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\S 1. Introduction.

Consider the second order nonlinear differential equations

(1.1) $\frac{d}{dt}(t^{\rho}\frac{du}{dt})+t^{\sigma}u^{n}=0$ and $\frac{d}{dt}(t^{\rho}\frac{du}{dt})-t^{\sigma}u^{n}=0$ ,

which include Fermi-Thomas equation and Emden equation as special cases.
When $\rho\neq 1$ , these equations are transformed into

(1.2) $\frac{d^{2}u}{ds^{2}}+s^{\beta}u^{n}=0$ ,

and

(1.3) $\frac{d^{2}u}{ds^{2}}-s^{\beta}u^{n}=0$ , $\beta=\frac{\rho+\sigma}{1-\rho}$

respectively by putting $kt^{1-\rho}=s$ where $k$ is a suitable constant, and when
$\rho=1$ , into

(1.4) $\frac{d^{2}u}{ds^{2}}+e^{(\sigma+1)\epsilon}u^{n}=0$

and

(1.5) $d^{2}u$

$(\sigma+1)\epsilon nu=0$

$\overline{ds^{2}}-e$

respectively by putting log $t=s$ .
(1.3) was studied in [5], [6] and (1.5) was studied in [8] and the

asymptotic behavior of solutions as $s$ approaches the end points of their
intervals of definition was investigated in detail. In both cases, this
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was done by transforming the given equation into a certain first order
algebraic differential equation.

This method, however, works successfully also for the equation (1.4).

This is what we want to show in this paper.
Changing the notations slightly, we rewrite (1.4) in a form

(1.6) $x^{\prime}’=-e^{\alpha\lambda t}x^{1+\alpha}$ , $’=\frac{d}{dt}$

$-\infty<t<\infty,$ $ 0\leqq x<\infty$

where $\alpha$ and $\lambda$ are positive constants and $x^{1+\alpha}$ always represents its non-
negative valued branch.

Let $\phi(t)$ be an arbitrary solution of (1.6). Then the transformation

(1.7) $y=-x^{-z}e^{\alpha\lambda t}\phi^{\alpha}$ , $z=y^{\prime}$

changes (1.6) into a first order algebraic differential equation

(1.8) $\frac{dz}{dy}=\frac{\alpha^{2}\lambda^{2}y^{2}(y-1)+2\alpha\lambda yz+(\alpha-1)z^{2}}{\alpha yz}$ .
This is the same as the equation (8) of [8], which was obtained from

$x^{\prime\prime}=e^{\alpha\lambda t}x^{1+\alpha}$

by putting

$y=\psi^{-\alpha}\phi^{\alpha}$ , $z=y^{\prime}$

where $\psi(t)=\lambda^{2/\alpha}e^{-\lambda t}$ is a particular solution of the above equation an $($

$\phi(t)$ is its arbitrary solution.
Introducing a parameter $s,$ $(1.8)$ can be reduced to a two-dimensiona

autonomous system

(1.9) $\left\{\begin{array}{l}\frac{dy}{ds}=\alpha yz\\\frac{dz}{ds}=\alpha^{2}\lambda^{2}y^{2}(y-1)+2\alpha xyz+(\alpha-1)z^{2}\end{array}\right.$

Critical points of this system are $(0,0)$ and $(1, 0)$ if $\alpha\neq 1$ , and $(0, c)(($

an arbitrary real number) and $(1, 0)$ if $\alpha=1$ . Since $\phi(t)>0,$ $y$ is alway

negative. So we consider (1.9) in the half-plane $y<0$ throughout th
paper.

With the help of (1.9), we try to find all the solutions $z(y)$ of (1.8

For each $z(y)$ , determine $y(t)$ so as to satisfy
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$y’=z(y)$

which is the second formula of (1.7). Then, finally, $\phi(t)$ can be obtained
from the first formula of (1.7). This is the outline of our scheme.

\S 2. On solutions of (1.8) tending to $0$ as $y\rightarrow-0$ .
Let there be given a solution $z=z(y)$ of (1.8) which tends to $0$ as

$y\rightarrow-O$ . Then, if $y(s)$ denotes a solution of the first equation of (1.9),
we get a solution $(y(s), z(y(s)))$ of (1.9). Since

$\frac{dy}{ds}=0$ , $\frac{dz}{ds}<0$ ,

if $y<0$ and $z=0,$ $z(y)$ is always positive or negative for $y$ sufficiently
close to $0$ . Hence $y(s)\rightarrow-O$ is equivalent to $ s\rightarrow-\infty$ if $z(y(s))>0$ and is
$e$quivalent to $ s\rightarrow\infty$ if $z(y(s))<0$ .

Now, put

(2.1) $z=v_{1}(y)=\sigma y$ ,

then, if $(y, z)=(y(s), z(y(s)))$ and if $y(s)<0$ , we have

(2.2) $\frac{d}{ds}(z-v_{1}(y))=-y^{2}\{\sigma^{2}-2\alpha\lambda\sigma-\alpha^{2}x^{2}(y-1)\}<0$

on the straight line (2.1). Suppose that

$\lim_{y\rightarrow-}\inf_{0}\frac{z(y)}{y}=d_{1}$ , $\lim_{y\rightarrow}\underline{\sup_{0}}\frac{z(y)}{y}=d_{2}$ , $d_{1}<d_{2}$ ,

then there exists a real number $\sigma$ such that

(2.3) $d_{1}<\sigma<d_{2}$ , $\sigma\neq\alpha x$ .
However, it follows from the definitions of the inferior limit and the
superior limit that, for $\sigma$ satisfying $($2. $S)$ , there exists $s_{1}$ such that, if
$s=s_{1}$ , then

$\frac{d}{ds}(z-v_{1}(y))>0$

on the straight line (2.1), where $(y, z)=(y(s), z(y(s)))$ . This is contrary
to (2.2). Hence,

$\lim_{y\rightarrow-0}\frac{z(y)}{y}=d_{1}=d_{2}$ .
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Now, put $d=d_{1}$ , then l’Hospital’s theorem shows

$\lim_{l^{\rightarrow-0}}\frac{dz}{dy}=d$ .

