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Abgtract. A weighted endomorphism of an algebra is an endomorphism followed by a
multiplier. In [6] and [4], H. Kamowitz characterized compact weighted endomorphisms of
$C(X)$ and the disc algebra. In this note we define a weighted composition operator on a
function algebra as a generalization of a weighted endomorphism, and characterize compact
weighted composition operators on a function algebra satisfying a certain condition [Theorem

2]. This theorem not only includes Kamowitz’s results as corollaries, but also has an appli-
cation to compact weighted composition operators on the Hardy class $H^{\infty}(D)$ .

Introduction.

Let $A$ be a function algebra on a compact Hausdorff space $X$, that
is, a uniformly closed subalgebra of $C(X)$ which contains the constants and
separates the points of $X$. By $M_{A}$ we denote the maximal ideal space
of $A$ and by $M_{A}^{\infty}$ the union of $M_{A}$ and the zero functional $\theta$ on $A$ . Then
$M_{A}^{\infty}$ is considered as a subset of the dual space of $A$ , so $M_{A}^{\infty}$ is equipped
with the relative topologies induced by the weak* topology and norm
topology respectively. We shall understand $M_{A}^{\infty}$ is given the weak*
topology unless otherwise qualified. For each $f\in A$ , we put $\hat{f}(m)=m(f)$

for any $m\in M_{A}^{\infty}$ , and supp $f=\{x\in X:f(x)\neq 0\}$ . Note that supp $f$ is open.
A weighted endomorphism of an algebra is defined to be a linear oper-

ator which is an endomorphism followed by a multiplier. Thus, if $B$ is
an algebra, then $T$ is a weighted endomorphism of $B$ if there are an ele-
ment $u$ in $B$ and an endomorphism $S$ of $B$ such that

$Tf=u\cdot Sf$ $f\in B$ .
Recently, weighted endomorphisms for various algebras were studied by
Kamowitz ([4] and [6]) and Kitover ([7]).
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If $S$ is an endomorphism of a function algebra $A$ , then $S$ has the
representation;

$Sf(x)=\hat{f}(\Phi(x))$ $x\in X$ , $f\in A$ ,

for some continuous map $\Phi$ from $X$ into $M_{\Delta}^{\infty}$ . In fact, $\Phi$ is given by

$\Phi(x)=S^{*}(\hat{x})$ $x\in X$ ,

where $S^{*}$ is the adjoint of $S$ and $\hat{x}$ is the evaluation functional at $x$ , i.e.,
$\hat{x}(f)=f(x)$ for each $f\in A.$ (We note that when $S1=1,$ $\Phi$ maps $X$ into
$M_{A}.)$ Consequently, a weighted endomorphism $T$ of $A$ has the form;

$Tf(x)=u(x)\hat{f}(\Phi(x))$ $x\in X$ , $f\in A$ ,

for some $u\in A$ and some continuous map $\Phi$ from $X$ into $M_{A}^{\infty}$ . The map
$T$ will be denoted by $uC_{\Phi}$ .

Now we define weighted composition operators, which involve weighted
endomorphisms.

DEFINITION. Let $T$ be a bounded linear operator from $A$ to $A$ . We
call $T$ a weighted composition operator on $A$ if there are an element $u$

in $A$ and a continuous map $\varphi$ from supp $u$ into $M_{A}^{\infty}$ such that

$Tf(x)=\left\{\begin{array}{ll}u(x)\hat{f}(\varphi(x)) & x\in supp u\\0 & x\in X\backslash suppu\end{array}\right.$

for each $f\in A$ . We write $uC_{\varphi}$ for $T$.
In this paper we discuss compact weighted composition operators on

a function algebra. A linear operator $T$ on a Banach space $B$ is called
compact if, for the unit ball $B_{0}$ of $B,$ $TB_{0}$ is relatively compact in $B$ .

We begin with the following lemma.

LEMMA 1. Let $uC_{\varphi}$ be a weighted composition operator on A. $uC_{\varphi}$

is compact if and only if $\varphi$ is a continuous map from supp $u$ into $M_{A}^{\infty}$

with respect to the norm topology.

