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Abstract. Let $A_{\theta}$ be an irrational rotation algebra. In the present paper we will show
that automorphisms of $A_{\theta}$ with some propertie8 can be extended to inner automorphi8ms of
an AF-algebra. In other words, there are a monomorphism $\rho$ of $A\theta$ into an AF-algebra $B$

and a unitary element $w\in B$ such that $\rho(\alpha(x))=w\rho(x)w^{*}$ for any $ x\in A\theta$ .

\S 1. Introduction.

Let $\theta$ be an irrational number in $[0,1]$ and let $\sigma$ be the rotation by
the angle $ 2\pi\theta$ on the circle $T=R/Z$. Let $C(T)$ be the abelian $C^{*}$-algebra
of all complex valued continuous functions on $T$. Then we can regard $\sigma$

as an automorphism of $C(T)$ . Hence we can consider the crossed product
$C(T)\times_{a}Z$ of $C(T)$ by $\sigma$ and we donote it by $A_{\theta}$ , which is called the
irrational rotation algebra by $\theta$ . It is well known that $A_{\theta}$ has two
generators $u$ and $v$ with $vu=e^{2\pi i\theta}uv$ . Let $Aut(A_{\theta})$ be the group of all
automorphisms of $A_{\theta}$ and $C^{*}(v)$ be the abelian $C^{*}$-subalgebra of $A_{\theta}$ gen-
erated by $v$ . Furthermore throughout this paper we mean a unital $*-$

monomorphism by a monomorphism.

DEFINITION. Let $\alpha eAut(A_{\theta})$ . We say that $\alpha$ can be extended to an
inner automorphism of an AF-algebra if there are a monomorphism $\rho$

of $A_{\theta}$ into an AF-algebra $B$ and a unitary element $w\in B$ such that
$\rho(\alpha(x))=w\rho(x)w^{*}$ for any $x\in A_{\theta}$ .

Now generally let $A$ be a unital $C^{*}$-algebra and for each $n\in N$ let
$M_{n}$ be the $n\times n$ matrix algebra. We identify $A\otimes M_{n}$ with the $n\times n$

matrix algebra $M_{n}(A)$ over $A$ . Let $\alpha$ be an automorphism of $A$ . For
$i=0,1$ we denote the $K_{l}$-group of $A$ by $K_{i}(A)$ and for any projection
$p\in A\otimes M_{n}$ (resp. any unitary element $x\in A\otimes M_{n}$) $[p]$ (resp. $[x]$ ) denote the
corresponding class in $K_{0}(A)$ (resp. $K_{1}(A)$). Let $\partial$ be the connecting map
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of $K_{1}(A\times_{\alpha}Z)$ into $K_{0}(A)$ .
LEMMA 1. With the above notations if $peA\otimes M_{n}$ satisfies $\alpha(p)=xpx^{*}$

for some unitary element $x\in A\otimes M_{n}$ , then an element $w=(1-p)+px^{*}yp$

$\in(A\times_{\alpha}Z)\otimes M_{n}$ is a unitary element with $\partial([w])=[p]$ where $y$ is a
unitary element in $A\times_{\alpha}Z$ satisfying that $\alpha=Ad(y)$ and $A$ and $y$ generate
$ A\times Z\alpha$.

PROOF. We will use the notations in Pimsner and Voiculescu [6].
Let $K$ be the $C^{*}$-algebra of all compact operators on a countably infinite
dimensional Hilbert space and $T$ be the Toeplitz algebra for $(A, \alpha)$ . Let
$J$ be a closed two sided ideal generated by a projection $Q=1\otimes I-$

$(y\otimes S)(y\otimes S)^{*}=1\otimes P$. Then we obtain the connecting map $d$ of $K_{1}(T/J)$

into $K_{0}(J)$ . By Pimsner and Voiculescu [6], $J$ is isomorphic to $A\otimes K$ and
$T/J$ is isomorphic to $A\times_{\alpha}Z$. We denote the isomorphism of $A\otimes K$ onto
$J$ by $\psi$ and the isomorphism of $A\times_{\alpha}Z$ onto $T/J$ by $\phi$ . Then it is sufficient
to show that $d([\phi(w)])=[\psi(p)]$ . By the definitions of $\phi$ and $\psi$ , we have

$\phi(w)=(1-p)\otimes I+px^{*}yp\otimes S^{*}$

and
$\psi(p)=p\otimes P$ .

