Токуо J. Матн. Vol. 11, No. 2, 1988

Inner Extensions of Automorphisms of Irrational Rotation Algebras to AF-Algebras

Kazunori KODAKA

Keio University (Communicated by S. Koizumi)

Abstract. Let A_{θ} be an irrational rotation algebra. In the present paper we will show that automorphisms of A_{θ} with some properties can be extended to inner automorphisms of an AF-algebra. In other words, there are a monomorphism ρ of A_{θ} into an AF-algebra Band a unitary element $w \in B$ such that $\rho(\alpha(x)) = w\rho(x)w^*$ for any $x \in A_{\theta}$.

§1. Introduction.

Let θ be an irrational number in [0, 1] and let σ be the rotation by the angle $2\pi\theta$ on the circle T = R/Z. Let C(T) be the abelian C*-algebra of all complex valued continuous functions on T. Then we can regard σ as an automorphism of C(T). Hence we can consider the crossed product $C(T) \times_{\sigma} Z$ of C(T) by σ and we donote it by A_{θ} , which is called the *irrational rotation algebra by* θ . It is well known that A_{θ} has two generators u and v with $vu = e^{2\pi i \theta} uv$. Let $Aut(A_{\theta})$ be the group of all automorphisms of A_{θ} and $C^*(v)$ be the abelian C*-subalgebra of A_{θ} generated by v. Furthermore throughout this paper we mean a unital *monomorphism by a monomorphism.

DEFINITION. Let $\alpha \in \operatorname{Aut}(A_{\theta})$. We say that α can be extended to an inner automorphism of an AF-algebra if there are a monomorphism ρ of A_{θ} into an AF-algebra B and a unitary element $w \in B$ such that $\rho(\alpha(x)) = w\rho(x)w^*$ for any $x \in A_{\theta}$.

Now generally let A be a unital C*-algebra and for each $n \in N$ let M_n be the $n \times n$ matrix algebra. We identify $A \otimes M_n$ with the $n \times n$ matrix algebra $M_n(A)$ over A. Let α be an automorphism of A. For i=0, 1 we denote the K_i -group of A by $K_i(A)$ and for any projection $p \in A \otimes M_n$ (resp. any unitary element $x \in A \otimes M_n$) [p] (resp. [x]) denote the corresponding class in $K_0(A)$ (resp. $K_1(A)$). Let ∂ be the connecting map

Received February 4, 1988

of $K_1(A \times_{\alpha} \mathbb{Z})$ into $K_0(A)$.

LEMMA 1. With the above notations if $p \in A \otimes M_n$ satisfies $\alpha(p) = xpx^*$ for some unitary element $x \in A \otimes M_n$, then an element $w = (1-p) + px^*yp$ $\in (A \times_{\alpha} Z) \otimes M_n$ is a unitary element with $\partial([w]) = [p]$ where y is a unitary element in $A \times_{\alpha} Z$ satisfying that $\alpha = \operatorname{Ad}(y)$ and A and y generate $A \times_{\alpha} Z$.

PROOF. We will use the notations in Pimsner and Voiculescu [6]. Let K be the C*-algebra of all compact operators on a countably infinite dimensional Hilbert space and T be the Toeplitz algebra for (A, α) . Let J be a closed two sided ideal generated by a projection $Q=1\otimes I (y\otimes S)(y\otimes S)^*=1\otimes P$. Then we obtain the connecting map d of $K_1(T/J)$ into $K_0(J)$. By Pimsner and Voiculescu [6], J is isomorphic to $A\otimes K$ and T/J is isomorphic to $A \times_{\alpha} Z$. We denote the isomorphism of $A\otimes K$ onto J by ψ and the isomorphism of $A \times_{\alpha} Z$ onto T/J by ϕ . Then it is sufficient to show that $d([\phi(w)])=[\psi(p)]$. By the definitions of ϕ and ψ , we have

$$\phi(w) = (1-p) \otimes I + px^*yp \otimes S^*$$

and

$$\psi(p) = p \otimes P$$
.