On the other hand, from (1.8), we have

$\frac{z}{y}\cdot\frac{dz}{dy}=\alpha\lambda^{2}(y-1)+2x\cdot\frac{z}{y}+\frac{\alpha-1}{\alpha}(\frac{z}{y})^{2}$ .
Hence, if $ d\neq\pm\infty$ , then we have

$d^{2}-2\alpha xd+\alpha^{2}x^{2}=0$ i.e. $d=\alpha x$ .
Thus we have

LEMMA 1. If $z(y)$ is a solutw$n$ of (1.8) which tends to $0$ as $y\rightarrow-0$ ,

then

$\lim_{\nu\rightarrow-0}\frac{z(y)}{y}=\alpha\lambda$ or $\pm\infty$ .

Furthermore, we can have

LEMMA 2. There exists one and only one solution $z(y)$ of (1.8) such
that

(2.4) $\lim_{y\rightarrow-0}\frac{z(y)}{y}=\alpha\lambda$ , $\lim_{y\rightarrow-0}\frac{v(y)}{y}=x$

where $ v(y)=y^{-1}z(y)-\alpha\lambda$

PROOF. Let us transform (1.8) by

(2.5) $ v=y^{-1}z-\alpha\lambda$ ,

then we have

(2.6) $\frac{dv}{dy}=\frac{\alpha^{2}\lambda^{2}y-v^{2}}{\alpha y(v+\alpha x)}$ .

Using a parameter $\tau$ , we can rewrite this into

(2.7) $\left\{\begin{array}{l}\frac{dy}{d\tau}=\alpha y(v+\alpha\lambda)\\\frac{dv}{d\tau}=\alpha^{2}\lambda^{2}y-v^{2}\end{array}\right.$
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The matrix representing the linear part of the right-hand side of (2.7) is

$\left\{\begin{array}{ll}\alpha^{2}\lambda & 0\\\alpha^{2}\lambda^{2} & 0\end{array}\right\}$

whose eigenvalues are $0$ and $\alpha^{2}\lambda$ . Hence, from (2.7), we have

$ y=a_{1}(Ce^{\alpha^{2}\lambda\tau})+a_{2}(Ce^{\alpha^{2}\lambda\tau})^{2}+\cdots$ ,
(2.8)

$ v=b_{1}(Ce^{\alpha^{2}\lambda\tau})+b_{2}(Ce^{\alpha^{2}\lambda r})^{2}+\cdots$ ,

where $C$ is a constant. Here and henceforth, $\cdots$ denotes a sum of terms
whose degrees are greater than the degree of the previous term. Sub-
stituting these into (2.7), we have

$\frac{b_{1}}{a_{1}}=x$ .
Hence, from (2.8), we have

$ v(y)=x(y)+\cdots$ .
Therefore, it follows from (2.5) that (1.8) has a solution $z=z(y)$ repre-
sented by a convergent power series

$ z=\alpha\lambda y+\lambda y^{2}+\cdots$

in the neighborhood of $y=0$ . This solution satisfies (2.4).
Furthermore, put

(2.9) $w=y^{-1}v-x$ ,

we have from (2.6)

(2.10) $\frac{dw}{dy}=^{-(\alpha+1)x^{2}y-\{2(\alpha+1)xy+\alpha^{2}\lambda\}w-(\alpha+1)yw^{2}}\ovalbox{\tt\small REJECT}\alpha y(yw+\lambda y+\alpha\lambda)$

and

(2.11) $\left\{\begin{array}{l}\frac{dy}{d\tau}=\alpha y(yw+xy+\alpha\lambda)\\\frac{dw}{d\tau}=-(\alpha+1)x^{2}y-\{2(\alpha+1)xy+\alpha^{2}x\}w-(\alpha+1)yw^{2}\end{array}\right.$

The matrix representing the linear part of the right-hand side of (2.11) is

$\left\{\begin{array}{ll}\alpha^{2}\lambda & 0\\-(\alpha+1)x^{2} & -\alpha^{2}\lambda\end{array}\right\}$
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whose eigenvalues are $\pm\alpha^{2}\lambda$ . Hence $(y, w)=(O, 0)$ is a saddle point of
(2.11). On the other hand, it is evident that $V$

$(y\equiv 0$

(2.12)
$|w=Ce^{-\alpha^{2}\lambda\tau}$

is a solution of (2.11), where $C$ is a constant. Therefore (2.11) has no
solution tending to the origin except (2.12) and

$\left\{\begin{array}{l}y=a_{1}(Ce^{\alpha^{2}\lambda\epsilon})+a_{2}(Ce^{\alpha^{2}\lambda r})^{2}+\cdots\\ w=b_{1}(Ce^{\alpha^{2}\lambda\tau})+b_{2}(Ce^{\alpha^{2}\lambda r})^{2}+\cdots\end{array}\right.$

where

$\frac{b_{1}}{a_{1}}=-\frac{(\alpha+1)x}{2\alpha^{2}}$ .

Hence we have

$w=-\frac{(\alpha+1)x}{2\alpha^{2}}y+\sum_{n=2}^{\infty}c_{n}y^{n}$ ,

where $c_{n}$ are determined uniquely. Therefore, from (2.9), we get the
solution of (1.8) represented by

(2.13) $z(y)=\alpha xy+xy^{2}-\frac{(\alpha+1)x}{2\alpha^{2}}y^{3}+\sum_{n=4}^{\infty}c_{n-2}y^{n}$ .
Since there is no solution of (1.8) obtained by (2.12), this is the only
solution of (1.8) satisfying (2.4). Thus the proof is completed.

Hereafter, since the solution of (1.8) whose existence has been just
shown attains negative values, this solution will be denoted by $z_{-}\wedge(y)$ .
Since (2.6) can be changed into a Briot-Bouquet $e$quation in the neighbor-
hood of $(y, v)=(O, 0)$ , we can also prove the existence of $z_{-}\wedge(y)$ directly
from the theorem (e.g. Theorem 11.1.1 of [3]) which states the existence
of the unique holomorphic solution of Briot-Bouquet equations passing
through the origin. Moreover we have

LEMMA 3. If $z(y)$ is a solution of (1.8) satisfying

$\lim_{y\rightarrow-0}\frac{z(y)}{y}=\alpha\lambda$ , $\lim_{y\rightarrow-0}\frac{v(y)}{y}\neq\lambda$ ,

where $v(y)=y^{-1}z(y)-\alpha x$ , then we have
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(2.14) $z(y)>z_{-}\wedge(y)$

as long as both of these solutions exist.

