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§1. Introduction and statement of results.

The purpose of this paper is to study the asymptotic stability in
Wmr.sense for the Yang-Mills gradient flow around stable Yang-Mills
connections.

We first concern with a closed connected Riemannian n-manifold
(M, h) and consider a G-vector bundle E=Px, R" associated with a G-
principal bundle P over M. Here, G is a compact connected Lie group
and o is a faithful orthogonal representation po: G— O, of G.

On the space C; of connections on E preserving the inner product
of E, we consider the Yang-Mills functional (Y-M functional)

YM(V)=—;-§M|RV12dhx . 1.1)

Here R¥ and d,x denote the curvature tensor of connection V and the
Riemannian measure on (M, k), respectively and | | is the norm determined
by the inner product on E.

A critical point of the above functional (1.1) is called a Yang-Mills
connection (a Y-M connection) and the corresponding curvature field is
called the Yang-Mills field (the Y-M field), respectively. A Y-M connec-
tion is said to be stable if it minimizes (1.1) locally. Moreover, a Y-M
connection V is said to be strictly stable if the second variation of Y-M
functional at V is strictly positive on a transversal orbit of the gauge
group action on C; (see Definition 2.1). These notions are referred to
Bourguignon-Lawson [3]. Typical examples of the stable Y-M connec-
tions are well-known self-dual connections on 4-sphere S* Moreover,
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Bourguignon-Lawson [3, Theorem 9.1] have given examples of the strictly
stable connection on a certain vector bundle over S*/I" (n=4).

It is probable that in a suitable topology any connection near a
stable Y-M connection should converge to the Y-M one through the in-
tegral curve of the gradient flow of Y-M functional:

av(t) _
dt

with the initial condition V(0)=V,eC.;, where X=grad YM(V) is the
gradient vector field of Y-M functional.

In doing so, we have difficulties, however, because the vector field
X is so degenerate on orbits of the gauge group actions. Introducing a
r1gid coordinate on C; in accordance with the action of the gauge group,
we observe the curve of gradient flow explicitly (cf. §2).

Leaving the precise definition in section 2, we state our first result
as follows:

—grad YM(V(?)) (1.2)

THEOREM A. Let M be a closed connected Riemannian manifold and
FE is a G-vector bundle over M. A strictly stable Y-M connection V € Cyg
18 asymptotically stable im W™"-sense for m=2, r>n.

Most of difficulties for obtaining Theorem A come from how we
can recover the parabolicity. We shall reduce (1.2) to a system of
semilinear evolution equations of parabolic type by using the admissible
coordinate given in section 2. These equations seem to be similar to
the Navier-Stokes ones for an incompressible fluid. We shall construct
a global solution of (1.2) by making use of the fractional powers of a
certain dissipative operator like Fujita-Kato [5].

Subsequently, we observe the flat connection V on a smooth vector
bundle E over (i) a bounded domain M in R” with smooth boundary oM
and (ii) the whole space R*. In these cases, we have YM(V)=0, so that
V attains the absolute minimum of the Y-M functional. Furthermore,
both cases are strictly stable in a slightly modified sense of [3] (ef.
Definition 2.2). In treating these, we may reformulate the situation
and the definitions stated as above for these cases. Sections 2 and 3
will be devoted to a precise formulation included for these cases. Using
a method similar to that in the proof of Theorem A, we shall show in
section 4: '

THEOREM B. Let E be a smooth vector bundle over a bounded do-
main M in R™ with smooth boundary oM. Then the flat connection V
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18 asymptotically stable im W™-sense for m=2, r>n.

Finally in section 5, we shall give the following result whose proof
needs some techniques different from the previous ones.

THEOREM C. The flat connection V on the smooth vector dbundle E
over R" is asymptotically stable in W™ -sense for m=2.

The reason why we offer Theorem C is that one seems to obtain
the asymptotic stability by using the method of the proof similar to
that of Theorem C when V is weakly stable. In fact, in the proof of
Theorem C, we shall not make use of the abstract theory of the bounded
semi-group but the (L=, L%-estimates for the solution of the heat equation
on R*. The method of (L", LY)-estimates seems to be useful in observing
the asymptotic stability for the various self-dual connections, which will
be presented in the forthcoming paper.

REMARK. Kono-Nagasawa [11] gave another treatment for the gradi-
ent flow of Y-M functional. They showed a global existence and a decay
property of the solution for the Y-M gradient flow equation around the
flat connection of a trivial vector bundle over R". In these results,
however, the gradient flows are restricted on the directions of the gauge
orbit in the space of connections C,. Therefore, they do not give any
description around the whole neighborhood of the Y-M connections in
Cs.

§2. Admissible coordinate on Cj.

We give our basic set-up and notations used throughout this paper,
although these are mainly due to Bourguignon-Lawson [3].

Let M be a smooth, connected Riemannian n-manifold with the metric
h. In what follows, we shall discuss such manifolds M as the following
types (I), (II) and (III);

(I) compact Riemannian manifolds without boundary,
(IT) bounded domains M in R* with the smooth boundary oM,
(II1) Euclidian n-space R".

Take a coordinate neighborhood U of M with the coordinates (z*,: - -, z"),
where we take the whole space M as U in the case of (II) or (III). Let
E be the smooth vector bundle associated with the principal G-bundle P
over M. We denote by k& the inner product on E. On a coordinate
neighbourhood U, we trivialize E|,=UXR" and use the coordinate
(@ o0, 2", wy oo, u”)=(x, ) on it. Using this coordinate, we shall
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express some geometric quantities. For the Einstein’s summation con-
vention, we give a list of indices as follows:

%, 3, l=1,¢¢, n=dim M,
a, b c=1,-+-, N=dim E .

The Riemannian metric # on M and the inner product ¥ on E can be
written by h=(h,;(x)) and k=(k,(x)) on U, respectively. Let g be the
smooth vector bundle whose fibre g, at x€ M is the skew-symmetric
endomorphisms of E, with respect to k. We denote by 27(g;) the set of
all g,-valued smooth p-forms and by C; the set of all smooth connections
on E. For the connection Ve C;, we denote by w;(x)=(w;i(x)) the com-
ponent of V on U. For example, for ¢¢€2'(g;) with the component
(@) =(p,i(x)) in U, the covariant derivative of ¢ can be given by

Vj¢tg(x) = aj¢1g(m) - ,i(m)@g(m) + wj?(“)@ﬁ(“’) - w,i(m)@g(’x) 2.1)

on U, where I'l,(x) is the Christoffel symbol of k. The connection V
acts on other g.-valued tensor fields according to the derivation rules
(cf. Bourguignon-Lawson [8, (2.1)]). In the same way, the exterior
covariant differentiation d can be defined as usual (cf. [3, (2.8)]). We
denote by RYe Q%g,) the curvature tensor of VeC; which can be ex-
pressed as

