On the Second Order Efficiency of Bootstrap Estimators of Sampling Distributions

Takeru SUZUKI

Waseda University

§ 1. Introduction.

Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent identically distributed random variables with unknown distribution function (d.f.) F contained in a set Θ of d.f.'s on the real line \boldsymbol{R}. Let $g_{n}(\cdot, F)$ be a d.f. on \boldsymbol{R} parametrized by $F \in \Theta$, which will be considered to be a sampling d.f. of an appropriately normalized statistic based on the sample $X_{n}=\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ under F. We consider in this paper the estimation problem of $g_{n}(\cdot, F)$ based on the sample $X_{n}=\left(X_{1}, \cdots, X_{n}\right)$. In particular, we discuss some asymptotic properties of the bootstrap estimator $\widehat{g}_{n, B}=g_{n}\left(\cdot, \widehat{F}_{n}\right)$ of $g_{n}(\cdot, F)$ where \hat{F}_{n} is the empirical (sample) d.f. based on $X_{n}=\left(X_{1}, \cdots, X_{n}\right)$. Consistency of $\widehat{g}_{n, B}$ has been proved by Efron [6] and by Bickel and Freedman [4]. In Bickel and Freedman [3] and in Singh [8] Edgeworth type expansions of $\hat{g}_{n, B}$ for some typical g_{n} (the sampling d.f. of normalized sample mean and sample quantile) has been discussed. Beran [2] has proved that $\widehat{g}_{n, B}$ is locally asymptotically minimax for estimating g_{n} under some smoothness conditions with respect to F. In this paper we prove the second order asymptotic efficiency of appropriately corrected version of $\widehat{g}_{n, B}$ under conditions about $g_{n}(\cdot, F)$ similar to Assumption 1 or Assumption 1^{\prime} of Beran [2]. The concept of second order asymptotic efficiency in our case is essentially due to Akahira and Takeuchi [1]. We note that, in general, locally asymptotically minimax property does not imply second order efficiency as the following example shows: Let each X_{i} obey the distribution with density

$$
f(x, \theta)=2^{-1} \exp (-|x-\theta|) \quad(\theta \in \boldsymbol{R}, x \in \boldsymbol{R}) .
$$

In this case $\operatorname{med}_{1 \leq i \leq n} X_{i}$ are locally asymptotically minimax, but not second order asymptotically efficient for estimating $\theta \in \Theta$ (cf. Akahira and Takeuchi [1], p. 96).

In Section 2 we shall describe some conditions about g_{n} which will play an important role in the following sections. In Section 3 we try to get a bound of the second order asymptotic distributions of the second order asymptotically median unbiased estimator \hat{g}_{n} of $g_{n}(\cdot, F)$, which is calculated in a similar way to the one developed in Akahira and Takeuchi [1]. In Section 4 it will be proved that the bound obtained in Section 3 is attained by the bootstrap estimator $\hat{g}_{n, B}$ with a correcting term of order n^{-1}, and so it is second order asymptotically efficient in this sense. The final section is devoted to describing a typical example which satisfies the conditions given in Section 2.

§ 2. Notations and assumptions.

Let \mathscr{F} be the set of all d.f.'s on the real line \boldsymbol{R} and Θ be a subset of \mathscr{F}. Let \mathscr{B} be the set of all bounded functions on \boldsymbol{R}. We denote by $\|\cdot\|$ the sup norm in \mathscr{B}. We mean the topology of a subset \mathscr{B}_{1} of \mathscr{B} by the relative topology of \mathscr{B}_{1} as a subset of the normed space $(\mathscr{B},\|\cdot\|)$. Let $X_{1}, X_{2}, \cdots, X_{n}$ be independent identically distributed random variables with unknown d.f. F in Θ. Let μ be a σ-finite measure on \boldsymbol{R}, and for $k \in L^{1}(\mu)$ and $h \in \mathscr{B}$ let $\langle k, h\rangle=\int_{R} k \cdot h d \mu$ where $L^{1}(\mu)$ is the set of all μ-integrable functions on R. Let $\left\{g_{n} ; n \geqq 1\right\}$ be a sequence of maps $g_{n}(\cdot, F)$ from Θ^{*} to \mathscr{F}, where Θ^{*} is an open set in \mathscr{F} containing Θ. For each $F \in \Theta$ and $c>0$ define $B_{n}(F, c)$ as the set of $G \in \Theta^{*}$ satisfying $\|G-F\| \leqq c / n^{1 / 2}$. We consider the following conditions about $\left\{g_{n}\right\}$ on the second degree asymptotic differentiability of g_{n} as a function of F.

ASSUMPTION 1. (a) There exist sequences of maps $\left\{g_{n, i}(\cdot, F) ; n \geqq 1\right\}$, $i=0,1,2$, from Θ^{*} to \mathscr{F} such that for each $c>0$ and each $F \in \Theta$

$$
\sup _{G \in B_{n}(F, c)}\left\|g_{n}(\cdot, G)-g_{n, 0}(\cdot, G)-n^{-1 / 2} g_{n, 1}(\cdot, G)-n^{-1} g_{n, 2}(\cdot, G)\right\|=o\left(n^{-1}\right)
$$

(b) There exist $\left\{w_{F}^{(i)} ; i=1,2,3\right\} \subset \mathscr{B},\left\{\widetilde{w}_{F}^{(2)}, \widetilde{w}_{F}^{(3)}\right\} \subset \mathscr{B},\left\{u_{F}, v_{F}, \widetilde{v}_{F}\right\} \subset L^{1}(\mu)$ and $\left\{q_{F}, \widetilde{q}_{F}\right\} \subset L^{1}(\mu) \times L^{1}(\mu)$ defined for each $F \in \Theta^{*}$ such that for each $F \in \Theta$ and each $c>0$

$$
\begin{align*}
& \sup _{G \in B_{n}(F, c)} \| g_{n, 0}(\cdot, G)-g_{n, 0}(\cdot, F)-w_{F}^{(1)}\left\langle u_{F}, G-F\right\rangle \tag{i}\\
& \quad-2^{-1}\left\{w_{F}^{(2)}\left\langle q_{F}(G-F), G-F\right\rangle+\widetilde{w}_{F}^{(2)}\left\langle\widetilde{q}_{F}(G-F), G-F\right\rangle\right\} \|=o\left(n^{-1}\right), \\
& \sup _{G \in B_{n}(F, c)} \| g_{n, 1}(\cdot, G)-g_{n, 1}(\cdot, F)-w_{F}^{(3)}\left\langle v_{F}, G-F\right\rangle \tag{ii}\\
& \quad-\widetilde{w}_{F}^{(3)}\left\langle\widetilde{v}_{F}, G-F\right\rangle \|=o\left(n^{-1 / 2}\right),
\end{align*}
$$

$$
\begin{equation*}
\sup _{G \in B_{n}(F, c)}\left\|g_{n, 2}(\cdot, G)-g_{n, 2}(\cdot, F)\right\|=o(1) \tag{iii}
\end{equation*}
$$

(c) For each $F \in \Theta$
(i) the d.f. of $\left\langle u_{F}, y_{F, 1}\right\rangle$ under F is non-lattice,
(ii) $E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle^{2}\right)>0$,
where $y_{F, 1}(t)=I_{(-\infty, t]}(X)-F(t)$ and $I_{(-\infty, t]}(X)$ denotes the indicator function of the $\operatorname{set}(-\infty, t]$.