PROOF. Since $v=v(y)$ satisfies (2.6) and

$\lim_{\nu\rightarrow-0}v(y)=0$ ,

we have

$\frac{dv(y)}{dy}>\frac{\alpha\lambda^{2}}{v(y)+\alpha x}>0$

for $y$ sufficiently close to $0$ . Hence we have $v(y)<0$ since $y<0$ . Con-
sequently

$\frac{dv(y)}{dy}>x$ .

Take $y_{0}$ and $y(y<y_{0}<0)$ sufficiently close to $0$ . Then, integrating the both
sides of this inequality from $y$ to $y_{0}$ , we have

$v(y_{0})-v(y)>x(y_{0}-y)$ .
As $y_{0}\rightarrow-0$ , we have

$\frac{v(y)}{y}\geqq x$ .

Therefore, from the uniqueness of $z_{-}\wedge(y)$ ,

(2.15) $\lim_{y\rightarrow-}\sup_{0}\frac{v(y)}{y}>x$ .

Hence, if $\hat{v}_{-}(y)=y^{-1^{\wedge}}z_{-}(y)-\alpha\lambda$ , then there exists a sequence $\{y_{n}\}$ with
$y_{n}\rightarrow-0$ such that

$\frac{v(y_{n})}{y_{n}}>\frac{\hat{v}_{-}(y_{n})}{y_{n}}$ .

Therefore (2.14) holds if $y=y_{n}$ . Thus we can complete this proof by the
uniqueness of solutions of (1.8).

\S 3. The phase portraits of (1.9).

From (1.9), we have
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(3.1) $\frac{dz}{ds}=\alpha^{2}x^{2}y^{2}(y-1)+2\alpha xy\sigma+(\alpha-1)\sigma^{2}$

on the straight line $ z=\sigma$ . If $\alpha\neq 1$ and $dz/ds=0$ , then $\sigma=Z_{+}(y)$ or $Z_{-}(y)$

where

$Z_{+}(y)=\frac{-1+\sqrt{(1-\alpha)y+\alpha}}{\alpha-1}\alpha\lambda y$ , $Z_{-}(y)=\frac{-1-\sqrt{(1-\alpha)y+\alpha}}{\alpha-1}\alpha\lambda y$ .
If $\alpha=1$ and $dz/ds=0$ , then $\sigma=-xy(y-1)/2$ . Therefore, the signature of
$dz/ds$ can be shown as in the following figures:

The case when $\alpha>1$ The case when $0<\alpha<1$ The case when $a=1$

FIGURE 1.1 FIGURE 1.2 FIGURE 1.3

In these figures, $\pm denote$ the signs of $dz/ds$ .
Now we claim that, if $(y(s), z(s))$ denotes an arbitrary solution of

(1.9) defined in the region $y<0$ , then $ z(s)-\rightarrow\infty$ as $s$ increases and $ z(s)-\mapsto-\infty$

as $s$ decreases. From (1.9) we have $dy/ds<0$ if $y<0,$ $z>0$ , and $dy/ds>0$
if $y<0,$ $z<0$ . If $\alpha>1$ , then the straight line $z=\sigma y$ intersects with the
curve $z=Z_{+}(y)$ in the region $y<0$ if $\sigma>Z_{+}(0)$ , and intersects with the
curve $z=Z_{-}(y)$ in the same region if $\sigma<Z_{-}^{\prime}(0)$ , since

$\lim_{y\rightarrow-\infty}Z_{+}^{\prime}(y)=\infty$ , $\lim_{y\rightarrow-\infty}Z_{-}^{\prime}(y)=-\infty$ .
Hence it follows from (2.2) that the solution $(y(s), z(s))$ of (1.9) which $i8$

placed initially in the region $z>Z_{-}(y)$ or in the region $z<Z_{+}(y)$ tends to
the region $Z_{-}(y)<z<Z_{+}(y)$ as $s$ increases or as $s$ decreases respectively.
Hence we have our claim. If $\alpha=1$ , then we have our claim from the
same reasoning and Fig. 1.3. If $0<\alpha<1$ , then Fig. 1.2 shows our claim.

Furthermore, from (1.9), we have

$\frac{dy}{ds}=0$ , $\frac{dz}{ds}<0$ ,

if $y<0$ and $z=0$ . Hence, in the yz-plane, a solution of (1.9) intersects
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with the negative part of the y-axis once at most.
Moreover, we can claim that a solution $(y(s), z(s))$ of (1.9) satisfies

neither

(3.2) $(y(s), z(s))\rightarrow(-\infty, c)$ , $c\geqq 0$

as $s$ increases, nor

(3.3) $(y(s), z(\epsilon))\rightarrow(-\infty, c)$ , $c\leqq 0$

as $s$ decreases. In fact if there exists a solution $(y(s), z(s))$ of (1.9)
satisfying (3.2), then

$\frac{z(s)}{y(s)}\rightarrow-0$

as $s$ increases. Since $dy/ds<0$ in this case, $z(s)$ is a single-valued function
of $y(s)$ . Therefore it follows from (1.8) that

$\frac{z}{y}\cdot\frac{dz}{dy}=\alpha\lambda^{2}(y-1)+2x\cdot\frac{z}{y}+\frac{\alpha-1}{\alpha}(\frac{z}{y})^{2}\rightarrow-\infty$

as $s$ increases. Hence we have $ dz/dy\rightarrow\infty$ which implies $ z(s)\rightarrow-\infty$ as $s$

increases. This contradicts (8.2). In the similar manner, we can show
that there is no solution of (1.9) satisfying (3.3).

Consequently, we can draw the phase portraits of (1.9).