Let $z=[(1-p)\otimes I+px^{*}yp\otimes S^{*}p\otimes P(1-p)\otimes I+0py^{*}xp\otimes s]$ in $T\otimes M_{2n}$ . Then
$\pi(z)=\phi(w)\oplus\phi(w)^{*}$ where $\pi$ is the quotient map of $T$ onto $T/J$. Hence

$d([\phi(w)])=[z\left\{\begin{array}{ll}1\otimes I & 0\\0 & 0\end{array}\right\}z^{*}]-[\left\{\begin{array}{ll}1\otimes I & 0\\0 & 0\end{array}\right\}]$ .

Since $z[1\bigotimes_{0}I00]z^{*}=[1\bigotimes_{0}Ip0]$ , we obtain that $d([\phi(w)])=[p\otimes P]$ . Q.E.D.

\S 2. The case of $\alpha(u)=fu$ and $\alpha(v)=v$ .
In this section we will show that if $\alpha eAut(A_{\theta})$ with $\alpha(u)=fu$ and

$\alpha(v)=v$ where $f$ is a unitary element in $C^{*}(v)$ , there are an AF-algebra
$B$, a monomorphism $\rho$ and a unitary element $weB$ such that $\rho(\alpha(x))=$

$w\rho(x)w^{*}$ for any $xeA_{\theta}$ . Now we consider the crossed product $A_{\theta}\times_{\alpha}Z$ of
$A_{\theta}$ by $\alpha$ . Then there is a unitary element $z\in A_{\theta}\times_{\alpha}Z$ such that $\alpha(x)=zxz^{*}$

for any $x\in A_{\theta}$ and $A_{\theta}$ and $z$ generate $A_{\theta}X_{\alpha}Z$. Hence we have the follow-
ing relations;

$zuz*=fu$ ,
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$zvz*=v$ ,
$vu=e^{2\pi i\theta}uv$ .

Let $C^{*}(v, z)$ be the $C^{*}$-subalgebra of $A_{\theta}X_{\alpha}Z$ generated by $v$ and $z$ and
let $\beta$ be the automorphism of $C^{*}(v, z)$ defined by $\beta(v)=uvu^{*}=e^{-2\pi\theta}$ and
$\beta(z)=uzu^{*}=f^{*}z$ .

LEMMA 2. With the above assumptions $Sp(z)=T$.
PROOF. Suppose that $Sp(z)\subsetneqq T$. Then we can find a selfadjoint ele-

ment $aeA_{\theta}X_{\alpha}Z$ such that $z=e^{ia}$ . Hence $[z]=0$ in $K_{1}(A_{\theta}\times_{a}Z)$ . On the
other hand by the Pimsner-Voiculescu six terms exact sequence we have
the following sequence:

$0\rightarrow{\rm Im}(id-\alpha_{*})\rightarrow K_{1}(A_{\theta}\times_{\alpha})Z\rightarrow^{\partial}K_{0}(A_{\theta})\rightarrow 0$ .
Then by Lemma 1, $\partial([z])=[1]$ . Thus $[z]\neq 0$ in $K_{1}(A_{\theta}X_{\alpha}Z)$ . This is a con-
tradiction. Q.E.D.

By Lemma 2, $C^{*}(v, z)$ is isomorphic to $C(T^{2})$ and we identify $C^{*}(v, z)$

with $C(T^{2})$ and regard $\beta$ as a homeomorphism of $T^{2}$ . Then clearly
$A_{\theta}\times_{\alpha}Z$ is isomorphic to $C(T^{2})\times_{\beta}Z$. Let $\tau$ be the unique faithful tracial
state of $A_{\theta}$ and $\tau\sim$ be a faithful tracial state of $A_{\theta}\times_{\alpha}Z$ defined by $\tau\sim(g)=$

$\tau(g(O))$ for each $g\in l^{1}(Z, A_{\theta})$ . Thus $C(T^{2})\times_{\beta}Z$ has a faithful tracial state.
Recall that a separable unital $C^{*}$-algebra $A$ is quasidiagonal if there
is a monomorphism $\pi$ of $A$ into $B(H)$ such that $\pi(A)\cap K(H)=0$ where
$K(H)$ denotes the $C^{*}$-algebra of all compact operators on a Hilbert space
$H$ and a sequence $\{p_{n}\}_{neN}$ of finite dimensional orthogonal projections in
$B(H)$ such that

. . . $\leqq p_{n}\leqq p_{n+1}\leqq\cdots$ , $(\bigcup_{n=1}^{\infty}p_{n}(H))^{-}=H$

and for every $a\in A$

$\Vert p_{n}\pi(a)-\pi(a)p_{n}\Vert\rightarrow 0$ .
Moreover $A$ is finite if no proper projection is algebraically equivalent to
1 and $A$ is stably finite if $M_{n}(A)$ is finite for any $n\in N$. By the above
definition we can easily see that $C(T^{2})\times_{\beta}Z$ is finite since it has a faithful
tracial state.