Remark 1. The function u_{F} appeared in Assumption 1 is unique in the following sense: If Assumption 1 is satisfied with $\widetilde{w}_{F}^{(1)} \in \mathscr{B}$ and $\widetilde{u}_{F} \in L^{1}(\mu)$ instead of $w_{F}^{(1)}$ and u_{F} respectively, then for every $h \in \mathscr{B}_{0}$ and $F \in \Theta$

$$
w_{F}^{(1)}\left\langle u_{F}, h-c(h) F\right\rangle=\widetilde{w}_{F}^{(1)}\left\langle\widetilde{u}_{F}, h-c(h) F\right\rangle,
$$

where \mathscr{B}_{0} is the class of bounded functions on \boldsymbol{R} such that $c(h)=$ $\lim _{t \rightarrow \infty} h(t)$ exists and $\lim _{t \rightarrow-\infty} h(t)=0$.

We have the following proposition which is an easy consequence of our assumption.

Proposition 1. Suppose that the conditions (a) and (b) in Assumption 1 are satisfied. Then we have for each $c>0$ and each $F \in \Theta$

$$
\begin{aligned}
\sup _{G \in B_{n}(F, c)} \| & g_{n}(\cdot, G)-g_{n}(\cdot, F)-w_{F}^{(1)}\left\langle u_{F}, G-F\right\rangle \\
& -2^{-1}\left\{w_{F}^{(2)}\left\langle q_{F}(G-F), G-F\right\rangle+\widetilde{w}_{F}^{(2)}\left\langle\widetilde{q}_{F}(G-F), G-F\right\rangle\right\} \\
& -n^{-1 / 2}\left\{w_{F}^{(3)}\left\langle v_{F}, G-F\right\rangle+\widetilde{w}_{F}^{(3)}\left\langle\widetilde{v}_{F}, G-F\right\rangle\right\} \|=o\left(n^{-1}\right) .
\end{aligned}
$$

We consider the following condition stronger than previous one, which will be used in Section 4 to prove second order asymptotic efficiency of the bootstrap estimators. This condition is almost the same as Assumption 1.

ASSUMPTION 2. (a) There exist sequences of maps $\left\{g_{n, i}(\cdot, F) ; n \geqq 1\right\}$, $i=0,1,2$, from Θ^{*} to \mathscr{F} such that for every $F \in \Theta$

$$
\sup _{G \in B_{n}\left(F, c_{n}\right)}\left\|g_{n}(\cdot, G)-g_{n, 0}(\cdot, G)-n^{-1 / 2} g_{n, 1}(\cdot, G)-n^{-1} g_{n, 2}(\cdot, G)\right\|=o\left(n^{-1}\right)
$$

where $\left\{c_{n}\right\}$ is a sequence of positive numbers satisfying

$$
\lim _{n \rightarrow \infty}\left\{4 c_{n}^{2}-\log n\right\}=\infty
$$

(b) There exist $\left\{w_{F}^{(i)} ; i=1,2,3\right\} \subset \mathscr{B},\left\{\widetilde{w}_{F}^{(2)}, \widetilde{w}_{F}^{(3)}\right\} \subset \mathscr{B},\left\{u_{F}, v_{F}, \widetilde{v}_{F}\right\} \subset L^{1}(\mu)$ and $\left\{q_{F}, \widetilde{q}_{F}\right\} \subset L^{1}(\mu) \times L^{1}(\mu)$ defined for each $F \in \Theta^{*}$ such that

$$
\begin{equation*}
\sup _{G \in B_{n}\left(F, c_{n}\right)} \| g_{n, 0}(\cdot, G)-g_{n, 0}(\cdot, F)-w_{F}^{(1)}\left\langle u_{F}, G-F\right\rangle \tag{i}
\end{equation*}
$$

$$
-2^{-1}\left\{w_{F}^{(2)}\left\langle q_{F}(G-F), G-F\right\rangle+\widetilde{w}_{F}^{(2)}\left\langle\widetilde{q}_{F}(G-F), G-F\right\rangle\right\} \|=o\left(n^{-1}\right),
$$

$$
\left.\begin{array}{rl}
\sup _{G \in B_{n}\left(F, c_{n}\right)} \| & \| g_{n, 1}(\cdot, G)-g_{n, 1}(\cdot, F)- \tag{ii}
\end{array} \quad w_{F}^{(3)}\left\langle v_{F}, G-F\right\rangle\right)
$$

$$
\begin{equation*}
\sup _{G \in B_{n}\left(F, c_{n}\right)}\left\|g_{n, 2}(\cdot, G)-g_{n, 2}(\cdot, F)\right\|=o(1) . \tag{iii}
\end{equation*}
$$

(c) For each $F \in \Theta$
(i) the d.f. of $\left\langle u_{F}, y_{F, 1}\right\rangle$ under F is non-lattice, (ii) $E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle^{2}\right)>0$.

We have the following proposition which can be verified in the same way as Proposition 1.

Proposition 2. Suppose that the conditions (a) and (b) in Assumption 2 are satisfied. Then we have for each $F \in \Theta$

$$
\begin{aligned}
\sup _{G \in B_{n}\left(F, o_{n}\right)} & \| g_{n}(\cdot, G)-g_{n}(\cdot, F)-w_{F}^{(1)}\left\langle u_{F}, G-F\right\rangle \\
\quad & -2^{-1}\left\{w_{F}^{(2)}\left\langle q_{F}(G-F), G-F\right\rangle+\widetilde{w}_{F}^{(2)}\left\langle\widetilde{q}_{F}(G-F), G-F\right\rangle\right\} \\
& -n^{-1 / 2}\left\{w_{F}^{(3)}\left\langle v_{F}, G-F\right\rangle+\widetilde{w}_{F}^{(3)}\left\langle\widetilde{v}_{F}, G-F\right\rangle\right\} \|=o\left(n^{-1}\right) .
\end{aligned}
$$

Remark 2. The smoothed d.f. g_{n} of a second degree U-statistic satisfies Assumption 2 with any sequence $\left\{c_{n}\right\}$ of positive numbers satisfying

$$
\lim _{n \rightarrow \infty}\left\{\log n-6 \log c_{n}\right\}=\infty
$$

We discuss this example more precisely in Section 5.
§ 3. A bound of second order asymptotic distributions.
We mean by the estimator of g_{n} the measurable map \hat{g}_{n} from \mathscr{X}_{n} to \mathscr{F}, where \mathscr{X}_{n} is the sample space of random vector $X_{n}=\left(X_{1}, \cdots, X_{n}\right)$ equipped with the Borel σ-field. For each $F \in \Theta$ we denote by $P_{F, n}$ the probability distribution of X_{n} provided that each X_{i} obeys the d.f. F. Let K be the set of all $k \in L^{1}(\mu)$ satisfying $\int_{R}|k| d \mu=1$. We denote by $B_{n}^{*}(F, c)$ the intersection of $B_{n}(F, c)$ and $\mathscr{C}(F):=\{G \in \mathscr{F} ; F$ is absolutely continuous with respect to $G\}$. Let \mathscr{E} be the class of sequences $\left\{\hat{g}_{n}\right\}$ of estimators of $\left\{g_{n}\right\}$ such that for each $k \in K$, each $F \in \Theta$, each $c>0$ and each sequence $\left\{\varepsilon_{n}\right\}$ of real numbers satisfying $\varepsilon_{n}=o\left(n^{-1 / 2}\right)$ we have

$$
\begin{equation*}
\sup _{G \in B_{n}^{*}\left(F, c_{n}\right)}\left|P_{G, n}\left\{n^{1 / 2}\left\langle k, \hat{g}_{n}-g_{n}(\cdot, G)\right\rangle \leqq \varepsilon_{n}\right\}-2^{-1}\right|=o\left(n^{-1 / 2}\right) . \tag{3.1}
\end{equation*}
$$