R, ;3(x)=0,w,5(x) — 0,04 (x) + 0.(2)0;3(%) — @2 (X) @ i) - (2.2)

We choose an arbitrary connection VeC, in case (I). In case (II) or
(III), we take V as the flat connection, i.e. I';)(x)=0 and w,i(x)=0.
We introduce the Hilbert inner product on 27(gz) as

(4, By=——=| A% @B, @) 2.3)
2 Ju

for A=(A4,,...,5x), B=(Bi...,{(x) € 2°(gs). Here A" *si(m)=h"i1(@): -+ X

h'pir(@)A;,...;,5(x) (A*(2)); the inverse matrix of (& ;(x))). For m=1,2,---
and r>1, we define the W™"-norm on 27(gz) by

. , i/r
Al = — { b SM[V‘l“"ﬂA’l""Pz(x)Vil...,,A,-l...,-p’;(:v)]"zdhx} (2.4)

for Ae7(g;). Wm™r(Q27°(gz)) is the completion of the set {A € Q%(gz);
|Allm.<oo} with respect to the norm || ||l., In particular, we set
Ygz)=2"(az) if M is of type (I) or (III), 2i(gz)={A € 2'(gz); A is tangent
to the boundary oM} if M is of type (II). We denote by W™"(2i(gz))
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the completion of the space {A € 2i(gz); ||Allm.<oo} with respect to the
norm || ||,.,. For the definition and the properties of the differentials
on W™’-space, see, for example, Aubin [1].

Let Cy, be the set V,=V-+ A of connections, where A e Qi(gz). Then,
by the identification C;,=02g;), we can introduce W™"-norm on Czoe We
denote by W™"(C;,) the completion of C;, with respect to the W™ -norm.
Clearly, W™"(Cyzo)={V+A; Ac W™"(Qig8:)}. In this stage, we can extend
the Y-M functional YM on C;, defined by (1.1) to

YM™": Wnr(Cpo)— R (2.5)

for m=1 and 1/r<Min.{1/2, 1/4+m/n}.
The following is easy to see (ef. [3, (2.11) Theorem]):

LEmMA 2.1. If VeCy, is a Y-M connection, then it holds
| G"RM) (@)= — VIR, (x)=0, | (2.6)
where 67 18 the formal adjoint of d-.

We denote by X™7(C.) the set of all W™ -vector fields on C;. As-
sociated with (1.1), we define the vector field X™* on C, which can be
considered as an element of X™"(C,)* (the dual space of X™7(C;)):

(X™7(V), W(V))=dYM™"(V)(W(V)) for WeXx™"(Cp) , (2.7)

where dYM™7(V) is the differential of (1.1) at Ve W™7(C,) and (-, -)
denotes the duality between X™7(Cp)* and X™7(Cy). We call X™* de-
termined by (2.7) the gradient vector field of the functional YM™" and
denote it by X™"=grad YM™". Obviously, X™ is stationary at V if V
is a Y-M connection.

Now, let us consider the integral curve of grad YM™* in W™(C,):

il%: ——grad'YM””(V(t)) | (2.8)

with the initial condition V(0)=V,eC;.

We denote by & the gauge group which is the set of all automor-
phisms g on E preserving the inner product of E. Expressing ge < by
g=(gi(x)) in the coordinate U, we introduce the W™'-norm on ¥ as

gl ={ S| (V- Vogs@)V,, -+ Vo g2@) i)} (2.9)

Denote by W™"(%) the completion of the space {ge€ Z; ||g|ln.<oo}
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with respect to the norm || ||.,. Let g be the set of all infinitesimal
automorphisms s on E. Denoting s=(si(x)) on U, we get 8,,(x)+8,.(x)=0,
where 8,,(x)=k,.(x)s{(x). It can be easily seen that g=2%g:). Hence we
may introduce the W™-norm on g by (2.4) and denote by W™7(g) the
completion of the space {8€g=02°gz); ||8llm <o} with respect to this
norm. :

Let exp: g— G be the exponential mapping. Then we get the mapping

exp: g— % (2.10)

by (exp¢)(x)=expg(x). Here for each xe€ M, ¢(x) can be considered as
an element of g by using the representation 0: G—O,. The following
proposition is proved by the successive approximation or the method
similar to Omori [14]:

PROPOSITION 2.2. Suppose that m=2, r=n and j=0,1,.-.. For
$€ W™ (2gz) and seCi([0, «); W™"(g)), there ewxists a wumique g€
Ci([0, ); W™(¥)) such that

____dfii@ =g(t)-s(t) (¢>0), g0)=exp™p. (2.11)

Here exp™” denotes the smooth extemston of (2.11) as
exp™” : W™ (g) — W™"(¥). (2.12)

REMARK. For m and r as above, W™"(¥) is closed for the pointwise
multiplication. Concerning (2.12), W™"(g) and W™"(<) are considered not
as the Lie algebra and the Lie group, respectively, but simply as the
linear spaces.

Note that & acts naturally on C; as

V¢=goVog™ for gez and VeC(C;. (2.13)

The Y-M functional (1.1) is left invariant under the action (2.13) above.
Now, let us take a connection VeC; and fix it. Then we can get a
natural splitting of the tangent space T,C; by

TCr=2'(8z)=Z"(8:)PD2%(g:) (direct sum), (2.14)
where

Z\(gz)={d"¢ € 2i(8z) ; ¢ € 2°(gx) N(kerd)*},
25,4(8s)= {A e 0igz) ; 6"A=0}. '




YANG-MILLS GRADIENT FLOW 393

Note that if V is irreducible, then (kerd")*=. Let us consider a
smooth mapping o: Z(g;)PD2} +(8z) — 2i(gz) defined by

o(d'g, A)=exp (V+A)expgp—V . (2.15)
Clearly, o can be extended to the smooth map:
o™+ W™(ZY @)D W™ (25,4(85) — W™ (24(8x)) (2.16)

(W™(X); the completion of the space {u € X; ||ull,,< e} with respect to
the norm | |,..,).

Now, using the argument in Lawson [13, p. 34], we see that Fréchet
derivative Dg™ (0, 0) is an isomorphism on W™r(24az)). Therefore, there
exist open neighbourhoods U,, U, and U of 0 in W™r(Z*8xs), W™ (2}, .(8z))
and W™"(Qi(az)), respectively such that 0™ |y,xv, 18 a diffeomorphism from
U x U, onto U. In this way, we get a coordinate system (in W™"-gense)
(6;U,U, U, around V and call it an admissible coordinate around V.
Taking A=0 in (2.15), we obtain the action of gauge group in C;, by

va(d‘7¢,' 0)=gVg, where g=expg. 2.17)

This is an orbit through Ve Cr,. and the tangent space of this orbit at
V coincides with Z(gy).

