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On Real Quadratic Fields and Periodic Expansions
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§0. Introduction.

We denote the continued fraction expansion of a real number a,
(a,>1) by

[a: a, as, -]
and define
o, =la;:a.,, a,,, - -] (z=1).

With these tools some expansions are introduced as follows:
For any real xz (0<2<1),

r=3, b, : (1)

n=l QR ** * By

where the digits b,’s can be found so that
0<b,<a, and if b,=a, then b,,,=0,
and similarly, for every real z (—1/a,<z=1), .

g=3 (D0 1%
=l o1&y ** ° Apy

where the digits ¢,’s can be found so that
0<c,<a, and if ¢,#0 then ¢, #a,., .

The second expansion is called the canonical form on discrepancy problem
(1] [2] [4] [5D).

The purpose of this paper is to characterize the quadratic fields
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Q(a,) for the quadratic algebraic number a, with respect to these re-
presentations.

THEOREM 1. Let a, be a real quadratic algebraic number. Then x
is a number of quadratic field Q(a,) if and only if the sequence {b};-,,,...
in the expansion (1) is periodic, that is, there are some n and m such
that {bi}={b1’ b2’ t bm bn+1; *t bn+m}'

THEOREM 1*. Let a, be a real quadratic algebraic number. Then x
i8 @ number of quadratic field Q(a,) if and only if the sequence {¢};=,s,...
wn the expansion (1*) is periodic.

The similar result is found in [8]. The main idea of the proof is to
consider the natural extensions of the expansions in the sense of ergodic
theory.

§1. Definitions and notations.

Let a, (@,>1) be a real quadratic irrational. We summalize several
results for the continued fraction expansion of a,.

DEFINITION 1. A quadratic irrational « is said to be reduced if a>1
and —1<a<0, where & denotes the algebraic conjugate of a.

From Definition 1, the following facts are well known ([6]):

THEOREM (Lagrange). Let a=[a,:a, a5 ---]. Then

(1) A quadratic irrational o is reduced if and only if the digits
{@}i=10,... 18 Durely periodic, that is, there is some k such that {a},-.,...=
{a'u Qgy * 0y Qpyy ak}'

(2) The number a is a quadratic irrational if and only if the
digits {a}.-..,... 18 periodic.

For the quadratic irrational o, we denote as usual the continued
fraction expansion of a, by

a=[a,:a, ag -+, Qy_y, Ay, ", Oxi-1] » (2)

and call . the length of the period of the sequence {a;},-,,.. and N the
first reduced index.
Put p, and ¢, recursively as follows:

p,=1, %%=0, »=a, Q1=1 ’
pn+1=an+1pn+pn—1 ’ Qn+1= ﬂ+1qn+qn-1 for ngl .
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Then the following properties are shown by induection.

PROPERTIES. For any irrational a,

ann—-l_pn-—IQn:(”—l)n fO'r ’n;l ’ ( 3 )
ay=Pa1TPn o >y (4)
Qn—1+auQn
— j+1 .
alaz...ajz._(___l.)’__ fO’r ‘7;1_ (5)
Qi —P;

Particularly, if a, is purely periodic with period k, then

a=Pe= @)+ d

24, ’ (6).

where d=(p,+q,_,)*—4(—1)*, and

_1._;._ (pk+QE—£)+l/d . (7)

700 I o,
Hence, o, -+, 18 a 7100t of B—(Dy+q_)t+(—1)*=0, that 18,
o, -y 18 a quadratic integer.

We introduce a kind of expansion of x called a modified [B-expansion
associated with continued fraction expansion (see [1]). For any o, >1,
let

Ii={a;}x[0,1) (7=0)
and define the transformation T; from I; to I;,, by

Tiaj, ®)=(aj41, ajx—b;y,) ,
where b;,,=[a;x] for any 7=0. Then, from

e[ 2]~ [0 ).

(4 2381

we know
0§bj+1§aj+1 and if bj+1=aj+1 then bj+2=0
for j=0. Using the transformation T,;, we have the expansion of x:

@X.
w=-’i+_ﬁ_+ coe bﬂ + n ,
Qy (4474 41 Qplly *** Ky_y Qs *** Oy_y
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where z, is given by
Tn-—1° eee °T1°To(a09 x)=(am xn) b
i.e.

xn = - bn - an—lbn—l - an—zan—lbn-—z -
—0 e O b (8)

The other expansion, which is called the canonical form in discrepancy
problem, is introduced analogously (see [1]). For any j=0, let