We note that if (3.1) holds with $\varepsilon_{n}=0, n=1,2, \cdots$, and $n^{1 / 2}\left\langle k, \widehat{g}_{n}-g_{n}(\cdot, G)\right\rangle$ admits Edgeworth expansion uniformly in G over $B_{n}^{*}(F, c)$ up to order $n^{-1 / 2}$ for each $k \in K$ and each $F \in \Theta$, then $\left\{\widehat{\boldsymbol{g}}_{n}\right\}$ is an element of \mathscr{E}. Following Akahira and Takeuchi [1] we call in this paper the sequence $\left\{\hat{g}_{n}\right\}$ of estimators in \mathscr{E} second order asymptotically median unbiased (or second order AMU). This definition is a modification of the concept of AMU estimator defined in Akahira and Takeuchi [1] to our situation. Before describing the theorem we define some notations here. Let $y_{F, i}(t)=I_{(-\infty, t]}\left(X_{i}\right)-F(t), i=1,2$. Define

$$
\begin{gathered}
c_{i}(F, k)=\left\langle w_{F}^{(i)}, k\right\rangle, \quad i=1,2,3, \quad \widetilde{c}_{i}(F, k)=\left\langle\widetilde{w}_{F}^{(i)}, k\right\rangle, \quad i=2,3, \\
\alpha(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle\left\langle v_{F}, y_{F, 1}\right\rangle\right), \quad \tilde{\alpha}(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle\left\langle\widetilde{v}_{F}, y_{F, 1}\right\rangle\right), \\
\beta(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle^{3}\right), \\
\gamma(F)=E_{F}\left(\left\langle q_{F}, y_{F, 1}\right\rangle\right), \quad \tilde{\gamma}(F)=E_{F}\left(\left\langle\widetilde{q}_{F} y_{F, 1}, y_{F, 1}\right\rangle\right), \\
\delta(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle\left\langle u_{F}, y_{F, 2}\right\rangle\left\langle q_{F} y_{F, 1}, y_{F, 2}\right\rangle\right), \\
\tilde{\delta}(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle\left\langle u_{F}, y_{F, 2}\right\rangle\left\langle\widetilde{q}_{F} y_{F, 1}, y_{F, 2}\right\rangle\right) .
\end{gathered}
$$

We state a theorem which gives a second order bound of asymptotic distributions of the estimators $\left\{\hat{\boldsymbol{g}}_{n}\right\}$ in \mathscr{E}. In the following Φ denotes the standard normal distribution function and ϕ the density function of Ф.

Theorem 1. Suppose that Assumption 1 is satisfied. Then for any sequence $\left\{\hat{g}_{n}\right\}$ of estimators of $\left\{g_{n}\right\}$ in \mathscr{E}, for every $F \in \Theta$ and for every $k \in K$, we have

$$
\begin{align*}
& P_{F, n}\left\{n^{1 / 2}\left\langle k, \widehat{g}_{n}-g_{n}(\cdot, F)\right\rangle \leqq t\right\} \tag{3.2}\\
& \quad \leqq \Phi\left(t / J^{1 / 2}(F, k)\right)-n^{-1 / 2} \phi\left(t / J^{1 / 2}(F, k)\right) \Psi(t, F, k)+o\left(n^{-1 / 2}\right) \\
& \quad(\geqq)
\end{align*}
$$

for every $t>0$ ($t<0$, respectively), where

$$
\begin{aligned}
& \Psi(t, F, k)=t c_{1}(F, k)\left(c_{3}(F, k) \alpha(F)+\widetilde{c}_{3}(F, k) \widetilde{\alpha}(F)\right) / J^{3 / 2}(F, k) \\
& \quad+t^{2}\left(c_{1}^{3}(F, k) \beta(F)\right)+3 c_{1}^{2}(F, k)\left(c_{2}(F, k) \delta(F)+\widetilde{c}_{2}(F, k) \tilde{\delta}(F)\right) /\left(6 J^{3 / 2}(F, k)\right)
\end{aligned}
$$

Proof. We can prove this in a similar way to the one in Akahira and Takeuchi [1]. We face, however, some difficulties because parametric model is infinite dimensional. Take $t>0, F \in \Theta$ and $k \in K$ arbitrarily and then fix them. We define functions $a_{F, 1}, a_{F, 2}, b_{F}$ in \mathscr{B} as follows:

$$
\begin{aligned}
a_{F, 1}\left(X_{1}\right)= & c_{1}(F, k)\left\langle u_{F}, y_{F, 1}\right\rangle / J(F, k), \\
a_{F, 2}\left(X_{1}\right)= & -\left\{c_{3}(F, k)\left\langle v_{F}, y_{F, 1}\right\rangle+\widetilde{c}_{3}(F, k)\left\langle\widetilde{v}_{F}, y_{F, 1}\right\rangle\right\} / J(F, k), \\
b_{F}\left(X_{1}\right)=- & c_{1}(F, k)\left\{\int _ { R } \left(c_{2}(F, k)\left\langle u_{F}, y_{F, 2}\right\rangle\left\langle q_{F} y_{F, 1}, y_{F, 2}\right\rangle\right.\right. \\
& \left.\left.+\widetilde{c}_{2}(F, k)\left\langle u_{F}, y_{F, 2}\right\rangle\left\langle\widetilde{q}_{F} y_{F, 1}, y_{F, 2}\right\rangle\right) d F\left(X_{2}\right)\right\} /\left(2 J^{2}(F, k)\right) .
\end{aligned}
$$

Using these functions we can construct a sequence $\left\{g_{t, n} ; n \geqq n_{0}\right\}$ of probability density functions on \boldsymbol{R} with respect to $d F$ as follows:

$$
g_{t, n}(x)=1+n^{-1 / 2} t\left(a_{F, 1}(x)+a_{F, 2}(x) / n^{1 / 2}\right)+n^{-1} t^{2} b_{F}(x),
$$

where the integer n_{0} depends only on t.
Let $G_{t, n}$ be the d.f. on \boldsymbol{R} corresponding to the density $g_{t, n}$. Let $\phi_{n}^{*}=\phi_{n}^{*}\left(X_{n}\right)$ be the most powerful test with asymptotic level $2^{-1}+o\left(n^{-1 / 2}\right)$ for the problem of testing the hypothesis H_{0} : "true distribution is $G_{t, n}$ " versus the alternative H_{1} : "true distribution is F ". Define the random variables $Z_{i n}=\log \left(\left(d G_{t, n} / d F^{\prime}\right)\left(X_{i}\right)\right)=\log g_{t, n}\left(X_{i}\right)$ and let $T_{n}=\sum_{i=1}^{n} Z_{i n}$. We note that the test $\phi_{n}^{*}\left(X_{n}\right)$ mentioned above has the following form: $\phi_{n}^{*}\left(X_{n}\right)=1$ if $T_{n}<d_{n},=0$ otherwise for appropriately chosen number d_{n}. By Taylor expansion we have the following results:

$$
\begin{aligned}
& E_{F}\left(Z_{i n}\right)=-(2 n)^{-1} t^{2} J_{0}(F, k)+n^{-3 / 2} t^{3}\left\{-E_{F}\left(a_{F, 1} b_{F}\right)+3^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right. \\
&\left.\quad-t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)\right\}+o\left(n^{-3 / 2}\right), \quad\left(J_{0}(F, k)=J^{-1}(F, k)\right), \\
& E_{F}\left(Z_{i n}^{2}\right)=n^{-1} t^{2} J_{0}(F, k)+2 n^{-3 / 2} t^{3}\left\{E_{F}\left(a_{F, 1} b_{F}\right)-2^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right. \\
&\left.\quad+t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)\right\}+o\left(n^{-3 / 2}\right), \\
& E_{F}\left(Z_{i n}^{3}\right)=n^{-3 / 2} t^{3} E_{F}\left(a_{F, 1}^{3}\right)+o\left(n^{-3 / 2}\right), \\
& E_{G_{t, n}}\left(Z_{i n}\right)=(2 n)^{-1} t^{2} J_{0}(F, k)+n^{-3 / 2} t^{3}\left\{t^{-1} E_{F}\left(a_{F, 1}, a_{F, 2}\right)\right. \\
&\left.\quad+E_{F}\left(a_{F, 1} b_{F}\right)-6^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right\}+o\left(n^{-3 / 2}\right), \\
& E_{G_{t, n}}\left(Z_{i n}^{2}\right)=n^{-1} t^{2} J_{0}(F, k)+2 n^{-3 / 2} t^{3}\left\{t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)\right\}+o\left(n^{-3 / 2}\right), \\
& E_{G_{t, n}}\left(Z_{i n}^{3}\right)= n^{-3 / 2} t^{3} E_{F}\left(a_{F, 1}^{3}\right)+o\left(n^{-3 / 2}\right) .
\end{aligned}
$$