DEFINITION 2.1. A Y-M connection vVeC;, is called stable if

=0 (2.18)

t=0

dZ
TZZZ_YM(V')

for any smooth curve V, in C,, with V,=V. Moreover V is strictly
stable if in addition to (2.18)

& ,
L ymv)| >0 (2.19)

for any smooth curve V, in C,, with V,=V and av,/dt),—, € 2} ().

In this stage, our definition of an asymptotic stability reads as
follows:

DEFINITION 2.2. Let m=2 and r>1 with 1/»<Min.{1/2, 1/4+m/n}.
A Y-M connection VeC, is called asymptotically stable in W™"-sense if
there exist open sets 0e U,cU,, 0e U,c U, and 0 ¢ Uc U of an admissible
coordinate (o™; U, U, ) satisfying the following properties:

For ({d'¢, A}e U, x U, there is a unique curve {4(t), A)}z0 €
Wmr(Z(gg)) X W™7(2} «(az)) such that
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(i) {o@), A@t)} e U x U, for t>0;

(ii) V(@E)=V+o™"(d¢(t), A®)) is the solution of (2.8) with the initial
data V(0)=V+o™"(d ¢, 4,);

(iii) The connection V(t) converges to V up to the action of W"‘ .
gauge transformation as t—oco in W™(2'(gs)), that is,

ltgrg(g(t)”lv(t)g(t)—V)=0 in W (2'8x) » (2.20)
where g(t)=exp ¢(t).

Note that for V,e W™"(C;) with V,—V e U, we can take {d"g, A} €
U, x U, uniquely so that V,=V+o™"(d"6, 4). Hence (ii) means the
solvability of the initial value problem of (2.8) for any V, near V in
W™ r-norm.

§3. Gradient flow for the Y-M functional.

In this section, we shall give the explicit expression of the gradient
flow of the Y-M functional (2.8) in the admissible coordinate (2.16). In
what follows, the differentiation should be understood in the generalized
sense (in the sense of W™). We shall compute as if the quantities A,
s, g,+++, ete. were sufficiently smooth, which can be easily extended
to our generalized situation.

3.1. Equations of the gradient flow.

LEMMA 3.1. Let X=grad YM be the gradient vector field of (2.7).
Then for any C=-mapping W: Cg,— 2i8z), we have
(X(V), W(V))= ("7, W(V)) 3.1)
for each V €Cg,. ‘
PrOOF. Let V, be a smooth curve in Cg, with V,=V and dV,/dt|.-,=

W(V). By the definition of the gradient vector and by the straight
forward calculation as Bourguignon-Lawson [3, (2.21) Theorem], we have

& XMV ema= (X V), W) =GR, WV) -
Take a connection ‘\'7e}CE,0 and fix it. Let us give some formulae

‘and properties for the curvature tensors in [3, section 2].

PROPOSITION 3.2. Let A € 24(gz)- _We have:
(i) The curvature tensor R'4 of V+A is given by
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R4 (@) =R" ;5()+d" A, ;2(2) +[A, A);4x) , 3.2)
where .
4, ALi@)=AL@Af @) —Ag@As@) ; (3.3)
(ii) - The divergent 6"*4S for Se Q%g;) is given by
8748,5()=8"S,5(w) + S, Ali(a) , B
where |
[S, Al§(®)=S,;5(x) A% (x) — S,;2(x) A%y(w) (3.5)

We also need the formulae for gauge actions.
PROPOSITION 8.3. Let ge &. We have
RY=gRg™, ' (3.6)
v'()""“’.RV" =g6"R'g™* , 3.7
where Vi=goVog™,

~ Take a Y-M connection VeCy, and fix it. Making use of these
formulae, we compute (2.8). Although our -calculation is done in
Z'(8)D2%,4(ax), it still holds in W™ (Z'(g))@ W™ (2} «(8z)). Let 4(t) and

A(t) be smooth curves in 2°g,)N (kerd")* and 25,+(8z), respectlvely We
consider the map

o(t) :=0(d’4(t), A(t))=9g(E)(V+A®E)g(t)*—
where g(t)=exp ¢(t). Differentiating the above directly, we have

420 —g){ 24D 1 [v+ A, s} ot , (3.8)

where s(t)=g(t)"'dg(t)/dt; |
[V+A4, slé@)=d's3()+[4, s15@) ; NEY)

[A 8lis (%)= A 2(x)s5(a) — A5(2)s () . (3.10)

On the other hand we obtain by Propos1t10ns 3.2-38.3 ‘
§THID RV — g()(§7H4W® RU+A®) g g)~1 » (8.11)

=g(t)(RT+0"d"A(t)+[R", A()]+Q(At)))9(t)™,

where
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Q(A)s(x)=0"[A, Als(x)+[d A, Ali(x)+I[4, A], Als) . (3.12)
See (8.3)-(3.5). Since 6°R"=0 and since i*A=0, we have

PROPOSITION 3.4. Let Ve Cg, be a Y-M connection and let ¢(¢) and
A(t) be smooth curves in 2°(gz) N (kerd")* and 2 .(8xs), respectively. Then
(2.8) can be written as

dgi(:t) = —{L"A®t)+Q(A®) +[A(®), s(®)]+d"s(®)} ,

'A(t)=0,
where s(t)=(exp ¢(t))*d(exp ¢(t))/dt and
L'A=(d°0"+0"d")A+[R", A] . (3.13)

(Eq,)

(Eq,) makes sense and gives the equation of the gradient flow of
the functional YM™* defined by (2.5), whenever m=2 and r=n (see
Lemma 4.4). '

3.2. Reduction of (Eq,) to the abstract evolution equation. We
shall solve (Eq,) with initial condition A(0)=A, by making use of the
abstract theory of evolution equations.

In case M is of type (I) or (II). At first, we assume that M is of
type (I). Let G be the Green operator of AY:=d%"+4"d’ acting on
2%gz). That is, G' is the linear operator defined by AG"7"+H7'=% for
all 7 € 2°(gz), where H is the projection onto the space (e 2%g:); A'r=0}.
We denote by G(z, ¥), (x, y) € Mx M, the kernel function of G* and define
a linear operator P by - '

Pu=u—d’y  for wue€2(as)

where 7(x)=(d'G"(z, -), w) ((+, +); the inner product in 02%gz)). Since AY
is the symmetric elliptic differential operator of second order, we have

N DI, = C %] m,» (3.14)

for all u € Q'(g;) with C independent of u. Hence P is uniquely extended
to the bounded operator P, on L"(2'(gz)). It is easy to see that P2:=P,
and we obtain the decomposition

L"(24g:)=R(P,)®R(I—P,) (direct sum) 7 (3.15)
(R(T); the range of the operator T).
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In case M is of type (II), we ean choose such projection operator P,
onto L"(£; ,(gz)) as the one constructed by Fujiwara-Morimoto [7]. Now,
set

:=R(P,).