PROOF. Put $A_{0}=\{f\in A:\Vert f\Vert\leqq 1\}$ . The compactness of $uC_{\varphi}$ implies that
$uC_{\varphi}A_{0}$ is relatively compact in $A$ , and so is in $C(X)$ . By the Ascoli-Arzel\‘a
theorem, it is equivalent to the fact that $uC_{\varphi}A_{0}$ is equicontinuous, that is,

(1)
$\sup_{feA_{0}}|uC_{\varphi}f(x_{a})-uC_{\varphi}f(x)|\rightarrow 0$

as $x_{a}\rightarrow x$ in $X$.
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Let $uC_{\varphi}$ be a compact operator. For any $x,$ $ x_{\alpha}\in$ supp $u$ , we have

$\Vert\varphi(x_{\alpha})-\varphi(x)\Vert=\frac{1}{|u(x)|}\Vert u(x)\varphi(x_{\alpha})-u(x)\varphi(x)||$

$\leqq\frac{1}{|u(x)|}(|u(x)-u(x_{\alpha})|\Vert\varphi(x_{\alpha})\Vert+\Vert u(x_{\alpha})\varphi(x_{\alpha})-u(x)\varphi(x)\Vert)$

$\leqq\frac{1}{|u(x)|}(|u(x)-u(x_{\alpha})|+\sup_{fA_{0}}|uC_{\varphi}f(x_{\alpha})-uC_{\varphi}f(x)|)$ .

By the continuity of $u$ and (1), $\Vert\varphi(x_{\alpha})-\varphi(x)\Vert\rightarrow 0$ as $x_{\alpha}\rightarrow x$ . This proves
the “only if“ part of the lemma.

Conversely, assume that $\varphi$ is a continuous map from supp $u$ into $M_{A}^{\infty}$

with the norm topology. We shall show (1). Suppose $x\in X$ and $\{x_{\alpha}\}$ is
a net with $x_{\alpha}\rightarrow x$ . If $ x\in$ supp $u$ , we can assume that $\{x_{\alpha}\}\subset suppu$ , be-
cause supp $u$ is open. Then we have

$\sup_{feA_{0}}|uC_{\varphi}f(x_{\alpha})-uC_{\varphi}f(x)|=\Vert u(x_{\alpha})\varphi(x_{\alpha})-u(x)\varphi(x)\Vert$

$\leqq|u(x_{\alpha})|\Vert\varphi(x_{\alpha})-\varphi(x)\Vert+|u(x_{\alpha})-u(x)|\Vert\varphi(x)\Vert$

$\leqq\Vert u\Vert\Vert\varphi(x_{\alpha})-\varphi(x)\Vert+|u(x_{\alpha})-u(x)|\rightarrow 0$

as $x_{\alpha}\rightarrow x$ . On the other hand, if $x\not\in suppu$ ,

$\sup_{feA_{0}}|uC_{\varphi}f(x_{\alpha})-uC_{\varphi}f(x)|=\sup_{feA_{0}}|uC_{\varphi}f(x_{a})|$

$=\left\{\begin{array}{ll}|u(x_{\alpha})|\Vert\varphi(x_{\alpha})\Vert\leqq|u(x_{\alpha})| & when x_{a}\in supp u\\0 & when x_{\alpha}\not\in suppu.\end{array}\right.$

Hence $supfeA_{0}|uC_{\varphi}f(x_{\alpha})-uC_{\varphi}f(x)|\rightarrow 0$ as $x_{\alpha}\rightarrow x$ . Thus the lemma is proved.

\S 1. Relations to Gleason parts.

In this section we investigate relations between compact weighted
composition operators and Gleason parts.

It is known that $M_{A}$ is divided into (Gleason) parts $\{P_{\alpha}\}$ for $A$ , as
follows;

$M_{A}=\bigcup_{\alpha}P_{\alpha}$ , $ P_{\alpha}\cap P_{\beta}=\emptyset$ $(\alpha\neq\beta)$ .
The part $P$ containing $m_{0}\in M_{A}$ is defined by

$P=\{m\in M_{A}:\Vert m-m_{0}\Vert<2\}$ .
Clearly, each part is open in $M_{A}$ with the norm topology, and is therefore
open in $M_{A}^{\infty}$ with the norm topology. Since $\{\theta\}$ is so, we consider $\{\theta\}$ as
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a part for $A$ . Thus we divide $M_{A}^{\infty}$ into parts, and each part is open
and closed in $M_{A}^{\infty}$ with the norm topology.