From these we have

$$
\begin{gathered}
E_{F}\left(T_{n}\right)=-2^{-1} t^{2} J_{0}(F, k)+n^{-1 / 2} t^{3}\left\{-E_{F}\left(a_{F, 1} b_{F}\right)+3^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right. \\
\left.-t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)\right\}+o\left(n^{-1 / 2}\right) \\
V_{F}\left(T_{n}\right)=E_{F}\left(\left(T_{n}-E_{F}\left(T_{n}\right)\right)^{2}\right)=t^{2} J_{0}(F, k)+2 n^{-1 / 2} t^{3}\left\{E_{F}\left(a_{F, 1} b_{F}\right)\right.
\end{gathered}
$$

$$
\begin{aligned}
& \left.-2^{-1} E_{F}\left(a_{F, 1}^{3}\right)+t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)\right\}+o\left(n^{-1 / 2}\right), \\
& E_{F}\left(\left(T_{n}-E_{F}\left(T_{n}\right)\right)^{3}\right)=n^{-1 / 2} t^{3} E_{F}\left(a_{F, 1}^{3}\right)+o\left(n^{-1 / 2}\right) .
\end{aligned}
$$

We also have

$$
\begin{gathered}
E_{G_{t, n}}\left(T_{n}\right)=2^{-1} t^{2} J_{0}(F, k)+n^{-1 / 2} t^{3}\left\{t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)\right. \\
\left.-6^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right\}+o\left(n^{-1 / 2}\right), \\
V_{G_{t, n}}\left(T_{n}\right)=t^{2} J_{0}(F, k)+2 n^{-1 / 2} t^{3}\left\{t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)\right\}+o\left(n^{-1 / 2}\right), \\
E_{G_{t, n}}\left(\left(T_{n}-E_{G_{t, n}}\left(T_{n}\right)\right)^{3}\right)=n^{-1 / 2} t^{3} E_{F}\left(a_{F, 1}^{3}\right)+o\left(n^{-1 / 2}\right) .
\end{gathered}
$$

Thus, according to the Gram-Charlier (Edgeworth) expansion, we have

$$
\begin{align*}
& P_{G_{t, n}, n}\left\{T_{n} \leqq d_{n}\right\}=P_{G_{t, n}, n}\left\{\left(T_{n}-2^{-1} t^{2} J_{0}(F, k)\right) /\left(t J_{0}^{1 / 2}(F, k)\right) \leqq \widetilde{d}_{n}\right\} \tag{3.3}\\
&=\Phi\left(\widetilde{d}_{n}\right)-n^{-1 / 2} \phi\left(\widetilde{d}_{n}\right)\left\{t ^ { 2 } J _ { 0 } ^ { - 1 / 2 } (F , k) \left(t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)\right.\right. \\
&\left.\quad-6^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right)+t J_{0}^{-1}(F, k)\left(t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)\right) \widetilde{d}_{n} \\
&\left.+\left(E_{F}\left(a_{F, 1}^{3}\right)\right) /\left(6 J_{0}^{3 / 2}(F, k)\right)\left(\widetilde{d}_{n}^{2}-1\right)\right\}+o\left(n^{-1 / 2}\right)
\end{align*}
$$

where $\widetilde{d}_{n}=\left(d_{n}-2^{-1} t^{2} J_{0}(F, k)\right) /\left(t J_{0}^{1 / 2}(F, k)\right)$.
In fact, the validity of the expansion (3.3) can be verified by a similar method used in the proof of Theorem 1 in Feller [7], XVI. 4, page 512. We need the condition (c) in Assumption 1 to prove this. The proof is relatively easy but long, so it will be omitted here.

From (3.3) it follows that if we take $\widetilde{d}_{n}=c_{0}(t, F) / n^{1 / 2}$ then we have

$$
P_{G_{t, n}, n}\left\{T_{n} \leqq d_{n}\right\}=2^{-1}+o\left(n^{-1 / 2}\right)
$$

where

$$
\begin{aligned}
c_{0}(t, F)= & t^{2}\left\{t^{-1} E_{F}\left(a_{F, 1} a_{F, 2}\right)+E_{F}\left(a_{F, 1} b_{F}\right)-6^{-1} E_{F}\left(a_{F, 1}^{3}\right)\right\} / J_{0}^{1 / 2}(F, k) \\
& -E_{F}\left(a_{F, 1}^{3}\right) /\left(6 J_{0}^{3 / 2}(F, k)\right) .
\end{aligned}
$$

Choosing such a sequence $\left\{\widetilde{d}_{n}\right\}$ we can calculate the power function corresponding to the test sequence $\left\{I_{\left\{T_{n} \leq d_{n}\right\}}\left(\boldsymbol{X}_{n}\right)\right\}$. In a similar way to (3.3) we have

$$
\begin{align*}
& P_{F, n}\left\{T_{n} \leqq d_{n}\right\} \tag{3.4}\\
& =\Phi\left(t J^{-1 / 2}(F, k)\right)-n^{-1 / 2} \phi\left(t J^{-1 / 2}(F, k)\right)\left[-t J^{1 / 2}(F, k) E_{F}\left(a_{F, 1} a_{F, 2}\right)\right. \\
& \\
& \left.\quad+t^{2} J^{1 / 2}(F, k)\left(E_{F}\left(a_{F, 1}^{3}\right) / 6-E_{F}\left(a_{F, 1} b_{F}\right)\right)\right]+o\left(n^{-1 / 2}\right)
\end{align*}
$$

We can check easily that

$$
E_{F}\left(a_{F, 1}^{3}\right)=c_{1}^{3}(F, k) \beta(F) / J^{3}(F, k),
$$

$$
\begin{aligned}
& E_{F}\left(a_{F, 1} a_{F, 2}\right)=-c_{1}(F, k)\left(c_{3}(F, k) \alpha(F)+\widetilde{c}_{3}(F, k) \tilde{\alpha}(F)\right) / J^{2}(F, k), \\
& E_{F}\left(a_{F, 1} b_{F}\right)=-c_{1}^{2}(F, k)\left(c_{2}(F, k) \delta(F)+\widetilde{c}_{2}(F, k) \tilde{\delta}(F)\right) /\left(2 J^{3}(F, k)\right)
\end{aligned}
$$

Hence the right hand side (R.H.S.) of the inequality (3.2) equals the R.H.S. of (3.4) up to the order $n^{-1 / 2}$.