LEMMA 3. Let $T$ be a homeomorphism of a compact metrizable space
$X$ and $\alpha_{T}$ be an automorphism of $C(X)$ induced by T. Then the following
conditions for $C(X)\times_{a_{T}}Z$ are equivalent;
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(1) quasidiagonal,
(2) finite,
(3) stably finite.
PROOF. (1) implies (3); By Pimsner [5, Theorem 9] there exists an

embedding of $C(X)\times_{\alpha_{T}}Z$ into an AF-algebra. Hence $C(X)\times..Z$ is stably
finite since we can regard it as a $C^{*}$-subalgebra of the AF-algebra.

(3) implies (2); This is trivial.
(2) implies (1); Suppose that $C(X)\times..Z$ is not quasidiagonal. Then

it follows from Pimsner [5, Proposition 8 and Theorem 9] that we can find
a non unitary isometry in $C(X)_{\alpha_{T}}Z$. However this contradicts (2). Q.E.D.

PROPOSITION 4. If $\alpha eAut(A_{\theta})$ with $\alpha(u)=fu$ and $\alpha(v)=v$ where $f$

is a unitary element in $C^{*}(v)$ , there are an AF-algebra $B(\alpha)$ , and a
monomorphism $\rho_{\alpha}$ of $A_{\theta}\times_{\alpha}Z$ into $B(\alpha)$ .

PROOF. By Lemma 3, $C(T^{2})\times_{p}Z$ is quasidiagonal and $A_{\theta\alpha}\times Z$ is iso-
morphic to $C(T^{2})\times_{\beta}Z$. Hence by Pimsner [5, Theorem 9] we can find an
AF-algebra $B(\alpha)$ and a monomorphism $\rho_{\alpha}$ of $A_{\theta}\times_{\alpha}Z$ into $B(\alpha)$ . Q.E.D.

\S 3. The case of $\alpha(u)=fu$ and $\alpha(v)=e^{2\pi lt}v$ .
For each $teR$ let $\beta_{t}^{(1)}eAut(A_{\theta})$ be defined by $\beta_{t}^{(1)}(u)=e^{2\pi i}u$ and

$\beta_{t}^{(1)}(v)=v$ and let $\beta_{t}^{(2)}eAut(A_{\theta})$ be defined by $\beta_{t}^{(2)}(u)=u$ and $\beta_{t}^{(2)}(v)=e^{2\pi}{}^{t}v$ .
And we define $\beta_{(\cdot,t)}=\beta^{(1)}\circ\beta^{(2)}$ . Let $SL(2, Z)$ be the group of all $2\times 2$

matrices over $Z$ with determinant 1 and let $G=\{geSL(2, Z);g=\left\{\begin{array}{ll}1 & 0\\n & 1\end{array}\right\}\}$ .
For each $geSL(2, Z)$ let $\beta,$ $eAut(A_{\theta})$ be defined by $\beta_{g}(u)=u^{a}v^{0}$ and $\beta_{g}(v)=$

$u^{b}v^{d}$ where $g=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ and $a,$ $b,$ $c,$ $deZ$.
In this section we will show that if $\alpha=\beta_{g}\circ\beta_{(\cdot,t)}$ with $geG$ and $s,$ $t\in R$ ,

there are an AF-algebra $B$ , a monomorphism $\rho$ of $A_{\theta}$ into $B$ and a unitary
element $weB$ such that $\rho(\alpha(x))=w\rho(x)w^{*}$ for any $xeA_{\theta}$ . For each $neR$

let $U_{n}\in M_{n}$ be defined by

$U_{n}=[0010$ $0010\ldots 00001(-1)^{n-1}000]$

and let $I_{n}$ be the unit element of $M_{n}$ .
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LEMMA 5. Let $\alpha eAut(A_{\theta})$ . If there exist an $neN$, a monomorphism
$\rho_{\alpha^{n}}$ of $A_{\theta}$ into an AF-algebra $B(\alpha^{n})$ and a unitary element $w_{\alpha^{n}}$ such that
$\rho_{\alpha^{n}}(\alpha^{n}(x))=w_{a^{n}}\rho_{\alpha^{n}}(x)w_{\alpha^{n}}^{*}$ for any $xeA_{\theta}$ , there are a monomorphism $\rho_{\alpha}$ of $A_{\theta}$

into an AF-algebra $B(\alpha)$ and a unitary element $w_{\alpha}$ such that $\rho_{\alpha}(\alpha(x))=$