Let $z = \begin{bmatrix} (1-p) \otimes I + px^*yp \otimes S^* & 0 \\ p \otimes P & (1-p) \otimes I + py^*xp \otimes S \end{bmatrix}$ in $T \otimes M_{2n}$. Then $\pi(z) = \phi(w) \bigoplus \phi(w)^*$ where π is the quotient map of T onto T/J. Hence

$$d(\llbracket \phi(w) \rrbracket) = \begin{bmatrix} z \begin{bmatrix} 1 \otimes I & 0 \\ 0 & 0 \end{bmatrix} z^* \end{bmatrix} - \begin{bmatrix} \llbracket 1 \otimes I & 0 \\ 0 & 0 \end{bmatrix} \end{bmatrix}.$$

Since $z \begin{bmatrix} 1 \otimes I & 0 \\ 0 & 0 \end{bmatrix} z^* = \begin{bmatrix} 1 \otimes I & 0 \\ 0 & p \otimes P \end{bmatrix}$, we obtain that $d([\phi(w)]) = [p \otimes P]$. Q.E.D.

§2. The case of $\alpha(u) = fu$ and $\alpha(v) = v$.

In this section we will show that if $\alpha \in \operatorname{Aut}(A_{\theta})$ with $\alpha(u) = fu$ and $\alpha(v) = v$ where f is a unitary element in $C^*(v)$, there are an AF-algebra B, a monomorphism ρ and a unitary element $w \in B$ such that $\rho(\alpha(x)) = w\rho(x)w^*$ for any $x \in A_{\theta}$. Now we consider the crossed product $A_{\theta} \times_{\alpha} Z$ of A_{θ} by α . Then there is a unitary element $z \in A_{\theta} \times_{\alpha} Z$ such that $\alpha(x) = zxz^*$ for any $x \in A_{\theta}$ and A_{θ} and z generate $A_{\theta} \times_{\alpha} Z$. Hence we have the following relations;

$$zuz^* = fu$$
,

452

$$zvz^* = v$$
,
 $vu = e^{2\pi i \theta} uv$.

Let $C^*(v, z)$ be the C^{*}-subalgebra of $A_{\theta} \times_{\alpha} Z$ generated by v and z and let β be the automorphism of $C^*(v, z)$ defined by $\beta(v) = uvu^* = e^{-2\pi i \theta}$ and $\beta(z) = uzu^* = f^*z$.

LEMMA 2. With the above assumptions Sp(z) = T.

PROOF. Suppose that $\operatorname{Sp}(z) \cong T$. Then we can find a selfadjoint element $a \in A_{\theta} \times_{\alpha} \mathbb{Z}$ such that $z = e^{ia}$. Hence [z] = 0 in $K_1(A_{\theta} \times_{\alpha} \mathbb{Z})$. On the other hand by the Pimsner-Voiculescu six terms exact sequence we have the following sequence:

$$0 \longrightarrow \operatorname{Im}(\operatorname{id} - \alpha_*) \longrightarrow K_1(A_{\theta} \times_{\alpha}) \mathbb{Z} \xrightarrow{\sigma} K_0(A_{\theta}) \longrightarrow 0.$$

Then by Lemma 1, $\partial([z]) = [1]$. Thus $[z] \neq 0$ in $K_1(A_\theta \times_\alpha Z)$. This is a contradiction. Q.E.D.