Let $\left\{\hat{g}_{n}\right\}$ be any element of \mathscr{E}. We have by Proposition 1

$$
\begin{equation*}
P_{F, n}\left\{n^{1 / 2}\left\langle k, \hat{g}_{n}-g_{n}(\cdot, F)\right\rangle \leqq t\right\}=P_{F, n}\left\{n^{1 / 2}\left\langle k, \hat{g}_{n}-g_{n}\left(\cdot, G_{t, n}\right)\right\rangle \leqq \varepsilon_{n}\right\}, \tag{3.5}
\end{equation*}
$$

where $\left\{\varepsilon_{n}\right\}$ is a sequence of real numbers satisfying $\varepsilon_{n}=0\left(n^{-1 / 2}\right)$. As $\left\{\hat{g}_{n}\right\}$ is a second order AMU estimator, we have

$$
P_{\sigma_{t, n}, n}\left\{n^{1 / 2}\left\langle k, \widehat{g}_{n}-g_{n}\left(\cdot, G_{t, n}\right)\right\rangle \leqq \varepsilon_{n}\right\}=2^{-1}+o\left(n^{-1 / 2}\right)
$$

Since the test sequence $\left\{I_{\left\{T_{n} \leq d_{n}\right\}}\right\}$ is asymptotically most powerful with level $2^{-1}+o\left(n^{-1 / 2}\right)$, it holds that

$$
\begin{equation*}
P_{F, n}\left\{n^{1 / 2}\left\langle k, \widehat{g}_{n}-g_{n}\left(\cdot, G_{t, n}\right)\right\rangle \leqq \varepsilon_{n}\right\} \leqq P_{F, n}\left\{T_{n} \leqq d_{n}\right\}+o\left(n^{-1 / 2}\right) \tag{3.6}
\end{equation*}
$$

From (3.4), (3.5) and (3.6) we have the inequality (3.2) for $t>0$. Substituting $-k$ for k in the inequality (3.2) for $t>0$ we have another inequality for $t<0$.

Remark 3. Theorem 1 remains valid for \mathscr{E}_{0} instead of \mathscr{E}, where \mathscr{E}_{0} is the class of $\left\{\hat{g}_{n}\right\}$ satisfying the same conditions as imposed for \mathscr{E} except for $B_{n}^{*}(F, c)$ being replaced by $B_{n}^{* *}(F, c)$ in (3.1). Here $B_{n}^{* *}(F, c)$ means the intersection of $B_{n}(F, c)$ and $\mathscr{C}_{0}(F):=\left\{G \in \mathscr{F} ; d G=\left(1+k_{n}(x)\right) d F\right.$, $\left.\sup \left\{\left|k_{n}(x)\right| ; x \in \boldsymbol{R}\right\}=O\left(n^{-1 / 2}\right)\right\}$.

The following definition of second order asymptotic efficiency owes essentially to Akahira and Takeuchi [1]. If a sequence $\left\{\hat{g}_{n}\right\}$ in \mathscr{E} attains the bounds (3.2) for every $F \in \Theta$ for every $t \in R$, and for every $k \in K$, then we call them second order asymptotically efficient AMU estimators.
§4. Second order asymptotic efficiency of bootstrap estimator.
Let \hat{F}_{n} be the empirical (sample) d.f. based on the sample X_{1}, X_{2}, \cdots, X_{n}. In this section we study some second order asymptotic properties of bootstrap estimator $\hat{g}_{n, B}(\cdot)=g_{n}\left(\cdot, \hat{F}_{n}\right)$. We have the following result about the second order asymptotic distribution of $\left\{\hat{g}_{n, B}\right\}$.

Theorem 2. Suppose that Assumption 2 is satisfied. Then, for every $F \in \Theta$, every $t \in R$ and every $k \in K$ we have

$$
\begin{align*}
& P_{F, n}\left\{n^{1 / 2}\left\langle k, \widehat{g}_{n, B}-g_{n}(\cdot, F)\right\rangle \leqq t\right\} \tag{4.1}\\
& \quad=\Phi\left(t J^{-1 / 2}(F, k)\right)-n^{-1 / 2} \phi\left(t J^{-1 / 2}(F, k)\right) \Psi^{*}(t, F, k)+o\left(n^{-1 / 2}\right),
\end{align*}
$$

where

$$
\begin{aligned}
& \Psi^{*}(t, F, k)=\left(c_{2}(F, k) \gamma(F)+\widetilde{c}_{2}(F, k) \widetilde{\gamma}(F)\right) /\left(2 J^{1 / 2}(F, k)\right) \\
& \quad-\left(c_{1}^{3}(F, k) \beta(F)+3 c_{1}^{2}(F, k)\left(c_{2}(F, k) \delta(F)+\widetilde{c}_{2}(F, k) \tilde{\delta}(F)\right)\right) /\left(6 J^{3 / 2}(F, k)\right) \\
& \quad+\Psi(t, F, k)
\end{aligned}
$$

Proof. For $k \in K$ and $F \in \Theta$ let $S_{n}=n^{1 / 2}\left\langle k, \widehat{g}_{n, B}-g_{n}(\cdot, F)\right\rangle, W_{n}=$ $n^{1 / 2}\left(\hat{\boldsymbol{F}}_{n}-F\right)$ and $A_{n}=\left\{\boldsymbol{x}_{n} \in X_{n} ; \hat{F}_{n} \in B_{n}\left(F, c_{n}\right)\right\}$. By Proposition 2 and by the property $P_{F, n}\left\{A_{n}^{c}\right\}=o\left(n^{-1 / 2}\right)$ we can verify

$$
\begin{align*}
S_{n}= & c_{1}(F, k) U_{n}+\left(c_{2}(F, k) Q_{n}+\widetilde{c}_{2}(F, k) \widetilde{Q}_{n}\right) /\left(2 n^{1 / 2}\right) \tag{4.2}\\
& +\left(c_{3}(F, k) V_{n}+\widetilde{c}_{s}(F, k) \widetilde{V}_{n}\right) / n^{1 / 2}+\tilde{\varepsilon}_{n}
\end{align*}
$$

where $U_{n}=\left\langle u_{F}, W_{n}\right\rangle, \quad Q_{n}=\left\langle q_{F} W_{n}, W_{n}\right\rangle, \quad \widetilde{Q}_{n}=\left\langle\widetilde{q}_{F} W_{n}, W_{n}\right\rangle, \quad V_{n}=\left\langle v_{F}, W_{n}\right\rangle$ and $\tilde{V}_{n}=\left\langle\tilde{v}_{F}, W_{n}\right\rangle$. Here $\left\{\tilde{\varepsilon}_{n}\right\}$ is a sequence of random variables such that $\sup \left\{\left|\tilde{\varepsilon}_{n}\right| ; \boldsymbol{x}_{n} \in A_{n}\right\}=o\left(n^{-1 / 2}\right)$. We put

$$
\begin{aligned}
S_{n}^{*}= & c_{1}(F, k) U_{n}+\left(c_{2}(F, k) Q_{n}+\widetilde{c}_{2}(F, k) \widetilde{Q}_{n}\right) /\left(2 n^{1 / 2}\right) \\
& +\left(c_{3}(F, k) V_{n}+\widetilde{c}_{3}(F, k) \widetilde{V}_{n}\right) / n^{1 / 2}
\end{aligned}
$$

then we have

$$
\begin{aligned}
& E_{F}\left(S_{n}^{*}\right)=\left(c_{2}(F, k) \gamma(F)+\widetilde{c}_{2}(F, k) \widetilde{\gamma}(F)\right) /\left(2 n^{1 / 2}\right), \\
& V_{F}\left(S_{n}^{*}\right)=J(F, k)+2 c_{1}(F, k)\left(c_{3}(F, k) \alpha(F)+\widetilde{c}_{3}(F, k) \widetilde{\alpha}(F)\right) / n^{1 / 2}, \\
& E_{F}\left(\left(S_{n}^{*}-E_{F}\left(S_{n}^{*}\right)\right)^{3}\right)=\left[c_{1}^{3}(F, k) \beta(F)+3 c_{1}^{2}(F, k)\left(c_{2}(F, k) \delta(F)\right.\right. \\
& \left.\left.\quad \quad+\widetilde{c}_{2}(F, k) \tilde{\delta}(F)\right)\right] / n^{1 / 2}+o\left(n^{-1 / 2}\right) .
\end{aligned}
$$