$w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $x\in A_{\theta}$ .
PROOF. Let $B(\alpha)=B(\alpha^{n})\otimes M_{n}$ and $\rho_{\alpha}$ be a monomorphism of $A_{\theta}$ into

$B(\alpha)$ defined by $\rho_{\alpha}(x)=\oplus_{\dot{g}=0}^{n-1}\rho_{\alpha^{n}}(\alpha^{j}(x))$ for each $x\in A_{\theta}$ . Then for any $xeA_{\theta}$

$\rho_{\alpha}(\alpha(x))=\bigoplus_{\dot{g}=0}^{n-1}\rho_{a^{n}}(\alpha^{j+1}(x))$

$=(I_{n-1}\oplus w_{\alpha^{n}})[\rho_{\alpha^{n}}(\alpha(x))00p_{\alpha^{n}}(\alpha^{2}(x))000\ldots\rho_{\alpha^{n}}(\alpha^{n\frac{0}{0}1}(x))0\rho_{\alpha^{n}}(x)00](I_{n-1}\oplus w_{\alpha^{n}})^{*}$

$=Ad((I_{n-1}\oplus w_{\alpha^{n}})U_{n}^{*})(\bigoplus_{\dot{g}=0}^{n-1}\rho_{\alpha^{n}}(\alpha^{\dot{f}}(x)))$

since $\rho_{\alpha^{n}}(\alpha^{n}(x))=w_{\alpha^{n}}\rho_{\alpha^{n}}(x)w_{\alpha^{n}}^{*}$ . Q.E.D.

COROLLARY 6. Let $\alpha\in Aut(A_{\theta})$ with $\alpha(u)=fu$ and $\alpha(v)=e^{2\pi}{}^{t}v$ where
$f$ is a unitary element in $C^{*}(v)$ and $te$ R. If $teQ$ , there are an AF-
algebra $B(\alpha)$ , a monomorphism $\rho_{\alpha}$ of $A_{\theta}$ into $B(\alpha)$ and a unitary element
$w_{\alpha}\in B(\alpha)$ such that $\rho_{\alpha}(\alpha(x))=w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $x\in A_{\theta}$ .

PROOF. Since $t\in Q$ , there is an $n\in N$ such that $\alpha^{n}(u)=gu$ and $\alpha^{n}(v)=v$

where $g$ is a unitary element in $C^{*}(v)$ . By Proposition 4, $\alpha$ satisfies the
assumptions of Lemma 5. Therefore we obtain the conclusion. Q.E.D.

For any automorphism $\alpha$ of a $C^{*}$-algebra we denote the Connes
spectrum by $\Gamma(\alpha)$ .

COROLLARY 7. Let $\alpha\in Aut(A_{\theta})$ with $\Gamma(\alpha)\subsetneqq T.$ Then there are an
AF-algebra $B(\alpha)$ , a monomorphism $\rho_{\alpha}$ of $A_{\theta}$ into $B(\alpha)$ and a unitary
element $w_{\alpha}eB(\alpha)$ such that $\rho_{\alpha}(\alpha(x))=w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $x\in A_{\theta}$ .

PROOF. By Pimsner and Voiculescu [7] we have a monomorphism $\rho$

of $A_{\theta}$ into an AF-algebra $B_{\theta}$ . And since $\Gamma(\alpha)\subsetneqq T$, there are an neN
and a unitary element $zeA_{\theta}$ such that $\alpha^{n}=Ad(z)$ and $\alpha(z)=z$ . Hence
$\rho(\alpha^{n}(x))=\rho(z)\rho(x)\rho(z)^{*}$ for any $x\in A_{\theta}$ . Thus $\alpha$ satisfies the assumptions
of Lemma 5. Therefore we obtain the conclusion. Q.E.D.
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Let $\tilde{u}$ and $v\sim\in C(T^{2})$ be defined by $\tilde{u}(\xi, \zeta)=\xi$ and $ v\sim(\xi, \zeta)=\zeta$ for any $\xi$ ,
$\zeta eT$. Then $\tilde{u}$ and $ v\sim$ are generators of $C(T^{2})$ . For any $geSL(2, Z)$ let
$\tilde{\beta}_{g}eAut(C(T^{2}))$ be defined by $\tilde{\beta}_{g}(\tilde{u})=\tilde{u}^{a}v^{0}\sim$ and $\tilde{\beta}_{g}(v\sim)=\tilde{u}^{b}v^{d}\sim$ where $g=\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$