THEOREM 1. Let $uC_{\varphi}$ be a weighted composition operator on A. If
$uC_{\varphi}$ is compact, then for each connected component $C$ of supp $u$ , there
exist an open set $V\subset suppu$ and a part $P$ for $A$ such that

$C\subset V$ , $\varphi(V)\subset P$ .
PPOOF. Let $C$ be a connected component of supp $u$ , and fix $x_{0}\in C$.

Then $\varphi(x_{0})$ belongs to some part $P$ for $A$ . Put $V=$ {$ x\in$ supp $u:\varphi(x)eP$}.
By Lemma 1, $\varphi$ is a continuous map from supp $u$ into $M_{4}^{\infty}$ with the norm
topology, and $P$ is open and closed in $M_{A}^{\infty}$ with the norm topology. It
follows that $V$ is open and closed in supp $u$ . Now suppose $C\not\subset V$. Then
the disconnection $C=(C\cap V)\cup(C\cap(suppu\backslash V))$ induces a contradiction.
Hence $C\subset V$, concluding the proof.

Next we consider the converse to Theorem 1. The following lemma
is easy.

LEMMA 2. Let $uC_{\varphi}$ be a weighted composition operator on A. Sup-
pose that for each connected component $C$ of supp $u$ , there exist an open
set $V\subset suppu$ and an element $m\in M_{A}^{\infty}$ such that

(2) $C\subset V$ , $\varphi|_{V}=m$ .
Then $uC_{\varphi}$ is compact.

PROOF. Let $ x_{0}\in$ supp $u$ . For the connected component $C$ containing
$x_{0}$ , choose an open set $V$ satisfying (2). Then $x_{0}\in V$ and $\Vert\varphi(x)-\varphi(x_{0})\Vert=$

$\Vert m-m\Vert=0$ for every $x\in V$. Hence $\varphi$ is a continuous map from supp $u$

into $M_{A}^{\infty}$ with the norm topology. The lemma follows from Lemma 1.

According to this lemma, when each part for $A$ is a one-point part –
for example, when $A=C(X)-$ , the converse to Theorem 1 is true. If
there exists a non-trivial part, does the converse to Theorem 1 hold?

Let $P$ be a non-trivial part. We say that $P$ satisfies the condition
$(\alpha)$ if $P$ has the following property;

$(\alpha)$ for any $m\in P$, there are some open neighborhood $U(m)$ of
$m$ in $P$ and a homeomorphism $\rho$ from a polydisc $D^{n}$ (a disc if
$n=1,$ $n$ depends on $U(m))$ onto $U(m)$ such that $\hat{f}\circ\rho$ is an analytic
function on $D$“ for all $feA$ .

This condition was introduced in Ohno and Wada [8]. See $\lceil 8$ ] for simple
examnles.
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THEOREM 2. Suppose that every non-trivial part for $A$ satisfies $(\alpha)$ .
Let $uC_{\varphi}$ be a weighted composition operator on A. Then $uC_{\varphi}$ is compact
if and only if for each connected component $C$ of supp $u$ , there exist an
open set $V\subset suppu$ and a part $P$ for $A$ such that

$C\subset V$ , $\varphi(V)\subset P$ .
PROOF. Since the “only if” part is obvious (Theorem 1), we prove

the “if” part. To prove that $uC_{\varphi}$ is compact, it suffices to show that $\varphi$

is a continuous map from supp $u$ into $M_{A}^{\infty}$ with the norm topology.
Let $x_{0}e$ supp $u$ . By hypothesis, we can find an open set $V\subset suppu$

such that

$x_{0}\in V$ , $\varphi(V)\subset P$ ,

where $P$ is a part for $A$ . If $P$ is a one-point part, we have already proved
in Lemma 2 that $\varphi$ is continuous at $x_{0}$ with respect to the norm topology.
So, let us suppose $P$ is non-trivial. By the definition of weighted compo-
sition operators, $\varphi$ is a continuous map from supp $u$ into $M_{A}^{\infty}$ with the
weak* topology. Hence we only show that the identity map $\psi$ from $P$

with the weak* topology onto $P$ with the norm topology is continuous
at $\varphi(x_{0})$ .