By Lemma 2, $C^*(v, z)$ is isomorphic to $C(T^2)$ and we identify $C^*(v, z)$ with $C(T^2)$ and regard β as a homeomorphism of T^2 . Then clearly $A_{\theta} \times_{\alpha} Z$ is isomorphic to $C(T^2) \times_{\beta} Z$. Let τ be the unique faithful tracial state of A_{θ} and $\tilde{\tau}$ be a faithful tracial state of $A_{\theta} \times_{\alpha} Z$ defined by $\tilde{\tau}(g) =$ $\tau(g(0))$ for each $g \in l^1(Z, A_{\theta})$. Thus $C(T^2) \times_{\beta} Z$ has a faithful tracial state. Recall that a separable unital C^* -algebra A is quasidiagonal if there is a monomorphism π of A into B(H) such that $\pi(A) \cap K(H) = 0$ where K(H) denotes the C^* -algebra of all compact operators on a Hilbert space H and a sequence $\{p_n\}_{n \in N}$ of finite dimensional orthogonal projections in B(H) such that

$$\cdots \leq p_n \leq p_{n+1} \leq \cdots, \qquad \left(\bigcup_{n=1}^{\infty} p_n(H) \right)^- = H^{-1}$$

and for every $a \in A$

$$||p_n\pi(a)-\pi(a)p_n|| \rightarrow 0$$
.

Moreover A is finite if no proper projection is algebraically equivalent to 1 and A is stably finite if $M_n(A)$ is finite for any $n \in \mathbb{N}$. By the above definition we can easily see that $C(\mathbf{T}^2) \times_{\beta} \mathbf{Z}$ is finite since it has a faithful tracial state.

LEMMA 3. Let T be a homeomorphism of a compact metrizable space X and α_T be an automorphism of C(X) induced by T. Then the following conditions for $C(X) \times_{\alpha_T} Z$ are equivalent;

(1) quasidiagonal,

(2) finite,

(3) stably finite.

PROOF. (1) implies (3); By Pimsner [5, Theorem 9] there exists an embedding of $C(X) \times_{\alpha_T} Z$ into an AF-algebra. Hence $C(X) \times_{\alpha_T} Z$ is stably finite since we can regard it as a C*-subalgebra of the AF-algebra.

(3) implies (2); This is trivial.

(2) implies (1); Suppose that $C(X) \times_{\alpha_T} \mathbb{Z}$ is not quasidiagonal. Then it follows from Pimsner [5, Proposition 8 and Theorem 9] that we can find a non unitary isometry in $C(X)_{\alpha_T} \mathbb{Z}$. However this contradicts (2). Q.E.D.

PROPOSITION 4. If $\alpha \in \operatorname{Aut}(A_{\theta})$ with $\alpha(u) = fu$ and $\alpha(v) = v$ where f is a unitary element in $C^*(v)$, there are an AF-algebra $B(\alpha)$, and a monomorphism ρ_{α} of $A_{\theta} \times_{\alpha} Z$ into $B(\alpha)$.

PROOF. By Lemma 3, $C(T^2) \times_{\beta} Z$ is quasidiagonal and $A_{\theta} \times_{\alpha} Z$ is isomorphic to $C(T^2) \times_{\beta} Z$. Hence by Pimsner [5, Theorem 9] we can find an AF-algebra $B(\alpha)$ and a monomorphism ρ_{α} of $A_{\theta} \times_{\alpha} Z$ into $B(\alpha)$. Q.E.D.

§3. The case of $\alpha(u)=fu$ and $\alpha(v)=e^{2\pi i t}v$.

For each $t \in \mathbf{R}$ let $\beta_t^{(1)} \in \operatorname{Aut}(A_{\theta})$ be defined by $\beta_t^{(1)}(u) = e^{2\pi i t} u$ and $\beta_t^{(1)}(v) = v$ and let $\beta_t^{(2)} \in \operatorname{Aut}(A_{\theta})$ be defined by $\beta_t^{(2)}(u) = u$ and $\beta_t^{(2)}(v) = e^{2\pi i t} v$. And we define $\beta_{(s,t)} = \beta_s^{(1)} \circ \beta_t^{(2)}$. Let $SL(2, \mathbb{Z})$ be the group of all 2×2 matrices over \mathbb{Z} with determinant 1 and let $G = \{g \in SL(2, \mathbb{Z}); g = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}\}$. For each $g \in SL(2, \mathbb{Z})$ let $\beta_g \in \operatorname{Aut}(A_{\theta})$ be defined by $\beta_g(u) = u^a v^a$ and $\beta_g(v) = u^b v^d$ where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $a, b, c, d \in \mathbb{Z}$.