I}"={a,}x[—zlj-, 1]

and define the transformation T} from I} to I}, by
THaj, ©)=(0j11, —Q%+Ci41) »
where ¢;,, is defined by
¢inn=max(a;,, —[a;1—2x)], 0) for 7=0.
Then the sequence {c;} satisfies |
0=¢c;<a; and if ¢;#0 then a;,,+#c;,, (7=1) .
Using the transformation T, for any n=1, x is expanded as follows:

—o & ... (ED7e  (CDha

(24} QX Qoly * ¢ ° Opy Aoy *** Oyy

’

where z¥ is given by
Trx,o---oTF T (o, x)=(atn, ) »
i.e.
XX =Cp—Olp1CpyF OOl 1Cp g — " **
+ (=)@, et A iC— (—1)" oy ¢t A (9)
§2. Proof of Theorem 1.

From now on, we assume q, (a,>1) is a quadratic irrational, that
is, a, i8 expanded as (2). Therefore I;=1I;,, and T;=T;,, for j=N,
where N is the first reduced index. We define the domain I; and the
transformation T; from I, to I,,, which is called a natural extension
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of T; in ergodic theory, as follows: Put
L=(a}x[0, L)x[ L, 1)
a; a;

U{a,—}X[—l—-, 1)><[1+—}—-, 1) for j=0.
a. o |

2 aJ

Let us define the partition P;={X;, | m=0,1,-.-, a;,,} of I, by

Xim={(as, 2, ¥)el; | (a;, x) € <mp;},

where

(m),.={aj}x|:._7_n—, m—i—l) for Ogméaﬂl-—l‘

a; a;

and

a0 ;= {a;} X [%L, 1) for 5=0.

7

For any j=1, we also define another partition
Q={Y;n | m=0,1,---, a;
of I, by
Yim={s 2, 9)eT; | (a;, v)€(m)},
where

0);={a;} X [a;_, 1). ’
(m);={a;} X[a;,—m, a;_,—(m—1)) for 1=m=a;—1

and

@);=la x| 2 @5 —(@-1).

J

Define the transformation T;: I,—1I;,, by
Ti(air %, Y)= (s, a;X~—m, &y —m) ' (10)

if (a;, ®, y) € X;,, for =0. From the definitions of the partition P;, Q;
and the definition of T;, we see TAX; )= Y;i1,m (see Figure (1)). There-
fore we have the following Lemma 1.
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LEMMA 1. The transformation T; is bijective.

DEFINITION 2. Let a be purely periodic and z€Q(a). The number
2 is said to be a-reduced if (a, z, %) € I,.

Note that Q(a,)=Q(a;)=--- and Q(a,) is T,-invariant.

LEMMA 2. Let a, be purely periodic.

(A) If x is ayreduced, then x, is a,-reduced and

B) if = is arreduced, then there unmiquely exists (a,_,, x_,), which
18 T, (ap_y, 2_))=(a,, ) and x_, 18 a,_,-reduced.

PROOF. Assume that « is a,reduced, i.e. (a, %, Z) €, then

To(ao’ z, T)=(ay, @ —by, a@x—b,)
=(a, %, (@) ,

that is, the following relation validates; (%),=(x,). From T.(I,)=1I, we
have (A). (B) is obtained by the injectivity of 7. '

LEMMA 3. We put

g StV d and ©,—= 8, +t.V d
'ro Tn

where r;, s, and t, are integers for 1=0,1, ---. If a, 18 reduced and x
18 ayreduced, then |r,|, |s,|, |t.| are bounded.

REMARK. We understand in Theorem 1 that the assumption in
Lemma 3 is not necessary to obtain the boundedness of |r,|, |s,| and
it.]. But it is not easy to prove this lemma without the assumption.

PROOF. Because of (7), a,a, -+ a;_, is a quadratic integer. Then,
for any l=1 there exist the integers L,(!) and L,() such that

(- ey = O LOVT

Therefore for any n=1, there exist the integer M such that

Qg *** Q= My(m)+ My(m)vd_ and |M,(n)|<M.

From (8) it follows that |r,| is bounded.
Denote the number 7 in such a manner that n=kq+i (0=i<k),
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then, «, is a;,-reduced, and we have the inequality

<z, <1
and
1 <5<
a;
That is,
0< s, +tV'd <1
T
and
mt s"—tn‘/j
_—< . 1,
’n,;—]/ d T.n <
where
a,= n,+v' d ]
m,

On the other hand, from «,>1, —1<&,;<0, we know
o<n,<v'd, 0<m<2Vd.

From the boundedness of |r,|, |m; and |n,, it follows that |s,| and [¢,]
are also bounded.