Put $m_{0}=\varphi(x_{0})$ . By $(\alpha)$ , there are a neighborhood $U(m_{0})$ and a homeo-
morphism $\rho$ from $D^{n}$ onto $U(m_{0})$ such that $\hat{f}\circ\rho$ is analytic in $D^{n}$ for all
$f\in A$ . The Montel theorem says that $\mathcal{G}=\{g:g$ is analytic in $D^{n}$ and
$||g\Vert_{\infty}\leqq 1\}$ is equicontinuous, that is, for any $\epsilon>0$ , there exists a neighbor-
hood $W(\subset D^{n})$ of $\zeta_{0}=\rho^{-1}(m_{0})$ such that $|g(\zeta)-g(\zeta_{0})|<\epsilon$ for all $\zeta\in W$ and
all $ge\mathcal{G}$. Hence, for each $m=\rho(\zeta)\in\rho(W)$ ,

$\Vert\psi(m)-\psi(m_{0})\Vert=\Vert m-m_{0}\Vert$

$=\sup\{|m(f)-m_{0}(f)| : f\in A, \Vert f\Vert\leqq 1\}$

$=\sup\{|\hat{f}(\rho(\zeta))-\hat{f}(\rho(\zeta_{0}))| : feA, \Vert f\Vert\leqq 1\}$

$\leqq\sup\{|g(\zeta)-g(\zeta_{0})| : g\in \mathcal{G}\}\leqq\epsilon$ .
Since $\rho(W)$ is a weak*-neighborhood of $m_{0},$ $\psi$ is continuous.

\S 2. Theorems of Kamowitz.

Kamowitz ([6] and [4]) characterized compact weighted endomorphisms
of $C(X)$ and the disc algebra. We shall prove two theorems due to
Kamowitz as corollaries of Theorem 2. One of them is:

COROLLARY 1 (Kamowitz $\lceil 6\rceil$ ). Let $uC_{\alpha}$ be a weighted endomorphism
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of $C(X)$ . Then $uC_{\Phi}$ is compact if and only if for each connected com-
ponent $C$ of supp $u$ , there exists an open set $V\supset C$ such that $\Phi$ is constant
on $V$.

PROOF. The statement follows immediately from Theorem 2, since
each point of $M_{C(X)}=X$ is a one-point part.

The other theorem deals with compact weighted endomorphisms of
the disc algebra. Recall that the disc algebra $A(\overline{D})$ is the algebra of
functions analytic in the open unit disc $D$ and continuous on $\overline{D}$ . We
know that $M_{A(\overline{D})}=\overline{D}$ , and that $D$ and each boundary point of $D$ are parts
for $A(\overline{D})$ . Note that $D$ satisfies $(\alpha)$ .

Let $uC_{\Phi}$ be a non-zero weighted endomorphism of $A(\overline{D})$ . As we saw
in the introduction, $\Phi$ is determined by a certain endomorphism $S$ of $A(\overline{D})$ .
Since $S$ cannot be a zero operator, $S1=1$ holds. Therefore $\Phi$ is a map
from $\overline{D}$ into $M_{A(\overline{D})}$ . Thus $\Phi$ is considered as a continuous function from
$\overline{D}$ into $\overline{D}$ such that

$Sf(\zeta)=f(\Phi(\zeta))$ $\zeta\in\overline{D}$ , $f\in A(\overline{D})$ .
By taking $f$ to be the coordinate function, we have $\Phi\in A(\overline{D})$ .

COROLLARY 2 (Kamowitz [4]). Let $uC_{\Phi}$ be a non-zero weighted endomor-
phism of $A(\overline{D})$ . Then $uC_{\Phi}$ is compact if and only if one of the following
holds:

(i) $\Phi$ is constant.
(ii) $|\Phi(\zeta)|<1$ , whenever $u(\zeta)\neq 0$ .
PBOOF. Since $u\in A(\overline{D})$ and $u\not\equiv O$ , the set $\{\zeta\in\overline{D}:u(\zeta)=0\}$ has no ac-

cumulation points in $D$ . It follows that supp $u=\overline{D}\backslash \{\zeta\in\overline{D}:u(\zeta)=0\}$ is
(arcwise) connected. Thus Theorem 2 implies that $uC_{\Phi}$ is compact if and
only if there exists a part $P$ for $A(\overline{D})$ such that

(3) $\Phi(suppu)\subset P$ .
If $P$ in (3) is trivial, that is, a boundary point of $D$ , the fact that $\overline{\sup pu}=\overline{D}$

and the continuity of $\Phi$ show (i). On the other hand, in the case of $P=D$,
(3) is equivalent to (ii).