and $a,$ $b,$ $c,$ $deZ$. We note that $\tilde{\beta}_{g}$ is induced by a toral automorphism of
$T^{2}$ . For any $s,$ $teR$ let $\tilde{\beta}_{\{\cdot,t)}eAut(C(T^{2}))$ be defined by $\tilde{\beta}_{(,t)}(\tilde{u})=e^{2\pi i}\tilde{u}$ and
$\tilde{\beta}_{\{\cdot,t)}(v\sim)=e^{2\pi it\sim}v$ . Then we have the following lemma;

LEMMA 8. With the above notations the crossed product $C(T^{2})\times\sim\alpha Z$ is
quasidiagonal where $a=\beta,\circ\beta_{(,t)}$ .

PROOF. Let $\mu$ be the Haar measure of $T^{2}$ with $\mu(T^{2})=1$ and let tr
be a faithful finite trace of $C(T^{2})$ defined by $tr(x)=\int_{r^{g}}xd\mu$ for any $xeC(T^{2})$ .
Sinoe $\mu$ is two sided invariant and $\tilde{\beta}_{g}$ is induced by a toral automorphism
of $T^{2}$ leaving $\mu$ fixed, $tr(\tilde{\alpha}(x))=tr(x)$ for any $xeC(T^{2})$ . Hence if $tr\sim$ is
defined by $tr(y)=tr(y(0))\sim$ for $yel^{1}(Z, C(T^{2}))$ , tr is a faithful finite trace
of $C(T^{2})\times\alpha\sim Z$. Thus $C(T^{2})\times\sim\alpha Z$ is quasidiagonal by Lemma 3. Q.E.D.

PROPOSITION 9. With the above notations let $\alpha=\beta_{g}\circ\beta_{(\epsilon.t)}eAut(A_{\theta})$

where $s,$ $t\in R$ and $ge$ G. Then there are an AF-algebra $B(\alpha)$ , a mono-
morphism $\rho_{\alpha}$ of $A_{\theta}$ into $B(\alpha)$ and a unitary element $w_{\alpha}eB(\alpha)$ such that
$\rho_{\alpha}(\alpha(x))=w_{\alpha}\rho_{\alpha}(x)w_{\alpha}^{*}$ for any $xeA_{\theta}$ .

PROOF. By Corollaries 6 and 7 we can assume that $t\not\in Q$ and $\Gamma(\alpha)=$

$T$. Since $geG$ , there is an $neZ$ such that $g=\left\{\begin{array}{l}10\\1n\end{array}\right\}$ . Let $\gamma eAut(A_{\theta})$

be defined by $\gamma(u)=e^{2\pi i}uv^{n}=e^{2\pi i(\cdot-n\theta)}v^{n}u$ and $\gamma(v)=v$ . Then there are an
AF-algebra $B(\gamma)$ and a monomorphism $\rho_{\gamma}$ of $A_{\theta\gamma}\times Z$ into $B(\gamma)$ by Proposi-
tion 4. Let $u,$ $v$ and $w$ be generators of $A_{\theta\gamma}\times Z$ with $vu=e^{2\pi l\theta}uv$ and
$\gamma=Ad(w)$ . Let $\tilde{\gamma}eAut(C(T^{2}))$ be defined by $\tilde{\gamma}=\tilde{\beta}_{g^{\circ}}\tilde{\beta}_{(0,t)}$ , i.e., $\tilde{\gamma}(\tilde{u})=\tilde{u}v^{n}\sim$ and
$\tilde{\gamma}(v\sim)=e^{2nit}v\sim$ . Then by Lemma 8 and Pimsner [5, Theorem 9] there are
an AF-algebra $B(\tilde{\gamma})$ and a monomorphism $\rho_{\gamma}^{\sim}$ of $C(T^{2})\times_{\gamma}^{\sim}Z$ into $B(\tilde{\gamma})$ . Let
$\tilde{u},$ $ v\sim$ and $\tilde{w}$ be generators of $C(T^{2})\times_{\gamma}^{\sim}Z$ with $\tilde{u}v=v\tilde{u}\sim\sim$ and $\tilde{\gamma}=Ad(\tilde{w})$ , and
let $u_{\alpha},$ $v_{\alpha}$ and $w_{\alpha}$ be generators of $A_{\theta}\times_{\alpha}Z$ with $v_{\alpha}u_{\alpha}=e^{2\pi\theta}u_{a}v_{a}$ and $\alpha=$