PROPOSITION 1. If a, 18 purely periodic and x 18 a,-reduced, then
{b}i=1,2,... 18 purely periodic.

At the end of this section, we point out that the converse of this
proposition also holds.

PrROOF. By Lemma 2(A) and Lemma 3, there exist positive integers
1 and n such that

Ci=Lnk+1 «

We denote the partition @, of I, by {Y, . | m=0,1,---, a,}. Therefore
by using Lemma 2 (B) repeatedly, we have

X 1=Lrk+i-1 and so r=2x,, .
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PROOF OF THEOREM 1. Assume that «, is a quadratic number, and
a, is expanded in the form (2). Let z be a number of Q(a,). Put

(atw, v, Yw)=(atw, T, OV € Iy,
where N is the first reduced index. Then we see
(s By Yw)=Toso +++ o Tlarnr 2w, i) € I,
for all m=N. By the formulae (8) and (10),

(xmr ym)=(—bm—'am—1bm—1— A 2 PRRN am—1b1+a0a1 ML # SR /R
—bm-‘am—1bm—1“‘ St — Oyt Apoibyy) fOr m=N .

Therefore the distance between (z,, 7,) and (z,, ¥,) is estimated as
follows:

T —Yml S 8l + + + | @l 1Byl +[ow_s] =+ + [Otmes] Byl 4+« -

+ Ia'xl s |am—1| !b!.! + l&ol Iall e lam—ll !El
=K-\™"" for some positive constant K, 11)

where
7\'=max{[azv|, Iazv+1|, . ‘: IaN+k-1l}, .

For any ¢>0 and any m=N, we define an ¢-boundary I.,.. of the domain
I, as follows:
I, =TEUTE U TS,
={a} %[0, 1) x (1 ~¢, 1]

U {a,,.}x[-l—, 1 x[1+—_1—, 1+_i¥+s)
(49 a',,,

otea[0. L) v

We discuss the following two cases:
(1) the case that there exists m >N such that

(s Zmy Ym) & Imye

and
(2) the case that (a,., Zm, ¥n) € I.. for any m>N.
In the case (1), by (11), we obtain



366 YUKO HARA AND SHUNJI ITO
(anv mﬂ’ Em) e Im

for large m. Therefore z, is a,-reduced. Thus, by Proposition 1, we
obtain the assertion of Theorem 1. o
In the case (2), by the definition of T',, we know

T.I2)cIyn—Inn,. and T,(ISNCIS,..

Therefore only one among the following two holds:

(atzps xz,,,'yz,,)e{az,,}x[o, 1 )x[ __1 , 1+ _1 )cfz,, and
Oyp (20 (229

(Qzpt1y Loptr Ysp+1) € {a2p+1} %[0, 1) x (Qapsy VC L4y

for large 2p,

or
| (a2p1 xzpr yzp) e {azp} X [01 1) X (&zp’ l)C—I:p‘ and
Qs i1y Lopisy Yoprr) € {ctep11} X1 O, X » 1+ Clypis
Azpiy Rapt1 (2 ¢ 79
for large 2p .
That is,

(bepy b2p+1) = (0, a'zp+1) or (a,, 0) .

This means {b;},-,, .. is periodic. Conversely, if {b};-,... is periodie, it
is easy to show that « belongs to Q(a,) by (8).

REMARK. We can show the converse of Proposition 1. In fact, if
the sequence {b},,.. is purely periodic, then the number x belongs to
Q(a,) and there is some 7 such that =z, is «,reduced by Theorem 1.
For Lemma 2 (A) there is a number j such that z,. =2, a,.;=a and
%,.; I8 a,.;reduced. Therefore the number z is a,reduced.

§3. Proof of Theorem 1*.

The proof of Theorem 1* is obtained in analogy to §2. Therefore
we give only a sketeh of the proof.

We define the domain I}, partition P} and Q}, and the transformation
T#* from I to I}, as follows (see Figure (1*)): For j=0, put
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IF={a;} x[—_l_, 1]>< [0, 1)

&;

U{a,}x[—_ 1—__] [1 —--

For 7=0, let us define the partition
PJ?“—:{X;:m l ’m‘=0: 1,-.. y a5+1}
of I} as follows: For 0=m=a;,,—2 Or Mm=a;,q,

XFn={(as, 2, W) eI} | (aj, @) € <mDF},

where
<0>3-"={a,~}><l:—— 1 ,1— “i+1) ’
a; a;
<m>’!‘={a.}x[1_a’j+1_(m""1) 11— a,-+1—m>
’ ’ a; ’ (4 7]
for 1=m=<a;,,—2
and