In this section we will show that if $\alpha = \beta_g \circ \beta_{(s,t)}$ with $g \in G$ and $s, t \in \mathbb{R}$, there are an AF-algebra B, a monomorphism ρ of A_{θ} into B and a unitary element $w \in B$ such that $\rho(\alpha(x)) = w\rho(x)w^*$ for any $x \in A_{\theta}$. For each $n \in \mathbb{N}$ let $U_n \in M_n$ be defined by

$$U_{n} = \begin{bmatrix} 0 & 0 & \cdots & 0 & (-1)^{n-1} \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ \cdot & \cdot & \cdots & \cdot & \cdot \\ \cdot & \cdot & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

and let I_n be the unit element of M_n .

454

LEMMA 5. Let $\alpha \in \operatorname{Aut}(A_{\theta})$. If there exist an $n \in N$, a monomorphism ρ_{α^n} of A_{θ} into an AF-algebra $B(\alpha^n)$ and a unitary element w_{α^n} such that $\rho_{\alpha^n}(\alpha^n(x)) = w_{\alpha^n}\rho_{\alpha^n}(x)w_{\alpha^n}^*$ for any $x \in A_{\theta}$, there are a monomorphism ρ_{α} of A_{θ} into an AF-algebra $B(\alpha)$ and a unitary element w_{α} such that $\rho_{\alpha}(\alpha(x)) = w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^*$ for any $x \in A_{\theta}$.

PROOF. Let $B(\alpha) = B(\alpha^n) \otimes M_n$ and ρ_{α} be a monomorphism of A_{θ} into $B(\alpha)$ defined by $\rho_{\alpha}(x) = \bigoplus_{j=0}^{n-1} \rho_{\alpha^n}(\alpha^j(x))$ for each $x \in A_{\theta}$. Then for any $x \in A_{\theta}$

$$\begin{split} \rho_{\alpha}(\alpha(x)) &= \bigoplus_{j=0}^{n-1} \rho_{\alpha^{n}}(\alpha^{j+1}(x)) \\ &= (I_{n-1} \bigoplus w_{\alpha^{n}}) \begin{bmatrix} \rho_{\alpha^{n}}(\alpha(x)) & 0 & \cdots & 0 & 0 \\ 0 & \rho_{\alpha^{n}}(\alpha^{2}(x)) & \cdots & \ddots & \cdot \\ \cdot & 0 & \cdots & \cdot & \cdot \\ \cdot & 0 & \cdots & 0 & \cdot \\ \cdot & \cdot & \cdots & \rho_{\alpha^{n}}(\alpha^{n-1}(x)) & 0 \\ 0 & 0 & \cdots & 0 & \rho_{\alpha^{n}}(x) \end{bmatrix} (I_{n-1} \bigoplus w_{\alpha^{n}})^{*} \\ &= \operatorname{Ad}((I_{n-1} \bigoplus w_{\alpha^{n}}) U_{n}^{*}) \left(\bigoplus_{j=0}^{n-1} \rho_{\alpha^{n}}(\alpha^{j}(x)) \right) \end{split}$$

since $\rho_{\alpha^n}(\alpha^n(x)) = w_{\alpha^n}\rho_{\alpha^n}(x)w_{\alpha^n}^*$.

COROLLARY 6. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ with $\alpha(u) = fu$ and $\alpha(v) = e^{2\pi i t}v$ where f is a unitary element in $C^*(v)$ and $t \in \mathbf{R}$. If $t \in \mathbf{Q}$, there are an AF-algebra $B(\alpha)$, a monomorphism ρ_{α} of A_{θ} into $B(\alpha)$ and a unitary element $w_{\alpha} \in B(\alpha)$ such that $\rho_{\alpha}(\alpha(x)) = w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^*$ for any $x \in A_{\theta}$.