$Ad(w_{\alpha})$ . We define a homomorphism $p_{\alpha}$ of $A_{\theta\alpha}\times Z$ into $B(\gamma)\otimes B(\tilde{\gamma})$ as
follows;

$\rho_{\alpha}(u_{\alpha})=p_{\gamma}(u)\otimes p_{\gamma}^{\sim}(\tilde{u})$ ,
$\rho_{\alpha}(v_{\alpha})=\rho_{\gamma}(v)\otimes\rho_{\gamma}^{\sim}(v\sim)$ ,
$\rho_{\alpha}(w_{\alpha})=\rho_{\gamma}(w)\otimes\rho_{\gamma}^{\wedge}(\tilde{w})$ .

Then we can easily see that
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$p_{\alpha}(v_{\alpha})\rho_{\alpha}(u_{\alpha})=e^{2\pi i\theta}\rho_{\alpha}(u_{\alpha})p_{\alpha}(v_{\alpha})$ ,
$\rho_{\alpha}(w_{\alpha})p_{\alpha}(u_{a})p_{\alpha}(w_{\alpha})^{*}=e^{2\pi i\epsilon}\rho_{\alpha}(u_{\alpha})\rho_{\alpha}(v_{\alpha})^{n}$ ,

and
$p_{\alpha}(w_{\alpha})\rho_{\alpha}(v_{\alpha})\rho_{\alpha}(w_{\alpha})^{*}=e^{2\pi it}\rho_{\alpha}(v_{\alpha})$ .

Hence the above definition of $\rho_{\alpha}$ is well defined. Since $\Gamma(\alpha)=T$ and $A_{\theta}$

is simple, $A_{\theta\alpha}\times Z$ is simple. Thus $\rho_{\alpha}$ is injective. Q.E.D.

\S 4. The main theorem.

PROPOSITION 10. Let $\alpha eAut(A_{\theta})$ with $\alpha(u)=fu^{*}$ and $\alpha(v)=e^{2\pi it}v^{*}$

where $f$ is a unitary element in $C^{*}(v)$ and $t\in R$ . Then there are an
AF-algebra $B(\alpha)$ , a monomorphism $\rho_{\alpha}$ and a unitary element $w_{\alpha}\in B(\alpha)$

such that $p_{\alpha}(\alpha(x))=w_{\alpha}p_{\alpha}(x)w_{\alpha}^{*}$ for any $x\in A_{\theta}$ .
PROOF. We have that $\alpha^{2}(u)eC^{*}(v)u$ and $\alpha^{2}(v)=v$ . Hence by Propo-

sition 4 and Lemma 5 we obtain the conclusion. Q.E.D.

THEOREM 11. Let $\alpha\in Aut(A_{\theta})$ be defined by $\alpha(u)=e^{2\pi i}uv^{n}$ and $\alpha(v)=$

$e^{2\pi it}v$ , or $a(u)=e^{2\pi is}u^{*}v^{n}$ and $\alpha(v)=e^{2\pi it}v^{*}$ , where $s$ , teR and $neZ$. Then
for any unitary element $z$ in $A_{\theta},$ $Ad(z)\circ\alpha$ can be extended to an inner
automorphism of an AF-algebra.

PROOF. By Propositions 9 and 10 this is clear. Q.E.D.

Before we state a corollary, we need some notations. Let $A_{\theta}^{\infty}$ be
the dense $*$-subalgebra of all smooth elements of $A_{\theta}$ with respect to the
canonical action of $T^{2}$ and let $A_{\theta^{F}}$ be the $*$-subalgebra of finite linear
combinations of monomials in $u$ and $v$ .

COROLLARY 12. Let $\alpha\in Aut(A_{\theta})$ be leaving invariant a canonical
subalgebra isomorphic to $C(T)$ . If $\theta$ has the generic Diophantine property
and $\alpha(A_{\theta}^{\infty})=A_{\theta}^{\infty}$ or if $\alpha(A_{\theta^{F}})=A_{\theta^{F}},$ $\alpha$ can be extended to an inner auto-
morphism of an AF-algebra.

PROOF. By Elliott [3] and Brenken [1] $\alpha$ satisfies the assumptions of
Theorem 11. Hence we obtain the conclusion. Q.E.D.
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