@y =l x| 12 1] ‘.

a;

Moreover, we define

XFag = {(a,,w ywelr | xe 1—._.. 1__6%
—axf1-)xpo, 1.
a;

For j=1, we also define another partition
={Y}, | m=0,1,--+, a;} of I}
by
Yin={(a» , ) eI} | (as, ) € (m)}}
where
(m)f=[m, m+1) for 0=m=a;—1

and

367
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(@i =[ai, —'57'1—) .

i
For j=0, define the transformation T}: I*—TI%, by

T} (a, =, Y¥)=(Qj+, —Q;x+m, —&y+m) 12)
‘ if (ai’ &, y) € X;:m .

Under the definitions, we see T}(X},)< Y. ., then

LEMMA 1*. The transformation T} is bijective except for the bounda-
rYy.

DEFINITION 2*. Let o be purely periodic and € Q(a). The number
x is said to be a*-reduced if (q, x, %) € I~

REMARK. We see that (o, 8, B) belongs to (the interior of I¥)U {a}x
{0} < {0} if B is a*-reduced. It is easy to show this fact in the following
way: let us assume (q, 8, B) € {a} X {—1/a} x[0, —1/&) and we get B=—1/a
since 8= —1/a. This is a contradiction. Let us assume (a, 3, B) € {a} %
[—1/a, 1]x {0} and we get 8=F=0. Let us assume (a, B, B)€ {a}Xx
{1—1/a}x[1, —1/a] and we get B=1—1/a and (a, 8, B) ¢ I*. This is a
contradiction. Let us assume (o, B, B) € {a} x {1} X [0, 1) and we get Z=1.
This is also a contradiction.

In analogy to §2, we have the following statements:

LEMMA 2*. Let o, be purely periodic.

(A) If x is af-reduced, then z¥ is aX*-reduced, and

B) if x is af-reduced, then there uniquely exists (a,_, x*,), which
18 Ti(ai_y, 22)=(at,, ) and x*, is ar -reduced.

PROOF. Noting the above Remark, it is easy to prove Lemma 2*
from Lemma 1*.

LEMMA 3*. We put

x.:_*?_o_i'__to_‘/_i__ and w:—_-_‘?.ﬁj.__w_
where r,, 8, and t, are integers for 1=0,1,---. If a¥ is reduced and =

18 ay-reduced, then |r,|, |s.l, [t.| are bounded.

PROPOSITION 1*. If o, 18 purely periodic and x i8 aX-reduced, then
{cli=1,s,... 18 Durely periodic.
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PROOF OF THEOREM 1*. For any ¢>0 and m (m=N), we define an

e-boundary I, of the domain I} as follows:

IX =ID:uI®:yis;
={am}><[—-—]-'—-, 1—-_.:!'__:|>((~—.:1-._—-—s’ —":_]'."‘:l
a; a; a; a;
U{a,,,}x(l———l—-, 1]><(1—e, 1)
Q&

U{a,,.}x[———i:—, 1]><[0, o .

Under the same scheme as in §2, the case that (xX, yX)¢ I}, for some
m=N is reduced to Proposition 1*, that is,

(%, Zn)e Ix .

In the case that (xX, yX) eI}, for any m=N, we obtain

(czm c2p+1):=(0’ a’zp-i-l) or (a’zm 0) or (0’ O)

for large 2p by the relation:

TrxI2Hc P, .

Therefore {c;};-,.... is periodic.

can

(1]
(2]
[3]
[4]
[5]
[6]

REMARK. By using the same method as in proof of Theorem 1, we
also show the converse of Proposition 1*.

References

Sh. ITo, Some skew product transformations associated with continued fraction and their
invariant measures, Tokyo J. Math., ® (1986), 115-133.

Sh. ITo and H. NAKADA, Approximations of real numbers by the sequence {na} and their
metrical theory, Acta Math. Hungar., 52 (1988), 91-100.

K. ScHMIDT, On periodic expansions of Pisot-numbers and Salem-numbers, Bull. London
Math. Soc., 12 (1980), 269-278.

V.T. S6s, On the discrepancy of the sequence {na}, Collog. Math. Soc. J. Bolyai, 13
(1976), 859-367.

M. STEWART, Irregularities of uniform distribution, Acta Math. Acad. Sci. Hungar., 37
(1981), 185-221.

B. A. VENKOV, Elementary Number Theory, Wolter-Norolhoff, Groningen, 1970.

Present Address:
DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE
TsubDA-MACHI, KODAIRA, TOKYO 187, JAPAN