To prove this we use the fact that

$$
\begin{aligned}
E_{F}\left(U_{n}^{2}\right) & =c_{1}^{-2}(F, k) J(F, k), \quad E_{F}\left(Q_{n}\right)=\gamma(F), \\
E_{F}\left(U_{n}^{2} Q_{n}\right) & =2 \delta(F)+c_{1}^{-2}(F, k) J(F, k) \gamma(F)+O\left(n^{-1}\right), \\
E_{F}\left(U_{n}^{2} \widetilde{Q}_{n}\right) & =2 \widetilde{\delta}(F)+c_{1}^{-2}(F, k) J(F, k) \widetilde{\gamma}(F)+O\left(n^{-1}\right),
\end{aligned}
$$

$$
E_{F}\left(U_{n}^{2} V_{n}\right)=O\left(n^{-1 / 2}\right), \quad E_{F}\left(U_{n}^{2} \tilde{V}_{n}\right)=O\left(n^{-1 / 2}\right), \quad E_{F}\left(U_{n}^{3}\right)=\beta(F) / n^{1 / 2}
$$

$$
E_{F}\left(U_{n} Q_{n}\right)=O\left(n^{-1 / 2}\right), \quad E_{F}\left(U_{n} \widetilde{Q}_{n}\right)=O\left(n^{-1 / 2}\right), \quad E_{F}\left(V_{n} Q_{n}\right)=O\left(n^{-1 / 2}\right)
$$

$$
E_{F}\left(V_{n} \widetilde{Q}_{n}\right)=O\left(n^{-1 / 2}\right), \quad E_{F}\left(\widetilde{V}_{n} Q_{n}\right)=O\left(n^{-1 / 2}\right) \quad \text { and } \quad E_{F}\left(\widetilde{V}_{n} \widetilde{Q}_{n}\right)=O\left(n^{-1 / 2}\right)
$$

Hence according to the Gram-Charlier (Edgeworth) expansion, we have

$$
\begin{equation*}
P_{F, n}\left\{S_{n}^{*} \leqq t\right\}=\Phi\left(t J^{-1 / 2}(F, k)\right)-n^{-1 / 2} \phi\left(t J^{-1 / 2}(F, k)\right) \Psi^{*}(t, F, k)+o\left(n^{-1 / 2}\right) \tag{4.3}
\end{equation*}
$$

In fact, this can be shown by Esseen's smoothing lemma as follows (cf. Feller [7], XVI. 3, Lemma 2). Let $\widetilde{S}_{n}=\left(S_{n}^{*}-\mu_{n}^{*}\right) / \sigma_{n}^{*}, \mu_{n}^{*}=E_{F}\left(S_{n}^{*}\right)$, $\sigma_{n}^{* 2}=V_{F}\left(S_{n}^{*}\right)$ and $\kappa_{3, n}=E_{F}\left(\widetilde{S}_{n}^{3}\right)$. Define $\widetilde{F}_{n}(x)=P_{F, n}\left\{\widetilde{S}_{n} \leqq x\right\}$ and $K_{n}(x)=\Phi(x)$ -$\phi(x)\left(x^{2}-1\right) \kappa_{3, n} / 6$, and denote by $\rho_{n}(u), \psi_{n}(u)$ the Fourier transforms of \widetilde{F}_{n}, K_{n} respectively. We note that $\psi_{n}(u)=e^{-u^{2 / 2}}\left(1+\kappa_{3, n}(i u)^{3} / 6\right)$. By Esseen's lemma, for any $M>0$

$$
\begin{equation*}
\sup _{x \in \boldsymbol{R}}\left|\widetilde{F}_{n}(x)-K_{n}(x)\right| \leqq \pi^{-1} \int_{-M n^{1 / 2}}^{\boldsymbol{\mu} n^{1 / 2}}\left(\left|\rho_{n}(u)-\psi_{n}(u)\right| /|u|\right) d u+K_{0} /\left(n^{1 / 2} M\right) \tag{4.4}
\end{equation*}
$$

where K_{0} is a constant not depending on n and M. For $\delta>0(\delta<M)$ let

$$
\begin{aligned}
& J_{1, n}=\int_{|u| \leq \delta n^{1 / 2}}\left(\left|\rho_{n}(u)-\psi_{n}(u)\right| /|u|\right) d u \\
& J_{2, n}=\int_{\delta n^{1 / 2} \leq|u| \leq M n^{1 / 2}}\left(\left|\rho_{n}(u)-\psi_{n}(u)\right| /|u|\right) d u
\end{aligned}
$$

We note that S_{n}^{*} can be rewritten as follows:

$$
S_{n}^{*}=n^{-1 / 2} \sum_{i=1}^{n} U_{i, n}^{*}+n^{-1} \sum_{i=1}^{n} V_{i, n}^{*}+2^{-1} n^{-3 / 2} \sum_{i=1}^{n} \sum_{j=1}^{n} Q_{i j, n}^{*}
$$

where

$$
\begin{aligned}
& U_{i, n}^{*}=\left\langle c_{1}(F, k) u_{F}, y_{F, i}\right\rangle / \sigma_{n}^{*}, \\
& V_{i, n}^{*}=\left\langle c_{1}(F, k) V_{F}+c_{2}(F, k) \widetilde{V}_{F}, y_{F, i}\right\rangle / \sigma_{n}^{*}, \\
& Q_{i j, n}^{*}=\left(\left\langle\left(c_{2}(F, k) q_{F}+\widetilde{c}_{2}(F, k) \widetilde{q}_{F}\right) y_{F, i}, y_{F, j}\right\rangle-\mu_{i j}\right) / \sigma_{n}^{*}
\end{aligned}
$$

and

$$
\mu_{i j}=E_{F}\left(\left\langle\left(c_{2}(F, k) q_{F}+\widetilde{c}_{2}(F, k) \widetilde{q}_{F}\right) y_{F, i}, y_{F, j}\right\rangle\right) .
$$

Taking account of the condition (c) of Assumption 2, since the random variables $\left\{U_{i, n}^{*}, V_{i, n}^{*}, Q_{i j, n}^{*}\right\}$ are bounded, we can verify $J_{1, n}=o\left(n^{-1 / 2}\right)$ with argument similar to Callaert et al. [5], Section 3.

Let

$$
\begin{aligned}
& J_{2, n}^{\prime}=\int_{\delta n^{1 / 2}<|u|<\boldsymbol{M} n^{1 / 2}}\left(\left|\rho_{n}(u)\right| /|u|\right) d u \\
& J_{2, n}^{\prime \prime}=\int_{\delta n^{1 / 2}<|u|<\boldsymbol{\mu} n^{1 / 2}}\left(\left|\psi_{n}(u)\right| /|u|\right) d u
\end{aligned}
$$

It is clear that $J_{2, n}^{\prime \prime}=o\left(n^{-1 / 2}\right)$. By a similar method to the one used in Callaert et al. [5], Section 4, we can evaluate $J_{2, n}^{\prime}$ as follows. Let

$$
\begin{gathered}
\widetilde{g}_{i n}=U_{i, n}^{*}+n^{-1 / 2} V_{i, n}^{*}+2^{-1} n^{-1} Q_{i i, n}^{*}, \\
A_{m, n}=\sum_{i=1}^{m} \widetilde{g}_{i n} \quad \text { and } \quad B_{r, s, n}=\sum_{k=1}^{r} \sum_{l=k+1}^{s} Q_{k, l, n}^{*} .
\end{gathered}
$$