\S 3. Weighted composition operators on $H^{\infty}(D)$ .
Compact composition operators on Hardy class $H^{\infty}(D)$ were discussed

in Swanton [9]. We here consider compact weighted composition operators
on $H^{\infty}(D)$ as an annlicati ) $\mathfrak{n}$ of 81-
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Let $D$ be the open unit disc in the complex plane $C$ and $H^{\infty}(D)$ be
the algebra of bounded analytic functions on $D$ with the supremum norm.
For any $u\in H^{\infty}(D)$ and any analytic function $\varphi$ from $D$ into $D$ , the weighted
composition operator $uC_{\varphi}$ on $H^{\infty}(D)$ is defined by

$uC_{\varphi}f(\zeta)=u(\zeta)f(\varphi(\zeta))$ $\zeta\in D$ , $f\in H^{\infty}(D)$ .
A weighted composition operator on $H^{\infty}(D)$ is a bounded linear operator
on $H^{\infty}(D)$ .

THEOREM 3. Let $uC_{\varphi}$ be a weighted composition operator on $H^{\infty}(D)$ .
Then $uC_{\varphi}$ is compact,if and only if $\overline{\varphi(E)}\subset D$ whenever $E\subset D$ satisfies
(4) $\inf\{|u(\zeta)|:\zeta\in E\}>0$ .

Before proving the theorem, we make a few remarks on $H^{\infty}(D)$ . Let
$M$ be the maximal ideal space of $H^{\infty}(D)$ , and set $\hat{H}^{\infty}=\{\hat{f}:f\in H^{\infty}(D)\}$ , where
$\hat{f}$ is the Gel’fand transform of $f$. Then $\hat{H}^{\infty}$ is a function algebra on the
maximal ideal space $M$ of $\hat{H}^{\infty}$ .

For each $\zeta\in D$ , denote by $\hat{\zeta}$ the evaluation functional at $\zeta$ defined by
$\hat{\zeta}(f)=f(\zeta)$ for all $f\in H^{\infty}(D)$ . Put $\mathcal{D}=\{\hat{\zeta}:\zeta\in D\}$ . For each $\zeta\in\partial D$ , the
boundary of $D$ , let $M_{C}=\{meM:m(z)=\zeta\}$ be the fiber over $\zeta$ . Here $z$ is
the coordinate function. Then we have that

$M=\mathcal{D}\cup\bigcup_{\zeta e\partial D}M_{\zeta}$ .
Each fiber $M_{\zeta}(\zeta\in\partial D)$ is a peak set for $\hat{H}^{\infty}$ . In other words, there exists
some $f\in H^{\infty}(D)$ such that $\hat{f}$ is equal to 1 on $M_{\zeta}$ while $|\hat{f}(m)|<1$ for all
me $M\backslash M_{C}$ . This shows that $\mathcal{D}$ is a part for $\hat{H}^{\infty}$ . On the other hand,
the corona theorem [1, p. 34] tells us that $\overline{\mathcal{D}}^{w}‘‘=M$, where $-w$“ denotes
the weak*-closure in $M$.

Now we determine a weighted endomorphism of $\hat{H}^{\infty}$ corresponding to
a weighted composition operator $uC_{\varphi}$ on $H^{\infty}(D)$ . Define a continuous map
$\Phi$ from $M$ into $M$ by

$\Phi(m)(f)=m(f\circ\varphi)$ $f\in H^{\infty}(D)$ , $m\in M$

(note that $f\circ\varphi\in H^{\infty}(D)$ ). Then we have

$\Phi(\hat{\zeta})=\varphi(\zeta)\wedge$
$\zeta\in D$ ,

$\hat{f}\circ\Phi=f^{\bigwedge_{\circ\varphi}}$

$f\in H^{\infty}(D)$ .
Hence we want to determine a weighted endomorphism $\hat{u}C_{\Phi}$ of $\hat{H}^{\infty}$ as
follows;
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$\hat{u}C_{l}\hat{f}(m)=\hat{u}(m)\hat{f}(\Phi(m))$ $m\in M$ , $\hat{f}\in\hat{H}^{\infty}$ .
Of course, $\hat{u}C_{l}$ is compact if and only if $uC_{\varphi}$ is compact.