PROOF. Since $t \in Q$, there is an $n \in N$ such that $\alpha^n(u) = gu$ and $\alpha^n(v) = v$ where g is a unitary element in $C^*(v)$. By Proposition 4, α satisfies the assumptions of Lemma 5. Therefore we obtain the conclusion. Q.E.D.

For any automorphism α of a C^{*}-algebra we denote the Connes spectrum by $\Gamma(\alpha)$.

COROLLARY 7. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ with $\Gamma(\alpha) \cong T$. Then there are an AF-algebra $B(\alpha)$, a monomorphism ρ_{α} of A_{θ} into $B(\alpha)$ and a unitary element $w_{\alpha} \in B(\alpha)$ such that $\rho_{\alpha}(\alpha(x)) = w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $x \in A_{\theta}$.

PROOF. By Pimsner and Voiculescu [7] we have a monomorphism ρ of A_{θ} into an AF-algebra B_{θ} . And since $\Gamma(\alpha) \subseteq T$, there are an $n \in N$ and a unitary element $z \in A_{\theta}$ such that $\alpha^n = \operatorname{Ad}(z)$ and $\alpha(z) = z$. Hence $\rho(\alpha^n(x)) = \rho(z)\rho(x)\rho(z)^*$ for any $x \in A_{\theta}$. Thus α satisfies the assumptions of Lemma 5. Therefore we obtain the conclusion. Q.E.D.

Q.E.D.

Let \tilde{u} and $\tilde{v} \in C(T^2)$ be defined by $\tilde{u}(\xi, \zeta) = \xi$ and $\tilde{v}(\xi, \zeta) = \zeta$ for any ξ , $\zeta \in T$. Then \tilde{u} and \tilde{v} are generators of $C(T^2)$. For any $g \in SL(2, \mathbb{Z})$ let $\tilde{\beta}_g \in \operatorname{Aut}(C(T^2))$ be defined by $\tilde{\beta}_g(\tilde{u}) = \tilde{u}^a \tilde{v}^c$ and $\tilde{\beta}_g(\tilde{v}) = \tilde{u}^b \tilde{v}^d$ where $g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $a, b, c, d \in \mathbb{Z}$. We note that $\tilde{\beta}_g$ is induced by a toral automorphism of T^2 . For any $s, t \in \mathbb{R}$ let $\tilde{\beta}_{(s,t)} \in \operatorname{Aut}(C(T^2))$ be defined by $\tilde{\beta}_{(s,t)}(\tilde{u}) = e^{2\pi i s} \tilde{u}$ and $\tilde{\beta}_{(s,t)}(\tilde{v}) = e^{2\pi i t} \tilde{v}$. Then we have the following lemma;

LEMMA 8. With the above notations the crossed product $C(T^2) \times_{\widetilde{\alpha}} Z$ is quasidiagonal where $\widetilde{\alpha} = \widetilde{\beta}_g \circ \widetilde{\beta}_{(s,t)}$.

PROOF. Let μ be the Haar measure of T^2 with $\mu(T^2)=1$ and let tr be a faithful finite trace of $C(T^2)$ defined by $\operatorname{tr}(x) = \int_{T^2} x \, d\mu$ for any $x \in C(T^2)$. Since μ is two sided invariant and $\tilde{\beta}_g$ is induced by a toral automorphism of T^2 leaving μ fixed, $\operatorname{tr}(\tilde{\alpha}(x)) = \operatorname{tr}(x)$ for any $x \in C(T^2)$. Hence if $\tilde{\operatorname{tr}}$ is defined by $\tilde{\operatorname{tr}}(y) = \operatorname{tr}(y(0))$ for $y \in l^1(Z, C(T^2))$, $\tilde{\operatorname{tr}}$ is a faithful finite trace of $C(T^2) \times_{\tilde{\alpha}} Z$. Thus $C(T^2) \times_{\tilde{\alpha}} Z$ is quasidiagonal by Lemma 3. Q.E.D.