We have by Taylor expansion

$$
\begin{align*}
\gamma_{n}(u): & =E_{F}\left(\exp \left(i u S_{n}^{*}\right)\right) \tag{4.5}\\
& =E_{F}\left[\alpha\left\{1+i(2 u) n^{-3 / 2} B_{m, n}+2^{-1}\left(2 i u n^{-3 / 2} B_{m, 2}\right)^{2} \exp \left(2 i \theta u n^{-3 / 2} B_{m, n}\right)\right\}\right]
\end{align*}
$$

where $\alpha=\exp \left(\right.$ iun $\left.^{-1 / 2} A_{n}\right) \exp \left(2 i u n^{-3 / 2}\left(B_{n-1, n}-B_{m, n}\right)\right)$ and $0<\theta<1$. We put

$$
\begin{aligned}
& I_{1}=E_{F}(\alpha) \\
& I_{2}=E_{F}\left(2 i \alpha u n^{-3 / 2} B_{m, n}\right), \\
& I_{3}=E_{F}\left[2^{-1}\left(2 i u n^{-3 / 2} B_{m, n}\right)^{2} \exp \left(2 i \theta u n^{-3 / 2} B_{m, n}\right)\right]
\end{aligned}
$$

From Lemma 4 in Feller [7], XV. 1, we have

$$
\left|I_{1}\right| \leqq\left|E_{F}\left(\exp \left(i u n^{-1 / 2} A_{m}\right)\right)\right| \leqq\left(1-\eta_{0}\right)^{m}
$$

$$
\begin{align*}
\left|I_{2}\right| & \leqq 2|u| n^{-3 / 2} \sum_{j=1}^{m} \sum_{k=j+1}^{n}\left\{\mid E_{F}\left(\left.\exp \left(i u n^{-1 / 2} \widetilde{g}_{1, n}\left(X_{1}\right)\right)\right|^{m-2} \cdot E_{F}\left(\left|Q_{j,, k, n}^{*}\right|\right)\right\}\right. \tag{4.6}\\
& \leqq K_{1}|u| n^{-1 / 2} m\left(1-\eta_{0}\right)^{m-2}
\end{align*}
$$

(K_{1} is a constant not depending on m, n and u).
From the martingale property of $\left\{B_{m, n}\right\}$ (cf. Lemma 1 in Callaert et al. [5]) we have

$$
\begin{equation*}
\left|I_{3}\right| \leqq u^{2} n^{-3} E_{F}\left(\left|B_{m, n}\right|^{2}\right) \leqq K_{2} n^{-2} m u^{2} \tag{4.7}
\end{equation*}
$$

(K_{2} is a constant independent of u, n, m).
Taking m to be $m=n^{1 / 4}$ it follows from (4.5), (4.6) and (4.7) that

$$
\begin{equation*}
\sup \left\{\left|\gamma_{n}(u)\right| ; n^{1 / 2} \delta<|u|<n^{1 / 2} M\right\}=o\left(n^{-1 / 2}\right) . \tag{4.8}
\end{equation*}
$$

Thus we have $J_{2, n}=o\left(n^{-1 / 2}\right)$. Hence it follows from (4.4) that

$$
\begin{equation*}
\sup _{x \in \mathbb{R}}\left|\widetilde{F}_{n}(x)-K_{n}(x)\right|=o\left(n^{-1 / 2}\right) \tag{4.9}
\end{equation*}
$$

We note that from (4.2) it follows

$$
\begin{equation*}
P_{F, n}\left\{S_{n} \leqq t\right\}=P_{F, n}\left\{S_{n}^{*} \leqq t\right\}+o\left(n^{-1 / 2}\right) . \tag{4.10}
\end{equation*}
$$

From (4.9) and (4.10) we have the desired expansion (4.1).
For $F \in \Theta^{*}$ let $\tau(F)=E_{F}\left(\left\langle u_{F}, y_{F, 1}\right\rangle^{2}\right)$, and define

$$
\begin{aligned}
& h(x, F)=w_{F}^{(2)}(x)\{-(\gamma(F) / 2)+\delta(F) /(2 \tau(F))\} \\
& \quad+\widetilde{w}_{F}^{(2)}(x)\{-(\tilde{\gamma}(F) / 2)+\tilde{\delta}(F) /(2 \tau(F))\}+w_{F}^{(1)}(x) \beta\left(F^{\prime}\right) /(6 \tau(F)) .
\end{aligned}
$$

We define $g_{n, B}^{*}(x)=\widehat{g}_{n, B}(x)+n^{-1} h\left(x, \hat{F}_{n}\right)$. From Theorems 1 and 2 we have the following result which asserts that the corrected bootstrap estimator $\left\{g_{n, B}^{*}\right\}$ is a second order asymptotic efficient estimator of $\left\{g_{n}\right\}$.

Theorem 3. Suppose that Assumption 2 is satisfied. We assume that $\beta, \gamma, \tilde{\gamma}, \delta, \tilde{\delta}$ and τ are continuous with respect to F on Θ^{*} and that $w_{F}^{(1)}(x), w_{F}^{(2)}(x), \widetilde{w}_{F}^{(2)}(x)$ are continuous with respect to F as functions from Θ^{*} to \mathscr{B}. Then we have
(a) $\left\{g_{n, B}^{*}\right\}$ is a second order AMU estimator of $\left\{g_{n}\right\}$.
(b) $\left\{g_{n, B}^{*}\right\}$ is a second order asymptotically efficient AMU estimator of $\left\{g_{n}\right\}$.

Proof. Take any $k \in K$, any $F \in \Theta$ and any sequence $\left\{G_{n}\right\}, G_{n} \in$ $B_{n}^{*}\left(F, c_{n}\right)$ and let $\widehat{S}_{n}=n^{1 / 2}\left\langle k, g_{n, B}^{*}-g_{n}\left(\cdot, G_{n}\right)\right\rangle$. By a similar argument to that developed for $\left\{S_{n}\right\}$ in the proof of Theorem 2 we have the following expansion for $\left\{\widehat{S}_{n}\right\}$:

$$
\begin{align*}
& P_{G_{n}, n}\left\{\widehat{S}_{n} \leqq t\right\} \tag{4.11}\\
& \quad=\Phi\left(t J^{-1 / 2}\left(G_{n}, k\right)\right)-n^{-1 / 2} \phi\left(t J^{-1 / 2}\left(G_{n}, k\right)\right) \Psi\left(t, G_{n}, k\right)+o\left(n^{-1 / 2}\right) .
\end{align*}
$$

From this we have $\left\{g_{n, B}^{*}\right\} \in \mathscr{E}$. In particular if we take G_{n} to be F in (4.11) then the R.H.S. of (4.11) equals the R.H.S. of (3.2) up to the order $o\left(n^{-1 / 2}\right)$. Therefore $\left\{g_{n, B}^{*}\right\}$ is a second order efficient AMU estimator of $\left\{g_{n}\right\}$.

§5. An example satisfying Assumption 2.

In this section we give a typical example satisfying Assumption 2. Following Beran [2], Section 3, let $\widehat{T}_{n}=2 n^{-1}(n-1)^{-1} \sum_{1 \leq i<j \leq n} t\left(X_{i}, X_{j}\right)$ be the second degree U-statistic where t is symmetric in its arguments. We assume that, as in Beran [2], t is absolutely continuous, vanishes outside a square $[-B, B]$ and has essentially bounded derivative. Let μ be the Lebesgue measure on $[-B, B]$. Let $m(G)=E_{G}\left(t\left(X_{1}, X_{2}\right)\right), g_{G}\left(X_{i}\right)=$ $E_{G}\left(h_{G}\left(X_{i}, X_{j}\right) \mid X_{i}\right), \quad h_{G}\left(X_{i}, X_{j}\right)=t\left(X_{i}, X_{j}\right)-m(G), \quad d_{G}\left(X_{i}, X_{j}\right)=h_{G}\left(X_{i}, X_{j}\right)-$
$g_{G}\left(X_{i}\right)-g_{G}\left(X_{j}\right), s_{G}^{2}=E_{G}\left(g_{G}^{2}\left(X_{1}\right)\right), s_{n}^{2}(G)=V_{G}\left(n^{1 / 2} \hat{T}_{n}\right)$ and $s_{0}(G)=2 s_{G}$. Let \mathscr{V}_{0} be the class of functions v on \boldsymbol{R} such that $v(t)=a^{-1}\left(1-a^{-1}|t|\right)^{+}$for some $a>0$. Define