We return to the proof of Theorem 3.

PROOF. We may assume that $u\not\equiv O$ , otherwise there is nothing to
prove. We first observe that supp $\hat{u}=\{m\in M:\hat{u}(m)\neq 0\}$ is connected. If
not, supp $\hat{u}$ has a disconnection supp $\hat{u}=W_{1}\cup W_{2}$ . Since $\overline{\mathcal{D}}^{w}‘=M$, this
yields another disconnection;

$\{\hat{\zeta}e\mathcal{D}:\hat{u}(\hat{C})\neq 0\}=(\mathcal{D}\cap W_{1})\cup(\mathcal{D}\cap W_{2})$ ,

which implies that $\{\zeta\in D:u(\zeta)\neq 0\}$ is not connected. But $\{\zeta\in D:u(\zeta)\neq 0\}$

is connected because $\{\zeta\in D:u(\zeta)=0\}$ is discrete in $D$ . This contradiction
shows that supp $\hat{\text{{\it \^{u}}}}$ is connected.

Suppose that $uC_{\varphi}$ is compact. Since $\hat{u}C_{\Phi}$ is also compact, we can apply
Theorem 1 to $\hat{u}C_{l}$ . Thus we find a part $P$ for $\hat{H}^{\infty}$ such that $\Phi(supp\hat{u})\subset F$

(note that supp $\hat{u}$ is connected). For any $\zeta\in \mathcal{D}\cap$ supp \^u, we have $\Phi(\hat{\zeta})=$

$\varphi(\zeta)\wedge\in \mathcal{D}$ . So $P$ must be $\mathcal{D}$ . Hence $\Phi(supp\hat{u})\subset \mathcal{D}$ .
Next assume that $E\subset D$ satisfies (4). Since $g=\{\hat{\zeta}:\zeta\in E\}$ satisfies

$\delta=\inf\{|\hat{\text{{\it \^{u}}}}(m)|:m\in g\}>0,$ min{l\^u(m)l: $me\overline{g}^{w}$ } $=\delta>0$ holds. It implies that
$\overline{\mathscr{G}}^{w}\subset supp\hat{u}$ . Thus we obtain that

$\Phi(g)\subset\Phi(\overline{g}1\phi\cdot)\subset\Phi(supp \text{{\it \^{u}}})$ \subset D.

Since $\Phi(\overline{\mathscr{G}}^{w})$ is compact, $\overline{\Phi(g})^{\prime v}\subset \mathcal{D}$ , that is, $\overline{\varphi(E}$) $\subset D$.
Conversely assume that $\overline{\varphi(E)}\subset D$ for any $E\subset D$ satisfying (4). We

must show that $uC_{\varphi}$ , and therefore $\text{{\it \^{u}}} C_{\theta}$ is compact. By Lemma 1, it
suffices to show that $\Phi$ is a continuous map from supp $\hat{u}$ into $M$ with
the norm topology.

Suppose $m_{0}$ \in supp \^u. Since $\overline{\mathcal{D}}^{w}‘‘=M$, there is a net $\{\zeta_{\alpha}\}$ in $D$ such
that $\hat{\zeta}_{\alpha}$ converges to $m_{0}$ with respect to the weak* topology. Further.
more we can assume that $\inf_{\alpha}|u(\zeta_{\alpha})|>0$ , because $\hat{u}(m_{0})\neq 0$ . Then by the
assumption on $\varphi$ , we have $\overline{\{\varphi(\zeta_{\alpha})\}}\subset D$ . Hence

$\Phi(m_{0})(z)=m_{0}(z\circ\varphi)=m_{0}(\varphi)=\lim_{\alpha}\hat{\zeta}_{\alpha}(\varphi)=\lim_{a}\varphi(\zeta_{\alpha})eD$ .
Put $\zeta_{0}=\Phi(m_{0})(z)$ , that is, $\hat{\zeta}_{0}=\Phi(m_{0})$ . By Montel’s theorem, we find a
neighborhood $W$ of $\zeta_{0}$ in $D$ such that $|f(\zeta)-f(\zeta_{0})|<\epsilon$ for all $\zeta\in W$ anc
$f\in H^{\infty}(D)$ satisfying $\Vert f\Vert\leqq 1$ . Set $U=$ {$me$ supp $\hat{u}:\Phi(m)(z)eW$}. $U$ is a
weak*-neighborhood of $m_{0}$ in supp $\hat{u}$ , and for each $meU$, we have
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$\Vert\Phi(m)-\Phi(m_{0})\Vert$