Then it follows from Ebin [4] (m case (I)) and Fujiwara-Morimoto [7]
(in case (II)) that

X,=L"(2,(@:), X.,*(the dual space of X,)=X..,
- R(I—-P,)c{d's; s€ W""(2(g5))) ‘
where ' =r/(r—1). '

We next define the operator L, on X, by L,=P,L°' with definition
domain D(L,)=W*"(2'@z))NX, in case M is of type (I) or D(L,)=
{A e W (QYg:); Al;x=0}NX, in case M is of type (II). Then we have
by Ebin [4] and Fujiwara-Morimoto [7] L} (the adjoint operator)=L...

Now, let us reduce (Eq,) to the abstract equations on X,. Applymg
P, to both sides of the first equation (Eq,), we have

‘Zf +L,A+P(QA)+[A, sh)=0 in X..

Note that P,A=A since 6"A=0 and that P,d"s=0. Moreover, applying
0" to both sides of the same equation, we get

ATs=5"(Q(A)+[A4, s]+[R", AD+"d"A .
We choose such s as
8=G"9"(Q(A)+[A, s]+[R", A])+G"6V’dVA .

After all, we get the following system of equations for {A, s}:

‘2‘4 +L,A+P(Q(A)+[4, s)=0 in X, ¢>0,
8=G"8"(Q(A)+[A, s)+G"J°'A, >0, | (Eq,)
A(0)=A4,,

where J7A : =0"([R", A])+6"d"A. Note that J'A=0 when M is of type
(II) and V is the flat connection.

REMARK 8.5. Since the Green operator G' maps 2°(g;) onto the or-
thogonal complement of the subspace {7 € 2°(g;); A'r=0}, we see s defined
by (Eq,) belongs to L7((kerd")+). See also Proposition 4.3.
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In case M is of type (III). Next we consider the case of Theorem
C. We define the projection operator P by :

n 2
Pug@) :=ug@—3 | FLE=D 0 za)dy
R® ay ayJ
for u = (ui(x)) € L"(2'(gz)), where. I'(x) = (1/2x)log | (n=2), ={(n—2)vol
S H}Y Yz (n=3). By Calderén-Zygmund theorem for the singular in-
tegral operators, we see P is a projection operator on L7(2*(gz) and
P(L7(2*(g5)) =L"(2} +(az)). Since R'=0, we have L'=—A=37, (0/ox%)* and
hence P commutes with LY. In the similar manner as in the cases of
{I) and (II), we have

G4 _AA+PQAHIA D=0 in X i=L(@.G), >0,

S-"-—'dF*(Q(A)"'[As 8]) ’ ' t>0 ’ (qu)
AO =4, o

‘where * denotes the convolution operator (not the Hodge star operator).

Conversely, if A€ 2} .(gz) and s€ 2°gx) satisfies (Eq,) or (Eq,), it is
easy to see that {A 8} is the smooth solution of (Eq,). Therefore, in what
follows, we shall investigate the solvability of (Eq,) and (Eq,) in X,.

§4. Proof of Theorems A and B. ‘

In this section, we restrict ourselves to the cases (I and (II). Then
we may solve (Eq,). The operator L, introduced in the preceding section
plays an 1mportant role in (Eq,).

LEMMA 4.1. Suppose that r=2. Let VeCg, be a st'mctly stable Y-M
conmection if M is of type (I) and be the flat connection if M is of type
(). Then we have the following: .

(i) The resolvent o(—L,) of —L, contains the right half-plane
{»€C; Ren=0}). In particular, 0€po(—L,);

(ii) There is a positive constant M, such that

L, +N) e, = M1+ M) (4.1)

for all Re\=0, where || ||ax, denotes the morm of bounded linear oper-
ators on X,.

For the proof, see the Appendlx
An immediate consequence of (4.1) reads:
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LEMMA 4.2. Under the assumption of Lemma 4.1, we have
‘ (i) —L, generates a unzformly bounded holomorphic semi-group
{e~**r}:20 of class C, in X,;

(i) Let L} be the operator defined by (3.18) with the domain
D(L})=W*"(2'(gz)) in case M is of type (I) or with the domain D(LY)=
{A e Wo(2'(85); Alsx=0} in case M is of type (II). Then for the definition
domains of the fractional ‘powers of L, and L}, we have the continuous
wnjection

D(L“)CD((LV)‘S) ~ for 0<pg<a. - (4.2)

- Indeed, since Oep( —L,), we see by (3.14) that there is a constant
C>0 with

ILIAll, ,<C||L,All,., for all AeD(L,) .

Hence we get (4 2) by Krein [12, Chapter 1, Lemma 7.3]. Moreover,
since D((L})?) is continuously imbedded into the space of Bessel potential
W2 (2'(az)) (see Fujiwara [6]), it follows from (4.2) that there is a
constant C=Cl(a, 8) for 0<g<a such that

|l <CIILEAl, (4.3)

for all Ae D(L;). Therefore, in order to prove Theorems A and B, it
suffices to show :

PROPOSITION 4.3. Let k=1,2,--+,r>n and v>0 and let A, € D(L¥**),
There exists a positive constant n, such that zf | LE2*7 A||, < N0y there is a
unique solution {A, s} of (Eq,) with

A € C([0, o=); D(Ly** ) NC((0, o=); D(Lz**")) NC*(0, =); D(Lz"™) ,
s € C([0, oo); W*(2°(g2))) N C((0, oo); W7 (2°(85))) |

satisfying
IL¥** =A@l =0(t™)  as t|0 for v=a<l—v/2, (4.4
I llss, =05 as £ 0. | | (4.5)
Moreover, such a solution {A, s} sa,tisﬁeé the asymptotic be}havior -
| LE==A®) ]|, , =0t  as t—oo for v=a<l—7v/2,  (4.6)
lls@lis41,, =0O@=*772) @ t—oo0 . (4.7)
Here and in what follows, we shall consider D(L#), 3=0, as the Banach
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space with the norm |L2A|,,, (not the graph norm).

REMARK. As is stated in Remark 3.5, we see s e C([0, «); W*r((ker
d)))NC0, «); W*r((ker d"))). Further note that W** (2} .(gz)C
DLy for 0=v=1/2 and D(L¥***)C W** (2" (gs)) for «=1/2. Therefore,
taking m=k+1 in Proposition 4.3 and then using Proposition 2.2, we
obtain {¢(t), A(t)}:z, satisfying the conditions (i)-(iii) of Definition 2.2 for
any {d'¢,, A} € U, x U,. Hence Theorems A and B follow.