PROPOSITION 9. With the above notations let $\alpha = \beta_g \circ \beta_{(s,t)} \in \operatorname{Aut}(A_{\theta})$ where s, $t \in \mathbb{R}$ and $g \in G$. Then there are an AF-algebra $B(\alpha)$, a monomorphism ρ_{α} of A_{θ} into $B(\alpha)$ and a unitary element $w_{\alpha} \in B(\alpha)$ such that $\rho_{\alpha}(\alpha(x)) = w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $x \in A_{\theta}$.

PROOF. By Corollaries 6 and 7 we can assume that $t \notin Q$ and $\Gamma(\alpha) = T$. Since $g \in G$, there is an $n \in Z$ such that $g = \begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$. Let $\gamma \in \operatorname{Aut}(A_{\theta})$ be defined by $\gamma(u) = e^{2\pi i \cdot u} u^n = e^{2\pi i \cdot (s-n\theta)} v^n u$ and $\gamma(v) = v$. Then there are an AF-algebra $B(\gamma)$ and a monomorphism ρ_{γ} of $A_{\theta} \times_{\gamma} Z$ into $B(\gamma)$ by Proposition 4. Let u, v and w be generators of $A_{\theta} \times_{\gamma} Z$ with $vu = e^{2\pi i \cdot \theta} uv$ and $\gamma = \operatorname{Ad}(w)$. Let $\tilde{\gamma} \in \operatorname{Aut}(C(T^2))$ be defined by $\tilde{\gamma} = \tilde{\beta}_g \circ \tilde{\beta}_{(0,t)}$, i.e., $\tilde{\gamma}(\tilde{u}) = \tilde{u}\tilde{v}^n$ and $\tilde{\gamma}(\tilde{v}) = e^{2\pi i \cdot \tilde{v}}\tilde{v}$. Then by Lemma 8 and Pimsner [5, Theorem 9] there are an AF-algebra $B(\tilde{\gamma})$ and a monomorphism $\rho_{\tilde{\gamma}}$ of $C(T^2) \times_{\tilde{\gamma}} Z$ into $B(\tilde{\gamma})$. Let \tilde{u}, \tilde{v} and \tilde{w} be generators of $C(T^2) \times_{\tilde{\gamma}} Z$ with $\tilde{u}\tilde{v} = \tilde{v}\tilde{u}$ and $\tilde{\gamma} = \operatorname{Ad}(\tilde{w})$, and let u_{α}, v_{α} and w_{α} be generators of $A_{\theta} \times_{\alpha} Z$ with $v_{\alpha}u_{\alpha} = e^{2\pi i \theta}u_{\alpha}v_{\alpha}$ and $\alpha = \operatorname{Ad}(w_{\alpha})$. We define a homomorphism ρ_{α} of $A_{\theta} \times_{\alpha} Z$ into $B(\gamma) \otimes B(\tilde{\gamma})$ as follows;

$$\rho_{\alpha}(u_{\alpha}) = \rho_{\tau}(u) \otimes \rho_{\widetilde{\tau}}(\widetilde{u}) ,$$

$$\rho_{\alpha}(v_{\alpha}) = \rho_{\tau}(v) \otimes \rho_{\widetilde{\tau}}(\widetilde{v}) ,$$

$$\rho_{\alpha}(w_{\alpha}) = \rho_{\tau}(w) \otimes \rho_{\widetilde{\tau}}(\widetilde{w}) .$$

Then we can easily see that

456

IRRATIONAL ROTATION ALGEBRAS

$$ho_{\alpha}(v_{\alpha})
ho_{\alpha}(u_{\alpha}) = e^{2\pi i \theta}
ho_{\alpha}(u_{\alpha})
ho_{\alpha}(v_{\alpha}) ,$$