$=\sup\{|\Phi(m)(f)-\Phi(m_{0})(f)|:f\in H^{\infty}(D), ||f||\leqq 1\}$

$=\sup\{|\hat{\zeta}(f)-\hat{\zeta}_{0}(f)|:f\in H^{\infty}(D), \Vert f\Vert\leqq 1\}$

$=\sup\{|f(\zeta)-f(\zeta_{0})|:f\in H^{\infty}(D), \Vert f\Vert\leqq 1\}\leqq\epsilon$ ,

where $\zeta=\Phi(m)(z)\in W$, i.e., $\hat{\zeta}=\Phi(m)$ . Hence $\Phi$ is continuous at $m_{0}$ as a
map from supp $\hat{u}$ into $M$ with the norm topology. The theorem is proved.

Theorem 3 remains, with the same proof, true for $H^{\infty}(D)$ on a domain
$D$ such that

(i) for each boundary point $\zeta$ of $D$, the fiber over $\zeta$ is a peak set
for $\hat{H}^{\infty}$ ;

(ii) $\mathcal{D}$ is dense in the maximal ideal space of $H^{\infty}(D)$ .
\S 4. A counter-example.

In this section we give a counter-example to the question: does the
converse to Theorem 1 hold?

If every part for $A$ satisfies $(\alpha)$ , Theorem 2 answered “yes”. But,
for the general case, the answer is “no“. Indeed, there exist a function
algebra $A$ and a weighted composition operator $uC_{\varphi}$ on $A$ such that

(i) for each connected component $C$ of supp $u$ , there are an open
set $V\subset suppu$ and a part $P$ for $A$ such that

$C\subset V$ , $\varphi(V)\subset P$ ;

(ii) $uC_{\varphi}$ is not compact.
First we construct a function algebra $A$ , according to Garnett [2].
Fix a positive irrational number $\alpha$ , and let $A_{1}$ be the function algebra

on the torus $T^{2}$ generated by the functions { $z_{1}^{n}z_{2}^{n*}:n,$ $m$ integers, $n+m\alpha\geqq 0$}.
Here $z_{1}^{n}z_{2}^{m}$ is defined by $z_{1}^{n}z_{2}^{m}(\zeta_{1}, \zeta_{2})=\zeta_{1}^{n}\zeta_{2}^{n}$ for all $(\zeta_{1}, \zeta_{2})\in T^{2}$ . It is known
that $M_{A_{1}}=\{(\zeta_{1}, \zeta_{2})\in C^{2}:|\zeta_{1}|\leqq 1, |\zeta_{2}|=|\zeta_{1}|^{\alpha}\}$ .

Next recall that $A(\overline{D})$ denotes the disc algebra on the closed unit disc
$\overline{D}$ . In addition, let $I=[1/2,1]$ (closed interval), and set

$A_{2}=\{h\in C(I\times\overline{D})$ : $h(t, )\in A(\overline{D})$ for each $t\in I$ ,
$h|_{I\times\{0\}}$ is constant}.

If we denote by $ I\times\overline{D}/\sim$ the quotient space of $I\times\overline{D}$ identifying the points
in $I\times\{0\},$ $A_{2}$ is a function algebra on $ I\times\overline{D}/\sim$ , and $ M_{A_{2}}=I\times\overline{D}/\sim$ .

Let $A_{1}\otimes A_{2}$ be the function algebra on $M_{A_{1}}\times M_{A_{2}}$ generated by the
functions of the form;
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$g\otimes h(\zeta_{1}, \zeta_{2}, t, \zeta)=g(\zeta_{1}, \zeta_{2})h(t, \zeta)$ $(\zeta_{1}, \zeta_{2}, t, \zeta)\in M_{A_{1}}\times M_{A_{2}}$ ,

where $g\in A_{1}$ and $h\in A_{2}$ . It is easily seen that $M_{A_{1}\otimes A_{2}}=M_{A_{1}}\times M_{A_{2}}$ .
Set $J=\{(\zeta_{1}, \zeta_{2})\in T^{2}:{\rm Re}\zeta_{1}\leqq 0\}$ and

$X=$ { $(\zeta_{1},$ $\zeta_{2},$ $t,$ $\zeta)\in M_{A_{1}\otimes A_{2}}$ : $(\zeta_{1},$ $\zeta_{2})\in J$ or $ t=\zeta$}.