In what follows, we shall denote P=P,, L=L, and || |,=] |[l,, for
simplicity. We shall denote by C various constants which may change
from line to line. In particular, C=C(x, *,---) will denote a constant
depending only on the quantities appearing in the parentheses. To prove
this Proposition, we need:

LEMMA 4.4. Let k=1,2,.--+. There exist a constant C=C(p, ¢,) for
any p>r and any &>0 a,nd constants C=C(e,) for any &>0 (=2, 3)
such that

1Q(4) — Q(A) e,
SC(p’ 61)(ll1"11:/2-1-'75(l./"-~1/p)/2+q(14. A)” “Lk/2+'n/2p+1/2+slA“
+ IILk/2+n(1/‘r—1/p)/2+11A” ”Lk/2+11/2p+1/2+01(A A)”r)
+C(ez)(”Lk/2+n/3r+02A“2 + “Lk/2+n/3r+egA" )“Lk/2+n/3r+¢2(A A)“r , (4.8)

L4, 1[4, &1ll.. i
SCEIILA**5 Al lls —8luss,r+ 15 llss LA~ D, (4.9)

for all A, A e D(L***w+12+ey (s=max,¢e,) and all 8, §€ W*r(Q2%g)).

PROOF. It suffices to prove when A=5§=0, because we can reduce
the desired result to such a case by the triangle inequalities. By the
Holder inequality, we have

1R, » <CUAlle,oll All s+ AR5 (4.10)

where 1/p+1/q=1/r, r<p, q<oo. Taking a=1/2+n/2p, B=n1/r—1/p)/2
and d=n/3r, we have by (4.3) the following continuous imbeddings (see
Bergh-Lofstrom [2, Theorem 6.5.1)):

D(LM=r) C W (@(g5) W@ (a) ;
D(LH*#+4) C W7 (Q¥(g)) © W(Q'@5)) 5
D(Lk/2+0+02) C Wk+20,r(g1(gE)) cC Wk.sr(Ql(gE))

for ¢,>0 (:=1, 2). Hence we get by (4.10)
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QA = C, [ L+ Al || L¥** e+ Al + C,, || L*** 02 A2 .-

Similarly, since D(L***s)c W*r(2'(gz)) and W7 (Q2%gg)) C We=(2%gz) (by
r>n), we have

A, sllle, =l Alle, I8k, = C I L*** Al {|8]l 441, -
In particular, since

d° A4, Allls,.+1167[A, Allls,- ,
S| Allers, Al oSN A, = C I LAl (by (4.8))

for >0 with C, >0 independent of A, we hai_re

1Q(4) —Q(A)|l;..,
SC (| L¥ e+ Al A+ |L et s A )| LY/ (A — A}
+Ctz{("Lk/2+n/3r+:2A”i+ ”Lk/2+n/3r+.2zni)”Lk/z+n/sr+e2(A__AT)“r} . (4.11)

LEMMA 4.5. Let k=1,2,---. For Aec W* (2 (gz), we have G'6°A,
G'J'A € W*tbr(2%gz)) and

NG Allesr, ., =CllAlle,r » |G " Allisr,, =CllAlle, (4.12)
with C independent of A.

PrROOF. Since d'd'A=[R", A] for A € 2'(gz) (by the Ricci formula), we
see that J' is a bounded operator from W*r(2'(gz)) into W* -7(2°(gz)).
Hence (4.12) follows from the general theory of the elliptic differential
operators of the second order. See, for example, Aubin [1].

PROOF OF PROPOSITION 4.3. At first we consider the following in-
tegral equation:

A®) =4~ | e P@QAE) +[A®), s(D)Dde
3()=G"0"(Q(A®) + [A®), s +GTA®) .

(i) Existence. We want to construct the solution of (I.E.,) by suec-
cessive approximation, according to the scheme

d.E.)

Af)y=e"4,,  86)=0,
A=A~ e IPQUAUM+ A, s,@ODdr,  (419)
8,u(t) =G 0" (Q(A,®) +[4,(8), 8,®D+GT"A,(0) , |
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where j=0,1,---. Then for v=a<1-7/2, there exists {K, ; M; N;}7,
such that

|\ L*2=A )|, < K, 4" for t>0, . (4.14)

l8;@)lpsr,, S M0tz for ¢>0, (4.15)
lls;li,» =N, for t=0. (4.16)

Indeed, by (4.1) we have
|ILe ||z =Cat™ , a>0

for all t>0 with C,>0 independent of ¢. Hence (4.14)-(4.16) are trué
for =0 if we choose .

K, =sup t77||L*"7e"L*"**7A ||, ,  M,=N,=0.
t>0 R
Suppose that (4.14)-(4.16) are true for j. Without loss of generality,
we may assume that 0<v<(1—n/r)/3. Taking &,=7/4, e,=7/2— A —n/r)/3

and =01 —n/r—7v)/2 in (4.11) and (4.9) respectlvely, we have ¢,>0
(=1, 2, 3) and

1A, @,
SKa oty—a+ St”La-i»r/z —(t—t)L“B(x
X LA~ PQUALE) +A,(0), 5, de
<K, e +-Cf = o erqamma o

BT VG LR YO NN 2l PR
w ot *+CBl—a—"7/2, 37/2) ‘
X (B josrin, i+ Kinsr, i+ MKy njrenpe, SV, (4.17)

where B(-, -) is the beta function. By Lemmas 4.4 and 4.5 (¢,=¢,="7,
&=1—n/r)/6) and (4.3), we have

”35+1(t) ”k+1,r
< C(|| L¥2+ mrr=nimraty A,-(t)”,.” L+ atnin) 2ty 4 j(t)”r
+ || LA atnmiets A ()3 4+ | L7 A ;O N85 s, »
o || LR knin 2ty Aj+1(t)”r) .

It follows from the assumption on 7 and (4.17) that -




YANG-MILLS GRADIENT FLOW 403

”3:‘+1(t) less,r
2 3
SCK qinimrrot Kinern i+ Kisirrn, i+ MKy _nir-nn,;
3
+ K(n/r—'n/p)/2+T,,1‘K(1+n/p)/2+7’,j + K(1+n/r)/6+7’,j + MjKT,j)

X gt (4.18)
1841 @)l »
éC(Kr,o+K§/2+T/4,5+Kf/3+7‘/2,5+MjK(1—-n/r-r)/2,j
+K;,5+K?,j+NjKT,j) for ¢=0. (4.19)

By (4.17)-(4.19), we see that (4.14)-(4.16) are satisfied with j replaced
by j+1, with
Ka,i+1=Ka,o+CB(1“"a_7/2y 37/2)(K§/2+7’/4,j+Kf/3+7‘/2,j
+ MK nirinrie,d) (4.20)

' — ' 2 3
M_'i+1 - C(K(1+'n/r)/2+7’,0 + K1/2+T/4,_1' + K1/3+7'/2,j+ MjK(l—n/r+T)/2,,i
3
+ Kn/zr—n/2p+7',jK1/2+n/2p+7',j + K1/6+n/6r+7,j ‘+‘ M_.;Kr,j) ’ (4'21)

Nj=CEK; o+ Kipirn,;i+Kissirrn, i+ MK nirins, i
+K3;+ K ;+ K ;N | (4.22)
Let S={v, A—n/r—7)/2, n/2—n/2p+, 1/6+n/6r+7, 1/3+7/2, 1/2+7/4,

1/2+n/2p+7}. We define {K;};., and {F,}3, by K;=max,.s K, ; and F;=
max{K,;, M;, N;}. Then it follows from (4.20)-(4.22) that

F, <C(F,+F:+F3)  for j=0,1,---.