$$
\begin{gathered}
k_{3}(G)=s_{G}^{-3}\left[E_{G} g_{G}^{3}\left(X_{1}\right)+3 E_{G}\left\{g_{G}\left(X_{1}\right) g_{G}\left(X_{2}\right) d_{G}\left(X_{1}, X_{2}\right)\right\}\right], \\
k_{4}(G)=s_{G}^{-4}\left[E_{G} g_{G}^{4}\left(X_{1}\right)-3 s_{G}^{4}+12 E_{G}\left\{g_{G}^{2}\left(X_{1}\right) g_{G}\left(X_{2}\right) d_{G}\left(X_{1}, X_{2}\right)\right\}\right. \\
\left.+12 E_{G}\left\{g_{G}\left(X_{2}\right) g_{G}\left(X_{3}\right) d_{G}\left(X_{1}, X_{2}\right) d_{G}\left(X_{1}, X_{3}\right)\right\}\right], \\
t_{1}(x)=\phi(x)\left(x^{2}-1\right) / 6, \\
t_{2}(x)=\phi(x)\left(x^{3}-3 x\right) / 24
\end{gathered}
$$

and

$$
t_{3}(x)=\phi(x)\left(x^{5}-10 x^{3}+15 x\right) / 72
$$

Let Θ^{*} be the set of d.f. F on \boldsymbol{R} such that $s_{0}(F) \neq 0$. Let $J_{n}(x, G)=$ $P_{G, n}\left\{n^{1 / 2}\left(\hat{T}_{n}-m(G)\right) / s_{n}(G) \leqq x\right\}$ and define for $v \in \mathscr{V}_{0} \quad J_{n, v}(\cdot, G)=J_{n}(\cdot, G) * v$, which means the convolution of J_{n} and v. Let $\left\{c_{n}\right\}$ be any sequence of positive numbers satisfying $n^{-1 / 2} c_{n}^{3}$ tending to 0 as $n \rightarrow \infty$. Using essentially the same argument as in Beran [2], Section 3, we have

$$
\begin{equation*}
\sup _{G \in B_{n}\left(F, c_{n}\right)}\left|s_{n}(G)-s_{n}(F)-\left\langle h_{F}^{*}, G-F\right\rangle-2^{-1}\left\langle q_{F}(G-F), G-F\right\rangle\right|=o\left(n^{-1}\right) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{G \in B_{n}\left(F, o_{n}\right)}\left|k_{3}(G)-k_{3}(F)-\left\langle v_{F}^{*}, G-F\right\rangle\right|=o\left(n^{-1 / 2}\right) \tag{5.2}
\end{equation*}
$$

where $h_{F}^{*}(x)=4\left(g_{F}(x)+2 m(F)\right) e_{F}(x) / s_{0}(F), e_{F}(x)=\int_{R} F(y) t_{11}(x, y) d y \quad\left(t_{11}(x, y)\right.$ denotes the derivative of $t(x, y)$), and q_{F}^{*}, v_{F}^{*} are some functions contained in $L^{1}(\mu) \times L^{1}(\mu)$ and $L^{1}(\mu)$ respectively. We can also verify

$$
\begin{align*}
\sup _{G \in B_{n}\left(F, c_{n}\right)} & \| J_{n, v}(\cdot, G)-\Phi_{v}(\cdot)+n^{-1 / 2} k_{3}(G) t_{1, v}(\cdot) \tag{5.3}\\
& +n^{-1}\left(k_{4}(G) t_{2, v}(\cdot)+k_{3}^{2}(G) t_{3, v}(\cdot)\right) \|=o\left(n^{-1}\right)
\end{align*}
$$

Here $\Phi_{v}, t_{i, v}(i=1,2,3)$ mean the convolutions of $\Phi, t_{i}(i=1,2,3)$ and v respectively.

Define $g_{n}(x, G)=J_{n, v}\left(x / s_{n}(G), G\right)$ for some $v \in \mathscr{V}_{0}$ and let Θ be the set of all $F \in \Theta^{*}$ such that the d.f. of $\left\langle h_{F}^{*}, y_{F, 1}\right\rangle$ is non-lattice. From (5.1), (5.2) and (5.3) we can verify that $\left\{g_{n}\right\}$ satisfies Assumption 2 with

$$
\begin{gathered}
g_{n, 0}(x, G)=\Phi_{v}\left(x / s_{n}(G)\right), \quad g_{n, 1}(x, G)=-k_{3}(G) t_{1, v}\left(x / s_{n}(G)\right), \\
g_{n, 2}(x, G)=-k_{4}(G) t_{2, v}\left(x / s_{n}(G)\right)-k_{3}^{2}(G) t_{3, v}\left(x / s_{n}(G)\right), \quad u_{F}(x)=h_{F}^{*}(x),
\end{gathered}
$$

$$
\begin{gathered}
w_{F}^{(1)}(x)=w_{F}^{(2)}(x)=-x \phi_{v}\left(x / s_{0}(F)\right) / s_{0}^{2}(F), \quad \widetilde{w}_{F}^{(2)}(x)=-x \cdot \frac{\partial}{\partial s}\left[\phi_{v}(x / s) / s^{2}\right]_{0_{0}(F)}, \\
w_{F}^{(3)}(x)=k_{3}(F) x t_{1, v}^{\prime}\left(x / s_{0}(F)\right) / s_{0}^{2}(F), \quad \widetilde{w}_{F}^{(3)}(x)=-t_{1, v}\left(x / s_{0}(F)\right), \\
v_{F}(x)=h_{F}^{*}(x), \quad \widetilde{v}_{F}(x)=v_{F}^{*}(x), \\
q_{F}(x, y)=q^{*}(x, y) \quad \text { and } \quad \widetilde{q}_{F}(x, y)=h_{F}^{*}(x) h_{F}^{*}(y) .
\end{gathered}
$$

Acknowledgements. Most part of this work has been done during my stay as a visiting scholar in the Department of Statistics, University of California, Berkeley. I would like to express my thanks to all people of the department, especially the late Professor E. Barankin and Professor L. LeCam for their kind hospitality and encouragements. Also I wish to thank Professor P. Bickel for his kindness to give me the literature [3] and Mr. R. Liu for helpful discussions.

References

[1] M. Akahira and K. Takeuchi, Asymptotic Efficiency of Statistical Estimators: Concepts and Higher Order Asymptotic Efficiency, Lecture Notes in Statistics, SpringerVerlag, 1981.
[2] R. Beran, Estimated sampling distributions: the bootstrap and competitors, Ann. Statist., 10 (1982), 212-225.
[3] P.J. Bickel and D. A. Freedman, On Edgeworth expansions for the bootstrap, unpublished report, 1980.
[4] P.J. Bickel and D. A. Freedman, Some asymptotic theory for the bootstrap, Ann. Statist., 9 (1981), 1196-1217.
[5] H. Callaert, P. Janssen and N. Veraverbeke, An Edgeworth expansion for U-statistics, Ann. Statist., 8 (1980), 299-312.
[6] B. Efron, Bootstrap methods: another look at the jackknife, Ann. Statist., 7 (1979), 1-26.
[7] W. Feller, An Introduction to Probability Theory and Its Applications 2, Wiley, New York, 1966.
[8] K. Singr, On asymptotic accuracy of Efron's bootstrap, Ann. Statist., 9 (1981), 11871195.

Present Address:

Department of Mathematics
School of Science and Engineering, Waseda University
Okubo, Shinjuku-ku, Tokyo 160, Japan