$X$ is a compact subset of $M_{A_{1}\otimes A_{2}}$ . Define $A$ by the uniform closure on X
of $\{f|_{X}:f\in A_{1}\otimes A_{2}\}$ . Clearly $A$ is a function algebra on $X$. Furthermore
we can show that $M_{A}=X$ and that

$Q=\{(0,0, t, t)\in M_{A} : 1/2\leqq t<1\}$

is a part for $A$ . For the details, see [2].
We are now in a position to define a weighted composition operatoI

$uC_{\varphi}$ on $A$ satisfying (i) and (ii). Set

$ u(\zeta_{1}, \zeta_{2}, t, \zeta)=\zeta$ , $\varphi(\zeta_{1}, \zeta_{2}, t, \zeta)=(0,0,$ $\frac{t+1}{3},$ $\frac{t+1}{3})$

$(\zeta_{1}, \zeta_{2}, t, \zeta)\in X$ .
Clearly, $u\in A$ , and $\varphi$ is a continuous map from $X$ into $X=M_{A}$ . Then $u$

and $\varphi$ determine a weighted composition operator $uC_{\varphi}$ as follows;

(5) $uC_{\varphi}f(\zeta_{1}, \zeta_{2}, t, \zeta)=u(\zeta_{1}, \zeta_{2}, t, \zeta)f(\varphi(\zeta_{1}, \zeta_{2}, t, \zeta))$

$=\zeta f(0,0,$ $\frac{t+1}{3},\frac{t+1}{3})$

$(\zeta_{1}, \zeta_{2}, t, \zeta)\in X$ , $f\in A$ .
Note that

$\varphi(X)=\{(0,0, t, t)\in X=M_{A} : 1/2\leqq t\leqq 2/3\}\subset Q$ .
If we take $V=suppu$ and $P=Q$ , it follows that

$C\subset V$ , $\varphi(V)\subset P$ ,

for each connected component $C$ of supp $u$ . This implies (i).
Finally we shall show (ii). By the Ascoli-Arzel\‘a theorem, it suffices

to show that $uC_{\varphi}A_{0}$ is not equicontinuous at some point of $X$, where $A_{(}$

is the unit ball of $A$ . Fix $(\eta_{1}, \eta_{2}, s_{0}, s_{0})\in X$. For any $s\in I(s\neq s_{0})$ , we can
construct $F$. $\in C([1/2,2])$ such that

$||F.\Vert=\frac{1}{4}$ , $F.(s_{0})=0$ , $F_{l}(s)=\frac{1}{4}$ ,

and set
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$f_{*}(\zeta_{1}, \zeta_{2}, t, \zeta)=\frac{\zeta F_{\epsilon}(3t-1)}{t(3t-1)}$ $(\zeta_{1}, \zeta_{2}, t, \zeta)\in X$ .

Then we have $f_{\epsilon}\in A$ and $\Vert f_{l}\Vert\leqq 1$ , i.e., $f_{\epsilon}\in A_{0}$ . Moreover, by (5),

$uC_{\varphi}f_{*}(\zeta_{1}, \zeta_{2}, t, \zeta)=\frac{\zeta F_{l}(t)}{t}$ $(\zeta_{1}, \zeta_{2}, t, \zeta)\in X$ ,

so
$uC_{\varphi}f_{l}(\eta_{1}, \eta_{2}, s_{0}, s_{0})=F_{\epsilon}(s_{0})=0$ ,

$uC_{\varphi}f_{l}(\eta_{1}, \eta_{2}, s, s)=F_{\epsilon}(s)=\frac{1}{4}$ .

By taking $(\eta_{1}, \eta_{2}, s, s)$ near to $(\eta_{1}, \eta_{2}, s_{0}, s_{0})$ , we see that $uC_{\varphi}A_{0}$ is not
equicontinuous at $(\eta_{1}, \eta_{2}, s_{0}, s_{0})$ .
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