As is well known, for such sequence {F}i, there exists a positive,
monotone decreasing function F(\) of A>0 such that F,<F(\) for all
j=0,1,... if F,<\. Moreover, we have lim,_., F(\)=0.

Now, we choose \,>0 so that F(\)<1l and assume that F,=\,.
Under this assumption, we obtain from (4.14)-(4.16) e

IL¥+ A0, = Fuwt™™ (@eS), >0,
llg;lesr, S F O, >0,
”s.‘i(t)nk,réFo\u) ’ tgo )

for all 7=0,1,---. Set B;{t)=A4,,,&)—A;(t) and u;(t)=8;.,(t)—s;(¢). In
the similar manner of (4.17)_7(4.19), we have by Lemmas 4.4 and 4.5

IL#+<B ). |
é CF S c(t - T) ~a"7/2(z.37/4-—1/2 I l Lk/2+1/2+7/4Bj_1 | | -
0
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|| LR, || iy
+ z_—1/2—n/2r l l LI:/2+ (1=n/r—7) /2.35..1 " ,)dT (4-23)

for " =a<1—-7/2,

;@ ks,
S CF(trevnser|| Lretvetnnotr B, 1|
+ t_n/2p—1/2llL"/2+n/2f—n/2p+rB’_ I,

+ t-—l/s—nlsllLk/2+1/6+n/67+rBj 1“r

|yl + 87| LB L) |
+ CF S:(t —_ T) (1—n/r—sr)/2—1(,z.37/4-—1/2]lLk/2+1/2+7/4Bi-1”r

+ T_r—ﬁ/s||L"/2+1/3+7/2.B_,-_1|| R ARGl | [P | P
+ z.—.l/Z—n/2r“ L’=/2+‘1‘""'7”2B,-_1|\ ,_)dz' (by (4-23)) ’

”ui(t)”k,r
=CF(luj-ills, .+ IL**7B;_4]|,)

+CF S :(t Sk AU (ot ) Pl - 730 |

+ 1'7_2/8IILM2+1/3+7/2-B,'_1“,' + t37/2-1/2+n/2r”uj-_l”k_‘_l,r
g || Lt a=me=neR. N dr

where FF=F(\,). Note that F*<F, since 0<F<1l. By a direct calcula-
tion, we have for 7=0
IL****B,@)|l, =CBA—a—"7/2, 372)Ft™  (v=a<l—7/2,t>0),
Nuo@)lisr,r S CFEY27/20 t>0),
lue@®)le,=CF  (¢=0) .

Therefore, by induction, we obtain

|L***=By(t)||, < (CF)"*t~*  (a€S, t>0), (4.24)
N ;@) ss, » < (CF)it1g =22 ns2r t>0), (4.25)
lu;®le.. = (CF)*  (¢20), (4.26)

where C=8Cmax,.s Bl—a—7/2, 37/2) (C; the constant in (4. 23)) More-

over, substituting (4.24) into (4.23) again, we get

| L***B,t)|l,<CB1—a—"/2, 87/2)(CF)it'—=  (¢>0) (4.27)
for y=a<1-—7/2.
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Now, we take n\,>0 so that |
F(n)<1/C (4.28)

and assume that
F,=n\g (4.29)

Since L****A(t)= iz} L****B,(t) and s;(t) =iz} u,(t), it follows from
(4.25)-(4.27) that there exist {A4, s}):

A € C([0, «); DILM*M)NC((0, o=); DIL***))  (Y<a<l—7/2),
8 € C([0, ==); W*"(2°(82))) N C((0, o0); W**7(2°(g¢)))

such that

L****A(t) — L****A(t) in L"(2'(gx))
uniformly t€[0, <) for 0Za=s7,
uniformly tele, «) for v<a<l-—7v/2,

8;(t) — s(t) in W*(2%gz)) uniformly te[0, <)
m WELr(Q%gg)) uniformly t€le, =)

for any ¢<0. The limits {A, s} satisfy

|L**+=A@)||, S F.(\)t™  (t>0), (4.30)
s lisr,r S F Q™2 (>0), (4.31)
8@l =FOn)  (¢20). (4.32)

Note that F,(\,) is dominated by F(\,) for ¢ €S. Hence by Lemma 4.4,
we have that [|Q(4,®)]l,. and |[4,(t), 3,®)]l,, are dominated by ¢~ for
all j and that

QA;®) — QAR ,  [A,), ;)] —[A®), s()]

in W*(2'(gz)). Taking j—oo in (4.13), we see by the Lebesgue dominated
convergence theorem that {4, s} is a solution of (I.E.)).
Now we shall consider the condition (4.29). Since

| LA 426 A |, < [ Lo e e p | L A, S Cotr<| L7 A,

(4.29) is satisfied if ||L*?*74,||, is sufficiently small. Hence we have just
proved the existence of ), and the solution {A, s} of (I.E.,) with decay
properties (4.6) and (4.7).



406 HIDEQ KOZONO AND YOSHIAKI MAEDA

To see the behaviour of {A(%), s(t)} at t=0, we need to return to the
approximation solution {A4,(t), s;(t)}. Since

sup ¢°77|| L¥**Ay(¢)|| = sup t*77(| L*~TeT L A,
o< <t

and t*7L*7e"*—0 strongly as ¢|0, there is T,*>0 for any £>0 such
that

sup ¢*7T||LM* A, @), <e .

0<t<T?

In the similar manner of (4.17) and (4.18), we see that

sup ¢*77||L****A4,@)[|, <Cee ,

0<t<Ty

sup V22| 8;(t)|44s,» <Ce
0<t<T}

and that {t*7L****A,(t)};=, and {t*"*s,(t)}i, are uniformly convergent
sequences in L"(Q2'(gz)) and in W*(2%gz)) for te<[0, T)*], respectively.
Hence the limit {A(t), s(t)} has the properties (4.4) and (4.5) near t=0.
(ii) Uniqueness. Let {A, 5} be another solution of (I.E.,) with proper-
ties (4.4) and (4.5). Then we can take a constant 0< Fi(t;)<1 such that

|L*= =A@, ”L"/H“Z(t)Hr§ﬁ(to)tr—a (@eS—{7),
@) lssrr 1EE s, e = FEE2m"

for all ¢t € (0, t,] and that Ft)—0ast,—0. Taking B=A—A and u=s—5,
we obtain by induction in the similar manner as above

| L***+=Bt)||, <2F () 2CF ()it (@eS—={7), (4.33)
@) || gsr, e < 2F () RCF (L))t 2r (4.34)

for t e (0, t,] and §=0, 1, - - -, where C is the same constant in (4.24)-(4.26).
In the above, we should note that ||L***74,||, is sufficiently small and that
SUDogest, | L*=+B@)||, < F(t,) for small t, since Be C([0, t,]; D(L***")) with
B(0)=0. , . _

Now, we choose ¢,>0 so that 2CF(t,)<1l. Letting j—o in (4.33)
and (4.34), we have

B)=u®)=0 on tel0,¢].

Note that u € C([0, «); W*"(2°(g5))). Repeating this argument on [Z, ),
we find a sequence t,<t,<--- such that B()=u(t)=0 on [0, {;] for any
j=0,1,---. Since L****B,(t) and u(t) are continuous functions on [¢,, =)
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with values in L"(Q'(gz)) and W*™"(2°(gz)), respectively, there exists 7>0
such that ¢;,,—t;=7 for all j (see Fujita-Kato [56, p. 286, Proposition I}).

(iii) Differentiability of A(t). It remains to show that A € C((0, «);
D(L*¥**)) N C*((0, «=); D(L**) and that {4, s} satisfies the first equation of
(Eq,). By Lemma 4.2(i) and the general theory of the holomorphic
semi-group (see Tanabe [16, Theorem 3.3.4]), it suffices to show that
L**P(Q(A)+[A4, s]) is a Holder continuous function of £€(0, <) with
values in X,. By Lemma 4.4, we may prove the following:

LEMMA 4.6. Let {A, s} be the solution of (1.E.,) constructed as above.
Then for any >0, we have

(1) L¥***A 43 a uniformly Holder contznuous Sfunctions with values
n X, on [g, ) for 0=sa<l—7/2;

(2) s 18 a uniformly Holder continuous function with values in
WeLr(2°(gg) on [e, ).

PrROOF. (1) By Lemma 4.1, we have for >0 and 0<6<1
(e —1)L~% € B(X,) and

e =D L acxp =Co7’ . (4.35)

It suffices to prove the assertion for
Aty :=| e PQUAE)+4®), s(r)Ddr -

By a direct calculation, we have for >0
LF/2+a Z(t + 77) — [ fr2ta Z(t)
-_-:S:+0L1¢/2+ae—(t+v—f)LP(Q(A(T))+[A(z_)’ s(O)]dr

+ | Lhre(e i~ e 2PQUAW) +[A@), s@)]de
=)+ I7®) .
In the similar manner of (4.17), we get by (4.80) and (4.31)

I I2(2) ||,§CF(>\,*)S:+v(t I
=CF(n)BL—a—7/2, 37/2)7—=
or =CF(\,)e""* (1—a—"/2) =12,

according to the case 0<a<7 or 7Sa<1——'7/2 Takmg' 0<<1l—a—"/2,
we have by (4.35)
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t
M@l = So” @ =1L lacxp IL=*7% " pix,

X ||L**~ 1 P(Q(A(7)) + [A(7), s(D)D)l.dT
<CY’F(\n,)Bl—a—0—"/2, 83v/2)t~ =+
SCF(\)B1l—a—6—"/2, 3v/2)g~*t*1ypf

for all te[e, ). Hence we obtain the assertion of (1).
(2) Similarly, it follows from (4.80) and (4.31) that for >0

s +7) — 8@ lls+s,»
=Csup IL*4 7A@ 8@+ 1) — 8@®lless,

+ CF(n )22 || L2 1(At +7) — AD),
4 g=m2p12|| LRt ar=nin)2tr( A (E 4 ) — A(D))]],
- gnizp=nser|| Rt atniniztr( A (g 4-p) — A,
g/ || [/ n/n k(A (f 4 7N)—A(D)) I}
+C||L** 1 (At +7)— AR, -

Since C sup,. ||L***7A(7)||,<CF(\.) <1l by (4.80), it follows from the above
inequality and the assertion (1) that s has the desired property.
§5. Proof of Theorem C.

In this section, we consider the case when M=R" and V is the flat
connection. As is mentioned in section 3, we can obtain the asymptotic
stability by solving (Eq,). Our result now reads:

PROPOSITION 5.1. Let m=2,3,:-- and let A,€ W™"(25,,(8z)). There
exists a positive comstant \, such that if ||Alm .=\, there is a unique
solution {A, s} of (Eq,) with

A € C([0, =); W™(2%,x(82))) N C*((0, o0); W™"(£25,4(85)))
| | NC(O, =); W2, +(82))) »
8 € C([0, eo); W™""(2°(x))) N C((0, o0); W™"(2%(gx)))

satisfying
144 € BO(O, 0); W"(@a(@s)))  for m<r, 6.1)
124 € BC(0, =); W(2} (a2 , 5.2)
t5 € BO((0, «); W™(@(@s))) | (5.3)
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all with values zero at t=0 (BC([0, «); X); the set of continuous, uni-
Jormly bounded functions on [0, <) with values in X). Moreover, A has
the W™-decay property

NA@)|ma—™0 as t—oco. (5.4)

To show this proposition, we shall make use of the implicit function
theorem combined with the (L”, L%)-estimates for the solutions of the heat
equation. Since L'=—A=-37"_ (9/64’) commutes with the projection
operator P, the evolution operator ¢ ** can be represented explicitly as

A(x)=

e I H LY

for A=(A ) e X, A<r< ). Then we have

LEMMA 5.2 ((L*, L9-estimates). For q<mn, there is a constant C=
C(q, n) such that

e Al < C a2 A,
et Al s, n = CE 2 Al o

Jor all Ae W™(2} .(8z)).

PROOF OF PROPOSITION 5.1. In the similar manner of the proof of
Proposition 4.3, we construect at first the following integral equation:

AW =e"4,— | e IPQUAR) + QUAE) +AR), s@dz
8(8) = AT+ (QUA®) + QUAW®) + A, s ,

where Q(A)=Q,(4)+Q,(A) with Q,(A)~A:-04A and Q,(A)~A°. Now, we
define the function spaces ¥ and Z and the norms | ||, and || ||, as
follows: ‘
Y={A € BC([0, «); W™"(2;,4(85))); t"*A € BC([0, = ); W™*"(2; 4(8z)))}
Z={s e BC([0, «); W™ ~(2°(8z))); t"’s € BC([0, o=); W™*(2°(gz)))} ,

|41l =53 | AD Il + 53 I A nss »

(I.E.,)

lls||z=sup ||8(¢)||m_s,»+sUD tV*||8()||m,n -
t=20 t=0

Then Y and Z are Banach spaces with the norms || ||y and | ||, re-
spectively. We set W=YxZ. We can consider W as Banach space by

inducing the product topology.
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Let us define a map f on W™"({; .(8z) X W by f(A, A,‘s)E{B, u}:
Bt)=A®)—e Ao+ | P PQAD) + QA +A®), s(DDdr ,  (5.5)

u(t) =s(t) —dI'(Q.(A()) + Q.(A(1)) +[A(2), s(D)]) , (5.6)
for A,€ W™(2; .(g8z)) and {4, s}€ W. Then we have

LEMMA 5.3. f 18 a continuous map from W™(25 .(8z) X W into W.

For each A,e€ W™(25 .(8z), f(A, *) i8 @ map of class C' from W into
itself.

PrROOF. Let B and u be the functions defined by (6.5) and (5.6),
respectively. We shall prove at first {B, u}e W.

(i) BeY. Since ¢ **A,€Y by Lemma 5.2, it suffices to show that
~ ~ t
Be Y, where B(t)=S e I P(Q,(A)+ Q. (A)+[A, s])dr. By the interpolation
0
inequality (see Tanabe [16, Lemma 1.2.2])

|Alln.=ClAlZ Al for n=r, (6.7

we see t'v"24 € BC([0, ); W™"(2} ,(@z)) for A€ Y. In particular, we

get sup.z, t*|A@)||n.=C||Ally. Hence by Lemma 5.2 and the Holder in-
equality, we have

1B® o =C| ¢ =0 AD Nl al AR lmss,0+ | Al ol18E) )b

+0| =0 1A@) % mde

=2CB(|Allx+ [|Allrllsllz+ [[A{lF) (5.8)
for all t=0, where gs=max{B(1/2, 1/2), B(3/4, 1/4)}. Similarly, we have
| BE) || w1, =CUlAlIZ+ [|AlIZ + | All |18l 2) B(1/4, 1/4)¢~V2 . (5.9)

(ii) seZ. It follows from the Hardy-Littlewood-Sobolev inequality
(see Reed-Simon [15, p. 31]) that dI'x is a bounded operator from

W™ 2(Q°(gz)) into W™"(2°(gz)). We have therefore by the Holder in-
equality and (56.7)

s@)lm,» = C(I Al + | AllF + [| Allll8ll 2t (5.10)
8@l m-r, . =CUAlF+ | AllF + | Allrll8]]2) - (5.11)

Since the continuity and the differentiability of f follow easily from
(5.8)-(5.11), we may omit details. This completes the proof. '
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Since f(0, 0, 0)={0, 0} and the Fréchet derivative f,,,(0, 0, 0)=identity
on W (see (5.8)-(5.11)), it follows from the implicit function theorem that
there is a wunique continuous mapping w in a neighbourhood UM"=
{A, e W™(24.(82); |Aollm <A} of 0; w: U"— W such that '

w(0)={0, 0} and f(A, w(Ay))={0, 0} (5.12)

Representing w(A4,)={A(A,), s(4,)}, we see by (5.12) that {A(4,), s(4,)}
is a unique solution of (I.E.,). As in the preceding section, we can show
{A(A)), s(Ay)} is actually the solution of (Eq,) with initial value A, by
using the decay properties (5.1)-(5.3).

Now it remains to show the W™"-decay property (5.4). Since the
map A,— A(A4,) is a continuous one from W™"(2} ,(gz)) into Y and since
the space {Be€ 2} .(gz); B has a compact support in M} is dense in

Wmn(25 «(8x)), there is A, e 2} ,(3;) with compaet support for any &¢>0
such that

Sup [|A(A)H — A Bl n <6 - (5.13)

On the other hand, for such a solution A(A4,), we can show lAA) @) ||, n—0
as t—oo, See, e.g., Kato [10, Theorem 4]. Hence by (5.13)

lin}_'iup NAA)®)lm,n
=sup [|A(A) (&) — A(A) D)l m,n + 1im [| A(A) () |, n <&

Since ¢>0 is arbitrary, we obtain the desired result.

Appendix.

PrOOF OF LEMMA 4.1. When M is of type (II) and V is the flat
connection, L, is essentially equal to the Stokes operator for incompressible
fluids. Therefore, the assertion of this Lemma follows from Giga [8].
We may prove another case.

Since V is a strictly positive Y-M connection, L, is a positive definite
self-adjoint operator in X, and the assertion of this Lemma is valid for
r=2. Now we shall prove for »>2.

For a moment, let us assume that there is a constant p,>0 such that
{Rexz=p,}cpo(—L,) arnd (4.1) is satisfied for Ren=g,. By [16, Remark
3.3.2], we may show for Rex=0 with |\|SR, (R,>0). Suppose the
contrary. Then for each j=1,2,.-., there exist 4;e D(L,) with [|4,],=1
and Re ;=0 with |\;/< R such that 1+ \;)=JI(L,+7;)A4,]l,. Since |n;/SR,
for all j, we have
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(L,+np)A;—0 in X, as j—o . (A.1)
Moreover, since |
L, Al S (L2 A -+ gl A S L0 )AL+ R, (by [|44],.=1) ,

we see {L,A;}7., is a bounded sequence in X,.
On the other hand, it follows from (3.14) and a priori estimate for
LY that

14, =C(I LAl + 1| A4ll.)

with C independent of j. Therefore {4,};, is a bounded sequence in
W*r(2'(gz)). By the Rellich theorem, there exist a subsequence of {4,}7,,
which we denote by {A,}7, itself for simplicity, and A € W*"(2'(gz)) such
that 4;— A strongly in W""(2'(gz)). Obviously ||A|l,=1. Nevertheless,
since (4.1) is true for r=2, we see

A4+ DIA = CHI Ly + 1Al = ClI(L, + 1) Al

with C independent of j. By (A.1l), A;—0 in X, and hence A=0. This

contradicts ||A|],=1.
Now we prove the existence of ¢,>0 as above. For Aec D(L,) and

Re n=0, set B=(L,+x)A. Then we have
LIA+\A=B+dV , where V(x)=(d"G(x, ), LTA) . (A.2)

Since 6"A=0, we get by the Ricci formula

V(z)=(d'G"(x, -), 0"d"A+[R", A))
=([R', G*(x, )], d'A)+(d'G"(x, ), [R", A])
=R, G'(=, )], A)+(d'G"(x, ), [RT, A]) .

As in (3.14), we have
&V, =ClIR|l,, [ All, - (A.3)
Since V is strictly positive, it follows from (A.2) that.
A+DIAN+ VAl =Cl[B+d"V]|, ,
with C independent of » or A. Hence by (A.3)
L+ =CIIR|l,)+[IV*A], =<C||B]. .
Taking y¢,=2C| R'||, ., We obtain
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|All,=2CA+IND7YIBI.  for Rexzg. .
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