The case when $\alpha>1$ The case when $0<\alpha<1$ The case when $\alpha=1$

FIGURE 2.1 FIGURE 2.2 FIGURE 2.3

Here the phase portraits of (1.9) of the region $y>0$ can be drawn by
the results of [8]. Notice that $(y, z)=(O, 1/((1-\alpha)s+c))$ ($c$ is a constant)
is a solution of (1.9). Also notice that it is necessary in drawing Fig. 2.3
to show the existence of a solution of (1.8) such that

(3.4) $\lim_{\nu\rightarrow-0}z(y)=c$
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where $c$ is a non-zero constant. Suppose that $\alpha=1$ . Then, from (1.8),
we have

(3.5) $\frac{dz}{dy}=\frac{x^{2}y(y-1)+2xz}{z}$ .
Put $ z=1/\zeta$ , then

$\frac{d\zeta}{dy}=-x^{2}y(y-1)\zeta^{3}-2x\zeta^{2}$ .
Since this equation has the unique solution $\zeta\equiv 0$ satisfying initial condition
$\zeta(y_{0})=0$ for a certain $y_{0},$ $(3.5)$ does not have a solution unbounded as $y$

tends to a finite value. Therefore, if $z(y)$ denotes a nonnegative solution
of (1.8), then we can conclude from Fig. 1.3 that $z(y)$ satisfies (3.4).
Furthermore, if $z(y)$ denotes a nonpositive solution of (1.8) whose curve
lies under the curve representing the solution $z_{-}\wedge(y)$ whose existence is
shown in Lemma 2 and if

$\lim_{y\rightarrow-0}z(y)=0$ ,

then it follows from Lemma 3 that

$\lim_{l\rightarrow-0}\frac{z(y)}{y}\neq\lambda$ .

Therefore, it follows from Lemma 1 that

(3.6) $\lim_{\nu\rightarrow-0}\frac{z(y)}{y}=\infty$ .
Hence, from (3.5), we have

$\lim_{v\rightarrow-0}\frac{dz(y)}{dy}=2_{\lambda}$ ,

which contradicts (3.6). Consequently, all solutions of (1.8) whose curves
lie under the curve representing $z_{-}\wedge(y)$ satisfy (3.4).

Finally, notice that, if $(y(s), z(s))$ denotes a solution of (1.9), then

$y(s)\rightarrow-0$

as $ s\rightarrow\pm\infty$ . In fact, if

$(y(s), z(s))\rightarrow(c, \pm\infty)$ , $-\infty<c<0$ ,

then we can get from this a solution $z(y)$ of (1.8) such that
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(3.7) $\lim_{y\rightarrow c}z(y)=\pm\infty$ .
However, if we put $ z=1/\zeta$ , then we have from (1.8)

(3.8) $\frac{d\zeta}{dy}=-\frac{\alpha^{2}\lambda^{2}y^{2}(y-1)\zeta^{3}+2\alpha\lambda y\zeta^{2}+(\alpha-1)\zeta}{\alpha y}$ .
Since this has a solution $\zeta\equiv 0$ , it follows from the uniqueness of solutions
of (3.8) that (3.7) is impossible.

\S 4. Asymptotic behavior of solutions of (1.6) I.

Let $\phi(t)$ be a positive solution of (1.6) whose domain will be denoted
by $(\omega^{\prime}, \omega)$ in the sequel. In this section, we consider the asymptotic
behavior of $\phi(t)$ as $ t\rightarrow\omega$ .

Since we have $\phi^{\prime\prime}(t)<0$ from (1.6), the limit of $\phi(t)$ as $ t\rightarrow\omega$ always
exists. Now, suppose that

(4.1) $\lim_{t\rightarrow\omega}\phi(t)\neq 0$ .
Then there exist constants $c_{1}$ and $T_{1}$ such that $t\geqq T_{1}$ implies

$\phi(t)>c_{1}>0$ .
Since there exists a constant $\gamma$ such that

$e^{\alpha\lambda t}>\gamma>0$

if $t\geqq T_{1}$ , we have

$\phi^{\prime}(t)<-c_{2}<0$ , $c_{2}=\gamma c_{1}^{1+\alpha}>0$

for $t\geqq T_{1}$ . Therefore

$\phi^{\prime}(t)-\phi(T_{1})<-c_{2}(t-T_{1})$ .
Hence, if $\omega=\infty$ , then

$\lim_{t\rightarrow\omega}\phi^{\prime}(t)=-\infty$ .
Namely, for an arbitrary negative number $R$ , there exists a number $T_{2}$

such that $t\geqq T_{2}$ implies

$\phi^{\prime}(t)<R<0$ .
Hence we have
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$\phi(t)-\phi(T_{2})<R(t-T_{2})$ .
Therefore

$\lim_{\rightarrow\omega}\phi(t)=-\infty$ .
This is a contradiction. Thus we 8uppose that $\omega\neq\infty$ . Then it follows
from (4.1) that

$\lim_{t\rightarrow\omega}\phi(t)=\infty$ .
Therefore we can take $T_{3}$ such that $\phi^{r}(T_{3})>0$ . Since $\phi^{\prime}(t)<0$ , we have

$\phi(t)<\phi^{\prime}(T_{3})$

if $t\geqq T_{3}$ . Integrating the both sides,

$\phi(t)-\phi(T,)<\phi^{\prime}(T_{s})(t-T_{\theta})$ .
As $ t\rightarrow\omega$ , we have

$\phi(T_{8})(\omega-T_{\theta})=\infty$ ,

namely $\omega=\infty$ , which is a contradiction. Thus we have

(4.2) $\lim_{t\rightarrow\omega}\phi(t)=0$ .
It follows from (4.2) that there exists a number $T_{4}$ such that

$\phi^{\prime}(T_{4})<0$ . Since $\phi^{\prime\prime}(t)<0$ , we have

$\phi^{\prime}(t)<\phi^{\prime}(T_{4})$ ,

if $t\geqq T_{4}$ . Hence, if $t\geqq T_{4}$ , then

$\phi(t)-\phi(T_{4})<\phi^{\prime}(T)(t-T_{4})$ ,

which implies

(4.3) $\omega\neq\infty$ .
Now we shall obtain an analytical expression of $\phi(t)$ in the neighbor-

hood of $ t=\omega$ . For this, we transform (1.6) into (1.8) by (1.7). From
(4.2) and (4.3), we have

(4.4) $\lim_{t\rightarrow\omega}y=0$ .
Furthermore, if $t$ is sufficiently close to $\omega$ , then $z>0$ . In fact, if $z\leqq 0$ ,
then we have
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$\frac{dy}{dt}\leqq 0$

from (1.7). This contradicts (4.4). Hence it follows from Lemma 1
that

$\lim_{t\rightarrow\omega}\frac{z}{y}=-\infty$ .
Hence, put

(4.5) $\eta=-y$ , $w=\eta z^{-1}$ ,

then we have

$\eta\rightarrow 0$ , $w\rightarrow 0$ ,

as $ t\rightarrow\omega$ . Moreover, from (1.8) and (4.5), we have

(4.6) $\eta\frac{dw}{d\eta}=\alpha x^{2}(\eta+1)w^{3}+2xw^{2}+\frac{w}{\alpha}$ .

This is a Briot-Bouquet equation. Hence we have

(4.7) $w=\sum_{m+n>0}w_{mn}^{(1)}\eta^{m}\{\eta^{1/\alpha}(C$ log $\eta+\Gamma)\}^{n}$ , $w_{01}^{(1)}=1$

in the neighborhood of $\eta=0$ , where $\Gamma$ is an arbitrary constant, $w_{mn}^{(1)}$ are
constants and $C$ is a constant such that $C=0$ if $ 1/\alpha$ is not an integer.
Reviewing the processes of the formal transformations for obtaining
solutions of Briot-Bouquet equations, we have

(4.8) $w_{m0}^{(1)}=0$ $(m=1,2, \cdots)$ .
If $ 1/\alpha$ is not an integer, then we have from (4.7)

(4.9) $w=\sum_{m+n>0}w_{mn}^{(1)}\Gamma^{n}\eta^{m+(n/\alpha)}$

Since $\eta>0$ and $w>0$ if $t$ is sufficiently close to $\omega$ , it follows from (4.9)
that $\Gamma>0$ . From (1.7), (4.5) and (4.9),

$-1=\sum_{m+n>0}w_{mn}^{(1)}\Gamma^{n}\eta^{m+(n/\alpha)-1}\eta’$ .
Integrating the both sides,

$\omega-t=\alpha\Gamma\eta^{1/\alpha}\{1+\sum_{m+n>0}w_{mn}^{(2)}\eta^{m}(\Gamma\eta^{1/\alpha})^{n}\}$ .
Put
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$\Gamma\eta^{1/\alpha}=\zeta$ ,

then

$\alpha^{-1}(\omega-t)=\zeta\{1+\sum_{*+n>0}w_{nn}^{(2)}(\Gamma^{-1}\zeta)^{\alpha n}\zeta^{n}\}$ .
Therefore, from Smith’s lemma (Lemma 1 of [6] or [7]), we have

$\zeta=\alpha^{-1}(\omega-t)\{1+\sum_{*+n>0}w_{nn}^{(3)}(\alpha^{-1}(\omega-t))^{\alpha n}(\alpha^{-1}(\omega-t))^{n}\}$ .
Hence

$\eta^{1/\alpha}=\alpha^{-1}\Gamma^{-1}(\omega-t)\{1+\sum_{m+n>0}w_{nn}^{(4)}(\omega-t)^{\alpha m+n}\}$ .
It follows from (1.7) that

(4.10) $\phi(t)=\alpha^{-1}x^{2/\alpha}\Gamma^{-1}e^{-\lambda\omega}(\omega-t)\{1+\sum_{n+n>0}\phi_{nn}(\omega-t)^{\alpha n+n}\}$

holds in the neighborhood of $ t=\omega$ , where $\phi_{nn}$ are constants.
Now, we can summarize the above results as follows:

THEOREM 1. If $\phi(t)$ denotes an arbitrary solution of (1.6) and its
domain is denoted by $(\omega^{\prime}, \omega)$ , then $\omega$ is finite and

$\lim_{t\rightarrow\omega}\phi(t)=0$ .
Moreover, if $ 1/\alpha$ is not an integer, then $\phi(t)$ can be represented by an
analytical expression of the form

$\phi(t)=A(\omega-t)\{1+\sum_{f\hslash+n>0}\phi_{rnn}(\omega-t)^{\alpha n+n}\}$

in the neighborhood of $ t=\omega$ , where $A$ and $\phi_{nn}$ are constants.

\S 5. Asymptotic behavior of solutions of (1.6) II.

In this section, we consider the asymptotic behavior of $\phi(t)$ as $t\rightarrow\omega^{\prime}$ .
Let $\phi(t, a, b)$ be a solution of (1.6) satisfying an initial condition

(5.1) $x(t_{0})=a$ , $x^{\prime}(t_{0})=b$ ,

where $t_{0}$ is a fixed constant. If $y(t)$ and $z(t)$ are defined by replacing
$\phi(t)$ by $\phi(t, a, b)$ in (1.7), then we have

(5.2) $z=y^{\prime}=\alpha y(x+\frac{\phi(t,a,b)}{\phi(t,a,b)})$ .
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Moreover, if $y_{0}=y(t_{0})$ and $z_{0}=z(t_{0})$ , then we have

(5.3) $y_{0}=-x^{-2}e^{\alpha\lambda t_{0}}a^{\alpha}$ ,

Conversely we have

$z_{0}=\alpha y_{0}(x+\frac{b}{a})$ .

LEMMA 4. (I) Let $(y_{0}, z_{0})$ be given such that $z_{0}>0$ and let $z_{+}(y)$ be
a solution of (1.8) such that $z_{+}(y_{0})=z_{0}$ . Define $y(t)$ by

$\frac{dy}{dt}=z_{+}(y)$ , $y(t_{0})=y_{0}$ .
Then, if $z_{-}(y)$ is a nonpositive solution of (1.8) which is equal to $z_{+}(y)$

at a point $(\tilde{y}, 0)$ on the y-axis, there exists a number $t_{1}$ such that
(i) $\lim_{t\rightarrow t_{1}+0}y(t)=\tilde{y}$ ,
(ii) $y(t)$ can be continued in the interval $t<t_{1}$ uniquely by

(5.4) $\frac{dy}{dt}=z_{-}(y)$ , $y(t_{1})=\tilde{y}$ .
(II) If $(y_{0}, z_{0})$ is given such that $z_{0}<0$ , then, interchanging signs,

we can get the similar conclusion.
(III) Let $(y_{0}, z_{0})$ be given such that $z_{0}=0$ and let $z_{\pm}(y)$ be solutions

of (1.8) such that

$z_{+}(y)\geqq 0$ , $z_{-}(y)\leqq 0$ , $z_{\pm}(y_{0})=0$ .
Then $y(t)$ can be defined uniquely by

(5.5) $\frac{dy}{dt}=\left\{\begin{array}{ll}z_{+}(y) & if t>t_{0}\\0 & if t=t_{0}\\z_{-}(y) & if t<t_{0}\end{array}\right.$

$y(t_{0})=y_{0}$ .
PROOF. (I) If $(f(t), g(t))$ is a solution of

(5.6) $\left\{\begin{array}{l}\frac{dy}{dt}=z\\\frac{dz}{dt}=\frac{\alpha^{2}\lambda^{2}y^{2}(y-1)+2\alpha xyz+(\alpha-1)z^{2}}{\alpha y}\end{array}\right.$

$y(t_{0})=y_{0}$ , $z(t_{0})=z_{0}$ ,

then we have
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$(f(t), g(t))=(y(t), z_{+}(y(t)))$

in a region where $z_{+}(y(t))\neq 0$ . Since the phase portraits of (5.6) in $y<0$

can be also shown by Fig. 2.1-Fig. 2.3, there exists a number $t_{1}$ such
that $g(t_{1})=0$ and $g(t)\neq 0$ if $t\neq t_{1}$ . Hence we have

$f(t_{1})=\lim_{t\rightarrow t_{1}+0}y(t)=\tilde{y}$
, $z_{+}(\tilde{y})=\lim_{t\rightarrow t_{1}+0}z_{+}(y(t))=0$ .

Moreover $f(t)$ satisfies (5.4), since $z_{-}(y)$ is equal to $g(f^{-1}(y))$ . Hence it
suffices to define $y(t)=f(t)$ in the region $t<t_{1}$ for the continuation of
$y(t)$ . If $u(t)$ is another solution of (5.4), then $(u(t), z_{-}(u(t)))$ satisfies
(5.6) and

$u(t_{1})=\tilde{y}$ , $z_{-}(u(t_{1}))=0$ .
Therefore, from the uniqueness of solutions of (5.6), we have $f(t)=u(t)$ .

(II) This can be shown by the similar reasoning.
(III) If $(f(t), g(t))$ denotes a solution of (5.6), then $(f(t), g(t))$ satisfies

(5.5), since $z_{\pm}(y)$ is equal to $g(f^{-1}(y))$ if $t\neq t_{0}$ . Thus it suffices to put
$y(t)=f(t)$ for completing the proof.

Let $z_{-}\wedge(y)$ be a nonpositive solution of (1.8) whose existence was shown
in Lemma 2 and let $z_{+}\wedge(y)$ be a solution of (1.8) which is nonnegative and
connects with $2_{-}(y)$ at a point of the y-axis whose coordinate will be
denoted by $(y_{*}, 0)$ . Define $y(t)$ by

(5.7) $\frac{dy}{dt}=z_{-}\wedge(y)$ .

Then, since $z_{-}\wedge(y)$ is represented by (2.13) in the neighborhood of $y=0$ ,
we have

$\frac{dy}{dt}=\alpha xy(1+o(1))$

as $y\rightarrow-O$ . Hence, noticing that $y<0$ ,

(5.8) $-y(1+o(1))=Ce^{\alpha\lambda t}$ , $C>0$ .
Therefore, as $y\rightarrow-O$ , we have

$ t\rightarrow-\infty$ .
Furthermore, from (5.8),

$y=\sum_{n=1}^{\infty}\tilde{a}_{n}(-Ce^{\alpha\lambda t})^{n}$ , $\tilde{a}_{1}=1$ .
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Hence it follows from (1.7) that

(5.9) $\phi(t)=x^{2/\alpha}C^{1/\alpha}\sum_{n=0}^{\infty}\hat{a}_{n}(C)e^{\alpha\lambda nt}$ , $\hat{a}_{0}(C)=1$ ,

where $\hat{a}_{n}(C)(n=1,2, \cdots)$ are constants depending on $C$. Consequently
$\omega^{\prime}=-\infty$ and, as $ t\rightarrow-\infty$ , we have

(5.10) $\phi(t)\rightarrow x^{2/\alpha}C^{1/\alpha}>0$ .
Now, let $\gamma$ be a curve defined by $z=z_{+}\wedge(y)$ and $z=\hat{z}_{-}(y)$ and let $D$ be

a region surrounded by $\gamma$ and the z-axis.
If $y_{*}<y_{0}$ , then, from (5.3), we have

$0<a<x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$

If $a$ is fixed so as to satisfy this, then a straight line $y=y_{0}$ intersects
with $\gamma$ at two points. Hence, it follows from (5.3) that, if $(y_{0}, z_{0})$ is
equal to the coordinate of the intersection, then $b$ attains two values
which will be denoted by $b_{1}$ and $b_{2}$ , where $b_{1}>b_{2}$ . From Lemma 4, we
can determine $y_{i}(t)(i=1,2)$ uniquely by

(5.11) $\frac{dy}{dt}=\left\{\begin{array}{ll}z_{+}\wedge(y) & if t>t(b_{i})\\0 & if t=t(b_{i})\\z_{-}\wedge(y) & if t<t(b_{i})\end{array}\right.$

$y(t_{0})=y_{0}$ ,

where $t(b_{i})$ is a number such that

$z_{+}\wedge(y(t(b_{i})))=z_{-}\wedge(y(t(b_{i})))=0$ .
Hence, through (1.7), we can get two solutions $\phi(t, a, b_{1})$ and $\phi(t, a, b_{2})$ of
(1.6) which satisfy (5.9) and (5.10). Here we show that

(5.12) $\lim_{t\rightarrow-\infty}\phi(t, a, b_{1})<\lim_{t\rightarrow-\infty}\phi(t, a, b_{2})$ .
Since $z_{0}$ depends on $b$ , we here write $z_{0}(b)$ instead of $z_{0}$ . Then we have
from (5.3)

$z_{0}(b_{1})<0<z_{0}(b_{2})$ .
Hence it follows from Fig. 2.1-Fig. 2.3 that there exists a positive number
$h$ such that

$y_{1}(t_{0})=y_{a}(t_{0}-h)$ .
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Furthermore, there exists a positive constant $\tau$ such that $y_{1}(t_{0}-\tau)$ is in
the region where the power series representing the left-hand side of
(5.8) converges. Since the right-hand side of (5.11) do$es$ not depend on
$t$ , we have

$y_{1}(t_{0}-\tau)=y_{2}(t_{0}-h-\tau)$ .
Therefore, from (5.8), we have

$C_{1}e^{\alpha\lambda(t_{0}-p)}=-y_{1}(t_{0}-\tau)(1+o(1))=-y_{2}(t_{0}-h-\tau)(1+o(1))=C_{2}e^{\alpha\lambda(\iota_{0}-h-\tau)}$ ,

where $C_{i}(i=1,2)$ are constants corresponding to $C$ of (5.8). Hence

$C_{1}=C_{2}e^{-\alpha\lambda h}<C_{2}$ .
Consequently, we obtain (5.12) from (5.10).

If $a=x^{2\prime\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ , then $(y_{*}, 0)$ is the only point at which the
straight line $y=y_{0}$ touches $\gamma$ . Therefore, it follows from (5.3) that, if
$b=-ax$ , then $\phi(t, a, b)$ is a solution of (1.6) which satisfies (5.9) and (5.10).

THEOREM 2. (I) If $0<a<x^{2/a}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ , then there exist two num-
bers $b_{1}$ and $b_{2}$ with $b_{1}>b_{2}$ such that $\phi(t, a, b_{i})(i=1,2)$ can be continued
up to $ t=-\infty$ and

$ 0<\lim_{\rightarrow-\infty}\phi(t, a, b_{1})<\lim_{t\rightarrow-\infty}\phi(t, a, b_{2})<\infty$ .
Moreover, $\phi(t, a, b_{i})$ can be represented by an $analyt\dot{j}cal$ expression of the
form

$\phi(t, a, b)=A_{i}\sum_{n=0}^{\infty}\phi_{n}^{\{)}e^{\alpha\lambda nt}$

in the neighborhood of $ t=-\infty$ , where $A_{i}$ and $\phi_{n}^{(i)}$ are constants and
$\phi_{0}^{(i)}=1$ .

(II) If $a=x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ and $b=-ax$ , then $\phi(t, a, b)$ can be continued
up to $ t=-\infty$ and

$ 0<\lim_{t\rightarrow-\infty}\phi(t, a, b)<\infty$ .
Moreover, $\phi(t, a, b)$ can be represented by an analytical expression of the
form

$\phi(t, a, b)=A\sum_{n=0}^{\infty}\phi_{n}e^{\alpha\lambda nt}$

in the neighborhood of $ t=-\infty$ , where $A$ and $\phi_{n}$ are constants and $\phi_{0}=1($
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Next, we consider the case when the initial value $(y_{0}, z_{0})$ is placed
in $D$. Suppose that

$0<a<\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ , $b_{2}<b<b_{1}$ .
Then, from (5.3), we have $(y_{0}, z_{0})eD$. Now, we take the solution $(y(s)$ ,
$z(s))$ of (1.9) passing through the point $(y_{0}, z_{0})$ . From $(y(s), z(s))$ , we can
get a solution $z_{+}(y, b)$ of (1.8) in the region $z>0$ and a solution $z_{-}(y, b)$

of (1.8) in the region $z<0$ . Hence, it follows from Lemma 4 that there
exists a number $t(b)$ such that $y=y(t, b)$ can be defined by

(5.13) $\frac{dy}{dt}=\left\{\begin{array}{ll}z_{+}(y, b) & if t>t(b)\\0 & if t=t(b)\\z_{-}(y, b) & if t<t(b)\end{array}\right.$

$y(t_{0})=y_{0}$ ,

uniquely. By using $y(t, b)$ , we get the solution $\phi(t, a, b)$ of (1.6) which
satisfies (5.1) from (1.7).

On the other hand, it follows from Lemma 1 that

$\lim_{y\rightarrow-0}z_{-}(y, b)=0$ ,

(5.14) $\lim_{y\rightarrow-0}\frac{z_{-}(y,b)}{y}=\alpha x-0$ .

Hence, it follows from Lemma 2 and (2.15) that

(5.15) $\lim_{\nu\rightarrow}\underline{\sup_{0}}\frac{v_{-}(y)}{y}>x$

where

$ v_{-}(y, b)=y^{-1}z_{-}(y, b)-\alpha\lambda$

Moreover, from (5.2) and (5.14), we have

$\lim_{t\rightarrow w^{\prime}}\frac{\phi(t,a,b)}{\phi(t,a,b)}=-0$ .

Since $\phi(t, a, b)>0$ and $\phi^{\prime}(t, a, b)<0$ , we have

(5.16) $\phi(t, a, b)<0$ .
Hence, as $t\rightarrow\omega’,$ $\phi(t, a, b)$ does not tend to $0$ . Therefore, if $-\infty<\omega’<t_{0}$ ,
then
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$\lim_{t\rightarrow w^{\prime}}\phi(t, a, b)=\infty$ .
However, since $\phi^{\prime}(t, a, b)<0$ , there exists a positive number $T_{1}$ such that,
if $t\leqq T_{1}$ , then

$\phi^{\prime}(t, a, b)>\phi(T, a, b)$ .
Integrating the both sides,

$\phi(T_{1}, a, b)-\phi(t, a, b)>\phi^{\prime}(T_{1}, a, b)(T_{1}-t)$ .
Hence, as $t\rightarrow\omega’$ , we have a contradiction $\omega’=-\infty$ . Thus we have

(5.17) $\omega^{\prime}=-\infty$ .
From (1.7) and (5.2),

(5.18) $y^{-1}v_{-}(y, b)=-\alpha\lambda^{2}\frac{\phi^{\prime}(t,a,b)}{e^{\alpha\lambda t}\phi(t,a,b)^{1+\alpha}}$ .
However, since (5.16) holds, $\lim_{t\rightarrow\omega}’\phi(t, a, b)$ exists. If $0<\lim_{\rightarrow\omega}’\phi(t, a, b)<$

$\infty$ , then it follows from (5.17) that

$\lim_{t\rightarrow-\infty}e^{\alpha\lambda t}\phi(t, a, b)^{1+\alpha}=0$ .
Hence, if $\lim_{t\rightarrow-\infty}\phi^{\prime}(t, a, b)=0$ , then, applying l’Hospital’s theorem to (5.18),
we have

$\lim_{y\rightarrow\infty}r^{1}v_{-}(y, b)=\lambda$ .
This is contrary to (5.15). Hence we have

$\lim_{t\rightarrow-\infty}\phi^{\prime}(t, a, b)\neq 0$ .
Namely, for all $t$ , there exists a positive number $\epsilon$ such that

$\phi^{\prime}(t, a, b)<-\epsilon<0$ .
This implies

$\lim_{t\rightarrow-\infty}\phi(t, a, b)=\infty$ ,

which contradicts our hypothesis. Thus we have

$\lim_{t\rightarrow-\infty}\phi(t, a, b)=\infty$ .
THEOREM 3. If $0<a<x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ and $b_{2}<b<b_{1}$ , then $\phi(t, a, b)$ can
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be continued up to $ t=-\infty$ and

$\lim_{t\rightarrow-\infty}\phi(t, a, b)=\infty$ .
Finally, we consider the case when $(y_{0}, z_{0})$ is in the outside of the

closure of $D$ . In this case, one of the following three statements holds;
(i) $\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}\geqq a>0$ and $b>b_{1}$ ,
(ii) $x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}\geqq a>0$ and $b<b_{2}$ ,
(iii) $\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}<a$ .
Here it is supposed that, if $a=x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ , then $b_{1}=b_{Z}=-ax$ .

In the same manner as in the previous case, we take a solution
$(y(s), z(s))$ of (1.9) passing through the point $(y_{0}, z_{0})$ and get the solutions
$z_{+}(y, b)$ and $z_{-}(y, b)$ of (1.8) which are nonnegative and nonpositive re-
spectively. Furthermore, since we can define $y(t, b)$ uniquely so as to
satisfy (5.13), we can get the solution $\phi(t, a, b)$ of (1.6) which satisfies
(5.1) from (1.7).

Since we showed in Lemma 3 that $z=z_{-}\wedge(y)$ is the minimal solution
of (1.8) satisfying $\lim_{y\rightarrow-0}y^{-1}z=\alpha\lambda$ , we have from Lemma 1

$\lim_{y\rightarrow-0}\frac{z_{-}(y,b)}{y}=\infty$

Hence, from (5.2), we have

$\lim_{t\rightarrow\omega^{\prime}}\frac{\phi(t,a,b)}{\phi(t,a,b)}=\infty$ .

Since $\phi(t, a, b)>0$ , there exists a constant $T_{1}$ such that $t<T_{1}$ implies

(5.19) $\phi(t, a, b)>0$ .
Hence, as $t\rightarrow\omega^{\prime},$ $\phi(t, a, b)$ does not tend to $0$ , for $\phi^{\prime\prime}(t, a, b)<0$ . Namely,
there exist constants $\epsilon$ and $T_{2}$ such that $t\leqq T_{2}$ implies

$0<\epsilon<\phi^{\prime}(t, a, b)$ .
Therefore

$\epsilon(T_{2}-t)<\phi(T_{2}, a, b)-\phi(t, a, b)$ .
From this we can deduce a contradiction

$\lim_{t\rightarrow-\infty}\phi(t, a, b)=-\infty$ .
Hence we have $\omega^{\prime}\neq-\infty$ . Consequently, from (5.19),
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$\lim_{t\rightarrow\omega}\phi(t, a, b)=0$ .
Therefore, from (1.7), we have

$\lim_{t\rightarrow\omega^{\prime}}y(t, b)=0$ .
Hence, if we put

$\eta=-y$ , $w=\eta z^{-I}$ ,

then we get (4.6) from (1.8). In the same manner as in \S 4, we have
an analytical expression of the solution $\phi(t, a, b)$ of (1.6), if $ 1/\alpha$ is not
an integer.

THEOREM 4. Suppose that $a$ and $b$ 8atisfy one of the following
statements;
(i) $x^{2/a}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}\geqq a>0$ and $b>b_{1}$ ,
(ii) $x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{\iota/\alpha}\geqq a>0$ and $b<b_{2}$ ,
(iii) $\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}<a$ ,
where $b_{1}=b_{2}=-ax$ if $a=x^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ . Let $(\omega’, \omega)$ denote the domain
of $\phi(t, a, b)$ . Then $\omega$

’ is finite and

$\lim_{t\rightarrow\omega}\phi(t, a, b)=0$ .
Furthermore, if $ 1/\alpha$ is not an integer, then $\phi(t, a, b)$ can be represented
by an analytical expression of the form

$\phi(t, a, b)=A(t-\omega^{\prime})\{1+\sum_{n+n>0}\phi_{nn}(t-\omega’)^{an+n}\}$

in the neighborhood of $t=\omega^{\prime}$ , where $A$ and $\phi_{nn}$ are $co$nstants.

From the above theorems, we can draw figures which represent
the asymptotic behavior of solutions of (1.6) as follows:

$0<a<\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}$ $\lambda^{2/\alpha}e^{-\lambda t_{0}}(-y_{*})^{1/\alpha}=a$ $\lambda^{2/\alpha}e^{-\lambda t_{0}}\langle-y_{*})^{1/\alpha}<a$

FIGURE 3.1 FIGURE 3.2 FIGURE 3.3
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