 $ho_{\alpha}(w_{\alpha})
ho_{\alpha}(u_{\alpha})
ho_{\alpha}(w_{\alpha})^{*} = e^{2\pi i s}
ho_{\alpha}(u_{\alpha})
ho_{\alpha}(v_{\alpha})^{n} ,$

and

$$\rho_{\alpha}(w_{\alpha})\rho_{\alpha}(v_{\alpha})\rho_{\alpha}(w_{\alpha})^{*}=e^{2\pi it}\rho_{\alpha}(v_{\alpha}).$$

Hence the above definition of ρ_{α} is well defined. Since $\Gamma(\alpha) = T$ and A_{θ} is simple, $A_{\theta} \times_{\alpha} Z$ is simple. Thus ρ_{α} is injective. Q.E.D.

§4. The main theorem.

PROPOSITION 10. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ with $\alpha(u) = fu^*$ and $\alpha(v) = e^{2\pi i t} v^*$ where f is a unitary element in $C^*(v)$ and $t \in \mathbf{R}$. Then there are an AF-algebra $B(\alpha)$, a monomorphism ρ_{α} and a unitary element $w_{\alpha} \in B(\alpha)$ such that $\rho_{\alpha}(\alpha(x)) = w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^*$ for any $x \in A_{\theta}$.

PROOF. We have that $\alpha^2(u) \in C^*(v)u$ and $\alpha^2(v) = v$. Hence by Proposition 4 and Lemma 5 we obtain the conclusion. Q.E.D.

THEOREM 11. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ be defined by $\alpha(u) = e^{2\pi i s} uv^n$ and $\alpha(v) = e^{2\pi i t} v$, or $\alpha(u) = e^{2\pi i s} u^* v^n$ and $\alpha(v) = e^{2\pi i t} v^*$, where s, $t \in \mathbf{R}$ and $n \in \mathbf{Z}$. Then for any unitary element z in A_{θ} , $\operatorname{Ad}(z) \circ \alpha$ can be extended to an inner automorphism of an AF-algebra.

PROOF. By Propositions 9 and 10 this is clear. Q.E.D.

Before we state a corollary, we need some notations. Let A_{θ}^{∞} be the dense *-subalgebra of all smooth elements of A_{θ} with respect to the canonical action of T^2 and let A_{θ}^F be the *-subalgebra of finite linear combinations of monomials in u and v.

COROLLARY 12. Let $\alpha \in \operatorname{Aut}(A_{\theta})$ be leaving invariant a canonical subalgebra isomorphic to $C(\mathbf{T})$. If θ has the generic Diophantine property and $\alpha(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ or if $\alpha(A_{\theta}^{F}) = A_{\theta}^{F}$, α can be extended to an inner automorphism of an AF-algebra.

PROOF. By Elliott [3] and Brenken [1] α satisfies the assumptions of Theorem 11. Hence we obtain the conclusion. Q.E.D.

References

- [1] B. BRENKEN, Approximately inner automorphisms of the irrational rotation algebra, C.R. Math. Rep. Acad. Sci. Canada, 7 (1985), 363-368.
- [2] J. CUNTZ, Dimension functions on simple C*-algebras, Math. Ann., 233 (1978), 145-153.

- [3] G.A. Elliott, The diffeomorphism group of the irrational rotation C^* -algebra, preprint.
- [4] G.K. PEDERSEN, C*-Algebras and their Automorphism Groups, Academic Press, 1979.
- [5] M. V. PIMSNER, Embedding some transformation group C*-algebras into AF-algebra, Ergod. Th. Dynam. Sys., 3 (1983), 612-626.
- [6] M. V. PIMSNER and D. V. VOICULESCU, Exact sequence for K-groups and Ext-groups of certain cross product C*-algebras, J. Operator Theory, 4 (1980), 93-118.
- [7] ——, Imbedding the irrational rotation C*-algebra into an AF-algebra, J. Operator Theory, 4 (1980), 201-210.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN