|^2} \!-\! rac{u_2\!+\!ar{v}_2w_2}{(1+|w_2|^2)^2} dar{w}_2 \;, \ &ar{\partial} \overline{q}_1 \!=\! rac{dar{u}_2}{1+|w_2|^2} \!+\! rac{v_2\!-\!ar{u}_2w_2}{(1+|w_2|^2)^2} dar{w}_2 \;, \ &ar{\partial} q_1 \!=\! rac{dar{v}_3}{1+|w_3|^2} \!+\! rac{u_3\!-\!ar{v}_3w_3}{(1+|w_3|^2)^2} dar{w}_3 \;, \ &ar{\partial} \overline{q}_2 \!=\! -rac{dar{u}_3}{1+|w_3|^2} \!+\! rac{v_3\!+\!ar{u}_3w_3}{(1+|w_3|^2)^2} dar{w}_3 \;, \end{aligned}$$

and in $M_z/m_z M_z$,

$$egin{aligned} \pi_{z}[ar{\partial}q_{2}] = & \left[rac{dar{v}_{2}}{1+|w_{2}|^{2}}
ight], \quad \pi_{z}[ar{\partial}ar{q}_{1}] = & \left[rac{dar{u}_{2}}{1+|w_{2}|^{2}}
ight], \ \pi_{z}[ar{\partial}q_{1}] = & \left[rac{dar{v}_{3}}{1+|w_{2}|^{2}}
ight], \quad \pi_{z}[ar{\partial}ar{q}_{2}] = - & \left[rac{dar{u}_{3}}{1+|w_{2}|^{2}}
ight]. \end{aligned}$$

In the last two lines, w_2 and w_3 are values, not coordinates. These asserts that the classes $[\bar{\partial}q_2]$ and $[\bar{\partial}\bar{q}_1]$ (resp. $[\bar{\partial}q_1]$ and $[\bar{\partial}\bar{q}_2]$) form a basis of $\Gamma(p^{-1}(V_2),\ \bar{\partial}\mathscr{A}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_2),\ \mathscr{A}^{0,0})$ (resp. $\Gamma(p^{-1}(V_3),\ \bar{\partial}\mathscr{A}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_3),\ \mathscr{A}^{0,0})$). Hence we can now define an isomorphism α_2 (resp. α_3) of $\Gamma(p^{-1}(V_2),\bar{\partial}\mathscr{A}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_2),\mathscr{A}^{0,0})$ (resp. $\Gamma(p^{-1}(V_3),\bar{\partial}\mathscr{A}^{0,0})/\bar{\partial}\Gamma(p^{-1}(V_3),\mathscr{A}^{0,0})$) to \mathscr{O}_{V_2} (resp. \mathscr{O}_{V_3}) by sending $f_2[\bar{\partial}q_2]+g_2[\bar{\partial}\bar{q}_1]$ to (f_2,g_2) (resp. $f_3[\bar{\partial}q_1]+g_3[\bar{\partial}\bar{q}_2]$ to (f_3,g_3)). Since

$$[ar{\partial}q_{\scriptscriptstyle 2}]\!=\!w_{\scriptscriptstyle 3}[ar{\partial}q_{\scriptscriptstyle 1}]$$
 , $[ar{\partial}ar{q}_{\scriptscriptstyle 1}]\!=\!w_{\scriptscriptstyle 3}[ar{\partial}ar{q}_{\scriptscriptstyle 2}]$

on $p^{-1}(V_2) \cap p^{-1}(V_3)$, α_2 and α_3 give an isomorphism of $R^1p_*\mathscr{O}$ onto $\mathscr{O}^2_{P^1}(1)$.

LEMMA 1.12. We have the following exact sequence:

$$\mathcal{O}_{P1}^2(-5) \longrightarrow R^1 p_*(\Omega^1 \otimes \Omega^3) \longrightarrow \mathcal{O}_{P1}^4(-4)$$
.

PROOF. Tensoring $\Omega_x^3 \cong p^* \mathcal{O}_{P^1}(-4)$ with the exact sequence in Lemma 1.9, we get

$$0 \longrightarrow p^* \Omega_{P^1}^1 \otimes p^* \mathscr{O}_{P^1}(-4) \longrightarrow \Omega_X^1 \otimes \Omega_X^3$$
$$\longrightarrow (p^* \mathscr{O}_{P^1}(-1))^{\oplus 2} \otimes p^* \mathscr{O}_{P^1}(-4) \longrightarrow 0,$$

which is exact. From this, we obtain the exact sequence

$$\longrightarrow R^{\scriptscriptstyle 1}p_*(p^*\mathcal{O}_{P^{\scriptscriptstyle 1}}(-6)) \longrightarrow R^{\scriptscriptstyle 1}p_*(\Omega^{\scriptscriptstyle 1}_X \bigotimes \Omega^{\scriptscriptstyle 3}_X) \longrightarrow R^{\scriptscriptstyle 1}p_*(p^*\mathcal{O}_{P^{\scriptscriptstyle 1}}(-5))^{\scriptscriptstyle 2} \longrightarrow .$$

Since $R^1p_*(p_*\mathcal{O}_{P^1}(-6))\cong \mathcal{O}_{P^1}(-6)\otimes R^1p_*\mathcal{O}_X\cong \mathcal{O}_{P^1}^2(-5)$ and $R^1p_*(p^*\mathcal{O}_{P^1}(-5))^{\oplus 2}\cong \mathcal{O}_{P^1}^4(-4)$, we have the conclusion.

LEMMA 1.13. $H^0(\mathbf{P}^1, R^1p_{\star}(\Omega^1 \otimes \Omega^3)) = 0$.

PROOF. Let \mathscr{F} (resp. \mathscr{G}) be the kernel (resp. image) of the first (resp. second) arrow in Lemma 1.12. Then we obtain the cohomology exact sequence:

$$0 \longrightarrow H^0(\mathbf{P}^1, \mathscr{F}) \longrightarrow H^0(\mathbf{P}^1, R^1p_*(\Omega^1 \otimes \Omega^3)) \longrightarrow H^0(\mathbf{P}^1, \mathscr{G})$$
.

Since \mathscr{F} (resp. \mathscr{G}) is a subsheaf of $\mathscr{O}_{P1}^2(-5)$ (resp. $\mathscr{O}_{P1}^4(-4)$) and $H^0(P^1, \mathscr{O}_{P1}^2(-5)) = H^0(P^1, \mathscr{O}_{P1}^4(-4)) = 0$, we have

$$H^{0}(\mathbf{P}^{1}, \mathcal{F}) = H^{0}(\mathbf{P}^{1}, \mathcal{G}) = 0$$
.

By Lemma 1.8 and Lemma 1.13, we obtain Proposition 1.4. As for $H^1(X, \Theta)$, we have

PROPOSITION 1.14. dim $H^1(X, \Theta) = 9$.

To prove the proposition, first we apply the Riemann-Roch formula:

$$\sum_{i=0}^{3} (-1)^{i} \dim H^{i}(X, \Theta) = \frac{1}{2} c_{1}^{3} + \frac{19}{24} c_{1} c_{2} - \frac{1}{2} c_{3}.$$

From the results we have already got, the above equation reduces to the next:

9-dim
$$H^{1}(X, \Theta) = \frac{1}{2}c_{1}^{3} + \frac{19}{24}c_{1}c_{2} - \frac{1}{2}c_{3}$$
.

It is known that X is diffeomorphic to $T^4 \times S^2$ where T^4 is a real 4-dimensional torus so the following lemma is proved easily.

LEMMA 1.15. $c_3 = 0$.

LEMMA 1.16. $c_1^3 = 0$.

PROOF. Obvious by Lemma 1.6.

Lastly we study c_1c_2 .

LEMMA 1.17. $c_1c_2=0$.

Again applying the Riemann-Roch formula, we have

$$c_1c_2=24\sum_{i=0}^3(-1)^i\dim H^i(X,\mathscr{O})$$
.

Since X is a compact Class L manifold, we have $H^0(X, \mathcal{O}) = \mathbb{C}$, $H^3(X, \mathcal{O}) \cong H^0(X, \Omega^3) = 0$. As for $H^1(X, \mathcal{O})$, the Leray spectral sequence shows that $H^1(X, \mathcal{O}) \cong H^0(\mathbb{P}^1, R^1p_*\mathcal{O}) + H^1(\mathbb{P}^1, R^0p_*\mathcal{O})$. Since $R^1p_*\mathcal{O} \cong \mathcal{O}_{\mathbb{P}^1}^2(1)$ and $R^0p_*\mathcal{O} \cong \mathcal{O}_{\mathbb{P}^1}$ as we have already seen, we get

$$\dim H^{1}(X, \mathcal{O}) = \dim H^{0}(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}^{2}(1)) = 4$$
.

As for $H^2(X, \mathcal{O})$, again by the Leray spectral sequence, we have

$$egin{aligned} H^{\scriptscriptstyle 2}(X,\,\mathscr{O}) &\cong H^{\scriptscriptstyle 1}(\pmb{P}^{\scriptscriptstyle 1},\,R^{\scriptscriptstyle 1}p_{\scriptstyle *}\mathscr{O}) + H^{\scriptscriptstyle 0}(\pmb{P}^{\scriptscriptstyle 1},\,R^{\scriptscriptstyle 2}p_{\scriptstyle *}\mathscr{O}) \ &\cong H^{\scriptscriptstyle 1}(\pmb{P}^{\scriptscriptstyle 1},\,\mathscr{O}_{P^{\scriptscriptstyle 1}}^{\scriptscriptstyle 2}(1)) + H^{\scriptscriptstyle 0}(\pmb{P}^{\scriptscriptstyle 1},\,R^{\scriptscriptstyle 2}p_{\scriptstyle *}\mathscr{O}) \ &\cong H^{\scriptscriptstyle 0}(\pmb{P}^{\scriptscriptstyle 1},\,R^{\scriptscriptstyle 2}p_{\scriptstyle *}\mathscr{O}) \;. \end{aligned}$$

LEMMA 1.18. $R^2p_*\mathscr{O}\cong\mathscr{O}_{P^1}(2)$.

PROOF. This lemma is proved in almost the same way as Lemma 1.11. First remark that $R^2p_*\mathscr{O}$ is a line bundle which is proved in almost

the same way as Lemma 1.10. Secondly we remark that the class $[\bar{\partial}q_2 \wedge \bar{\partial}\bar{q}_1]$ (resp. $[\bar{\partial}q_1 \wedge \bar{\partial}\bar{q}_2]$) forms a basis of $\Gamma(p^{-1}(V_2), \bar{\partial}\mathscr{N}^{0,1})/\bar{\partial}\Gamma(p^{-1}(V_2), \mathscr{N}^{0,1})$ (resp. $\Gamma(V_3), \bar{\partial}\mathscr{N}^{0,1})/\bar{\partial}\Gamma(p^{-1}(V_3), \mathscr{N}^{0,1})$) over $\Gamma(V_2, \mathscr{O}_{V_2})$ (resp. $\Gamma(V_3, \mathscr{O}_{V_3})$). This is proved by applying the sublemma in the proof of Lemma 1.11. Thirdly we define a mapping β_2 (resp. β_3) of $\Gamma(p^{-1}(V_2), \bar{\partial}\mathscr{N}^{0,1})/\bar{\partial}\Gamma(p^{-1}(V_2), \mathscr{N}^{0,1})$ (resp. $\Gamma(p^{-1}(V_3), \bar{\partial}\mathscr{N}^{0,1})/\bar{\partial}\Gamma(p^{-1}(V_3), \mathscr{N}^{0,1})$) to $\Gamma(V_2, \mathscr{O}_{V_2})$ (resp. $\Gamma(V_3, \mathscr{O}_{V_3})$) by sending $f_2[\bar{\partial}q_2 \wedge \bar{\partial}\bar{q}_1]$ (resp. $f_3[\bar{\partial}q_1 \wedge \bar{\partial}\bar{q}_2]$) to f_2 (resp. f_3), which is isomorphic. Lastly since

$$[\bar{\partial}q_{\circ}\wedge\bar{\partial}\bar{q}_{1}]=w_{3}^{2}[\bar{\partial}q_{1}\wedge\bar{\partial}\bar{q}_{\circ}]$$

on $p^{-1}(V_2) \cap p^{-1}(V_3)$, $\{\beta_2, \beta_3\}$ forms an isomorphism of $R^2p_*\mathscr{O}$ onto $\mathscr{O}_{P^1}(2)$.

By Lemma 1.18, we see

$$\dim H^{2}(X, \mathcal{O}) = \dim H^{0}(\mathbf{P}^{1}, \mathcal{O}_{\mathbf{P}^{1}}(2)) = 3$$
.

Therefore we obtain Lemma 1.17 and Proposition 1.14.

$\S 2$. Small deformations of a Blanchard manifold.

Let δ be a sufficiently small positive number. We define a polydisc B in C° by

$$B = \{t = (t_1, t_2, \dots, t_9) \in C^9; |t_k| < \delta, k = 1, 2, \dots, 9\}$$
.

We can assume that

(*)
$$\det \begin{pmatrix} \alpha_1 & \beta_1 & \overline{\alpha}_1 \\ \alpha_2 & \beta_2 & \overline{\alpha}_2 \\ \alpha_3 & \beta_3 & \overline{\alpha}_3 \end{pmatrix} \neq 0 , \quad \alpha_1 \neq 0$$

without loss of generality since $\det(\alpha \beta \overline{\alpha} \overline{\beta}) \neq 0$. We define $A_i(t) \in GL(2, \mathbb{C})$ for i=1, 2, 3, 4 and $t \in B$ by

$$egin{aligned} A_{\scriptscriptstyle 1}\!(t)\!=\!egin{pmatrix} lpha_{\scriptscriptstyle 1}\!+t_{\scriptscriptstyle 1} & eta_{\scriptscriptstyle 1}\ -ar{eta}_{\scriptscriptstyle 1} & ar{lpha}_{\scriptscriptstyle 1} \end{pmatrix}$$
 , $A_{\scriptscriptstyle 2}\!(t)\!=\!egin{pmatrix} lpha_{\scriptscriptstyle 2}\!+t_{\scriptscriptstyle 2} & eta_{\scriptscriptstyle 2}\ -ar{eta}_{\scriptscriptstyle 2} & ar{lpha}_{\scriptscriptstyle 2}\!+t_{\scriptscriptstyle 3} \end{pmatrix}$, $A_{\scriptscriptstyle 3}\!(t)\!=\!egin{pmatrix} lpha_{\scriptscriptstyle 3}\!+t_{\scriptscriptstyle 4} & eta_{\scriptscriptstyle 3}\ -ar{eta}_{\scriptscriptstyle 3} & ar{ar{lpha}}_{\scriptscriptstyle 3}\!+t_{\scriptscriptstyle 5} \end{pmatrix}$, $A_{\scriptscriptstyle 4}\!(t)\!=\!egin{pmatrix} lpha_{\scriptscriptstyle 4}\!+t_{\scriptscriptstyle 6} & eta_{\scriptscriptstyle 4}\!+t_{\scriptscriptstyle 7}\ -ar{eta}_{\scriptscriptstyle 4}\!+t_{\scriptscriptstyle 6} & ar{lpha}_{\scriptscriptstyle 4}\!+t_{\scriptscriptstyle 7} \end{pmatrix}$.

We define $G_i(t) \in PGL(4, \mathbb{C})$ for i=1, 2, 3, 4 and $t \in B$ by

$$G_i(t)\!=\!\!egin{pmatrix} 1 & 0 & A_i(t) \ 0 & 1 & \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

and denote the corresponding automorphisms of Z by $g_i(t)$.

We construct a complex manifold \mathfrak{X} as follows. Let \widetilde{g}_i be automorphisms of $Z \times B$ defined by $\widetilde{g}_i(z,t) = (g_i(t)(z),t)$. We denote by $\widetilde{\Gamma}$ the group of automorphisms of $Z \times B$ generated by \widetilde{g}_i . Then it is easy to see that $\widetilde{\Gamma}$ acts on $Z \times B$ properly discontinuously and has no fixed points. Therefore the quotient space \mathfrak{X} of $Z \times B$ by $\widetilde{\Gamma}$ is a complex manifold. We define a projection \mathfrak{A} of X to X by sending a point represented by X to X. We have the following theorem.

THEOREM. $(\mathfrak{X}, B, \mathfrak{G})$ is the complete and effectively parametrized complex family of small deformations of $X = \mathfrak{G}^{-1}(0)$.

Before proving the theorem, we define an open covering of X as follows. We put $J = \{-1, 0, 1\}$. We define real 3-dimensional submanifolds $W_{(j,i)}$ by

$$egin{aligned} W_{(j,i)} = & \left\{ [s(lpha_i z_2^i + eta_i z_3^i) \colon s(-ar{eta}_i z_2^i + ar{lpha}_i z_3^i) \colon z_2^i \colon z_3^i] \in Z;
ight. \ & \left. -rac{1}{4} + rac{j}{3} \!<\! s \!<\! rac{1}{4} \!+\! rac{j+1}{3}
ight\} \end{aligned}$$

where $j \in J$ and $i \in \{1, 2, 3, 4\}$. For $z^i = [z_0^i : z_1^i : z_2^i : z_3^i] \in W_{(j,i)}$ with $[z_2^i : z_3^i] = [z_2 : z_3]$ for all $i \in \{1, 2, 3, 4\}$, we define

$$\sum_{i=1}^{4} z^{i} = \left[\sum_{i=1}^{4} z_{0}^{i} : \sum_{i=1}^{4} z_{1}^{i} : z_{2} : z_{3} \right].$$

Put

$$oldsymbol{V_{(j_1,j_2,j_3,j_4)}} = \left\{\sum_{i=1}^4 z^i; \, [z_2\!:\!z_8] \in oldsymbol{P^1}, \, z^i \in W_{(j,i)}
ight\}$$

for $(j_1, j_2, j_3, j_4) \in J^4$, which are open subsets in Z. For $j = (j_1, j_2, j_3, j_4)$, $j' = (j'_1, j'_2, j'_3, j'_4) \in J^4$, we define

$$|j-j'| = \max_{1 \le i \le 4} |j_i - j_i'|$$
.

Then the following is easy.

$$|j-j'|=0$$
 if and only if $V_j=V_{j'}$,

$$|j-j'|=1$$
 if and only if $V_j\neq V_{j'}$ and $V_j\cap V_{j'}\neq \varnothing$, $|j-j'|=2$ if and only if $V_i\cap V_{j'}=\varnothing$.

Note that $z \in V_j$ and $z' \in V_{j'}$, |j-j'|=2, represent the same point in X if and only if

$$z' = g_1^{\lfloor (j_1 - j_1')/2 \rfloor} \circ g_2^{\lfloor (j_2 - j_2')/2 \rfloor} \circ g_3^{\lfloor (j_3 - j_3')/2 \rfloor} \circ g_4^{\lfloor (j_4 - j_4')/2 \rfloor}(z)$$

where [] denotes the Gauss symbol. In the following, we denote $p(V_j)$ by V_i for simplicity. Then $\mathscr{Y} = \{V_i\}_{i \in J^4}$ forms an open covering of X.

REMARK. $V_{(0,0,0,0)}$ contains U_r with r sufficiently small. Since $p(V_{(0,0,0,0)})\subset X$ is biholomorphic to $V_{(0,0,0,0)}$, X is a Class L manifold. We remark also that all $V_{(j_1,j_2,j_3,j_4)}$ are biholomorphic to $V_{(0,0,0,0)}$.

PROOF OF THEOREM. First we decompose the Kodaira-Spencer map into three maps: θ of $T_0(B)$ to $Z^1(\mathscr{V}, \Theta)$ and q, the quotient map of $Z^1(\mathscr{V}, \Theta)$ to $H^1(\mathscr{V}, \Theta)$, and the inclusion map i of $H^1(\mathscr{V}, \Theta)$ to $H^1(X, \Theta)$. Suppose that we have a relation

$$\sum_{k=1}^{9} \gamma_k q \cdot \theta \left(\frac{\partial}{\partial t_k} \right) = 0$$

where γ_k are complex numbers. It is enough to show that all γ_k vanish. The above equation is equivalent to the following equation

$$\sum_{k=1}^{9} \gamma_k \theta \left(\frac{\partial}{\partial t_k} \right) = \delta \eta$$

with $\eta \in C^0(\mathscr{Y}, \Theta)$. Since the support of $\theta(\partial/\partial t_k)$ does not contain $V_j \cap V_{j'}$ with $|j-j'| \leq 1$, η is an element of $H^0(Z, \Theta)$. Let θ_k^i (resp. η^i) denote the value of $\theta(\partial/\partial t_k)$ (resp. $\partial \eta$) on $V_j \cap V_{j'}$ with $|j_j-j'_i|=2$ and $j_i=j'_i$ for $i \neq i$. Here η^i is equal to the value of $g_{i*}\eta - \eta$ on $V_j \cap V_{j'}$ and $g_{i*}\eta$ is already calculated in the proof of Proposition 1.3. Then it is easy to see that

$$\theta \left(\frac{\partial}{\partial t_k} \right) (V_j \cap V_{j'}) = \sum_{i=1}^4 \left[\frac{j_i - j_i'}{2} \right] \theta_k^i$$

and that

$$\begin{split} \delta\eta(\,V_{\it j}\cap\,V_{\it j'}) &= ((g_{\scriptscriptstyle 1}^{[\,(j_1-j_1')/2]}\circ\cdots\circ g_{\scriptscriptstyle 4}^{[\,(j_4-j_4')/2]})_*\eta - \eta)(\,V_{\it j}\cap\,V_{\it j'}) \\ &= \sum_{i=1}^4 \left[\frac{j-j}{2}\right]\!\eta^i \;. \end{split}$$

Hence it suffices to consider the equation (**) only on $V_j \cap V_{j'}$ with

 $|j_i-j_i'|=2$ for only one i and $j_i=j_i'$ for $i\neq i$. So (**) reduces to the equations below:

$$\begin{split} &\gamma_1\frac{\partial}{\partial u_2} = \eta^1 & \text{on} \quad V_{(0,j_2,j_3,j_4)} \cap V_{(2,j_2,j_3,j_4)} \;, \\ &\gamma_2\frac{\partial}{\partial u_2} + \gamma_3 w_2\frac{\partial}{\partial v_2} = \eta^2 & \text{on} \quad V_{(j_1,0,j_3,j_4)} \cap V_{(j_1,2,j_3,j_4)} \;, \\ &\gamma_4\frac{\partial}{\partial u_2} + \gamma_5 w_2\frac{\partial}{\partial v_2} = \eta^3 & \text{on} \quad V_{(j_1,j_2,0,j_4)} \cap V_{(j_1,j_2,2,j_4)} \;, \\ &\gamma_6\frac{\partial}{\partial u_2} + \gamma_7 w_2\frac{\partial}{\partial u_2} + \gamma_8\frac{\partial}{\partial v_2} + \gamma_9 w_2\frac{\partial}{\partial v_2} = \eta^4 & \text{on} \quad V_{(j_1,j_2,j_3,0)} \cap V_{(j_1,j_2,j_3,2)} \;. \end{split}$$

In the above,

$$\begin{split} & \eta^i \! = \! \{ -\alpha_i b_1 \! + \! \overline{\beta}_i c_1 \! + \! \alpha_i^2 e \! - \! \alpha_i \overline{\beta}_i f \! + \! \beta_i (a_3 \! - \! \alpha_i b_3 \! + \! \overline{\beta}_i c_3) \\ & + (-2\alpha_i e \! + \! \overline{\beta}_i f \! + \! \beta_i b_3) u_2 \! + \! (-\alpha_i f \! + \! \beta_i c_3) v_2 \\ & + (-\beta_i b_1 \! - \! \overline{\alpha}_i c_1 \! + \! \alpha_i \beta_i e \! + \! |\alpha_i|^2 f \! - \! \alpha_i g \! + \! \beta_i (d_3 \! - \! \beta_i b_3 \! - \! \overline{\alpha}_i c_3)) w_2 \\ & + (-\beta_i e \! - \! \overline{\alpha}_i f) u_2 w_2 \! \} \frac{\partial}{\partial u_2} \\ & + \{ \! - \! \alpha_i b_2 \! + \! \overline{\beta}_i c_2 \! - \! \alpha_i \overline{\beta}_i e \! + \! \overline{\beta}_i^2 f \! + \! \overline{\alpha}_i (a_3 \! - \! \alpha_i b_3 \! + \! \overline{\beta}_i c_3) \\ & + (\overline{\beta}_i e \! + \! \overline{\alpha}_i b_3) u_2 \! + \! (-\alpha_i e \! + \! 2 \overline{\beta}_i f \! + \! \overline{\alpha}_i c_3) v_2 \\ & + (-\beta_i b_2 \! - \! \overline{\alpha}_i c_2 \! - \! |\beta_i|^2 e \! - \! \overline{\alpha}_i \overline{\beta}_i f \! + \! \overline{\beta}_i g \! + \! \overline{\alpha}_i (d_3 \! - \! \beta_i b_3 \! - \! \overline{\alpha}_i c_3)) w_2 \\ & + (-\beta_i e \! - \! \overline{\alpha}_i f) v_2 w_2 \! \} \frac{\partial}{\partial v_2} \\ & + \{ \! - \! \alpha_i b_3 \! + \! \overline{\beta}_i c_3 \! + \! (-\beta_i b_3 \! - \! \overline{\alpha}_i c_3 \! - \! \alpha_i e \! + \! \overline{\beta}_i f) w_2 \\ & + (-\beta_i e \! - \! \overline{\alpha}_i f) w_2^2 \! \} \frac{\partial}{\partial w_2} \; . \end{split}$$

Comparing the coefficients of $w_2\partial/\partial w_2$ of both sides of the above four equations, we have

$$(\alpha \, \beta \, \overline{\alpha} \, \overline{\beta})^t (e, \, b_{\scriptscriptstyle 3}, \, c_{\scriptscriptstyle 3}, \, -f) \! = \! 0$$
 .

Hence $b_3=c_3=e=f=0$. Next we compare the coefficients of $w_2\partial/\partial u_2$ and $\partial/\partial v_2$ of the three equations except the fourth and we have

$$egin{pmatrix} ar{ar{lpha}_1} & ar{eta}_1 & lpha_1 \ ar{ar{lpha}_2} & ar{eta}_2 & lpha_2 \ ar{ar{lpha}_3} & ar{eta}_3 & lpha_3 \end{pmatrix} = 0 \; .$$

By the assumption (*), $a_3 = b_2 = c_1 = c_2 = g = b_1 - d_3 = 0$. Comparing the coefficients of $w_2 \partial/\partial v_2$ of the first equation, we have $d_3 = 0$ since $\alpha_1 \neq 0$, and we also get $b_1 = 0$. Therefore the right-hand side of the four equations vanish and we have $\gamma_k = 0$ for all k.

References

- [1] C. BĂNICĂ and O. StĂNĂȘILĂ, Methodes Algebriques dans la Theorie Globale des Espaces Complexes, Gauthier-Villars, Paris, 1977.
- [2] M. A. BLANCHARD, Sur les variétés analytiques complexes, Ann. Sci. École Norm. Sup., 73 (1956), 157-202.
- [3] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Springer, 1966.
- [4] N. J. HITCHIN, Kählerian twistor spaces, Proc. London Math. Soc., 43 (1981), 133-150.
- [5] MA. KATO, On compact complex 3-folds with lines, Japan. J. Math., 11 (1985), 1-58.
- [6] K. KODAIRA and D. C. SPENCER, On deformations of complex analytic structures, I-II, Ann. of Math., 67 (1958), 328-466.
- [7] K. KODAIRA and D. C. SPENCER, A theorem of completeness for complex analytic fibre spaces, Acta. Math., 100 (1958), 281-294.
- [8] M. NAGATA, Local Rings, John Wiley, New York, 1962.
- [9] A. YAMADA, Small deformations of certain compact manifolds of Class L, to appear in Tôhoku Math. J..

Present Address:
Information & Communications
System Laboratory
Toshiba Corp.
Ohme, Tokyo 198