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Abstract. $ln$ this paper we deal with all 3-manifolds which are obtained by glueing
the boundaries of two Seifert fibered spaces over a disk with two exceptional fibers. We will
give a necessary and sufficient condition for those 3-manifolds to admit Heegaard splittings
of genus two. Moreover we will evaluate the numbers of Heegaard splittings of genus two,
up to isotopy, of those 3-manifolds. In fact, we will see that the numbers are at mo8t
four.

\S 0. Introduction.

Let $M$ be an orientable closed 3-manifold. Then it is well-known
that $M$ can be splitted into two handlebodies. The splitting is called a
Heegaard splitting, and denoted by $(V_{1}, V_{2};F)$ , where $V_{i}$ is a handlebody
$(i=1,2),$ $M=V_{1}UV_{2}$ and $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then $F$ is called a
Heegaard surface and the genus of $F$ is called the genus of the Heegaard
splitting. Two Heegaard splittings $(V_{1}, V_{2};F)$ and $(W_{\iota}, W_{2};G)$ of the $8ame$

genus of $M$ are called homeomorphic if there exists an auto-homeomorphism
$f$ of $M$ with $f(F)=G$ , and are called isotopic if the homeomorphism $f$ is
isotopic to the identity on $M$.

By $D(2)$ , we denote the family of all Seifert fibered spaces over a
disk with two exceptional fibers. For any element $S$ of $D(2),$ $Si8$

oriented and $\partial S$ has the orientation induced from that of $S$. For a
fiber $h$ in $\partial S$ and the boundary loop $c$ of a cross section of $S,$ $h$ and $c$

are oriented so that the algebraic intersection number of $h$ and $c$ (in
this order) is 1.

Let $S_{1}$ and $S_{2}$ be two elements of $D(2)$ , and let $f:\partial S_{2}\rightarrow\partial S_{1}$ be a
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homeomorphism. Then we have an orientable closed 3-manifold $M=$

$S_{1}U_{f}S_{2}$ by glueing $\partial S_{1}$ and $\partial S_{2}$ by $f$.
We denote a fiber in $\partial S_{i}$ by $h_{i}(i=1,2)$ . We denote an orientable

twisted I-bundle over a Klein bottle by $KI$, and denote a (2, n)-torus

knot exterior in $S^{3}$ by $E_{2,n}$ for an odd integer $n>1$ . If $S_{i}=KI$, then by
$u_{i}$ we denote a fiber in $\partial S_{i}$ as a circle bundle over a M\"obius band $(i=1,2)$ .
If $S_{i}=E_{2,n}$ , then by $m$ we denote a meridian loop in $\partial E_{2,n}(i=1,2)$ . Note
that if $S_{i}=KI$ ($E_{2,n}$ resp.) then $u_{i}$ ($m_{i}$ resp.) is the boundary loop of a
cross section of $S_{i}(i=1,2)$ . For two oriented loops $x$ and $y$ in a torus,
we denote the algebraic intersection number of $x$ and $y$ by $I(x, y)$ .

In this paper, we regard an oriented loop as an element of the first
homology group. Then $\{h_{i}, c_{i}\}$ is a basis of $H_{1}(\partial S_{i})(i=1,2)$ , and $f$ is
represented by a matrix $\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ with $ad-bc=\pm 1$ such that $[_{f(c_{2})}^{f(h_{2})}]=$

$\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\c_{1}\end{array}\right\}$ , where $c_{i}$ is the boundary loop of a cross section of $S_{i}(i=1,2)$ .
Then we have:

PROPOSITION 1. $M=S_{1}\bigcup_{f}S_{2}$ admits a Heegaard splitting of genus
three.

THEOREM 1. $M=S_{1}\bigcup_{f}S_{2}$ admits a Heegaard splitting of genus two
if and only if one of the following conditions holds:

(1) $[_{f(C_{2})}^{f(h_{2})}]=[cad\epsilon]\left\{\begin{array}{l}h_{1}\\c_{\iota}\end{array}\right\}$ with $ad-\epsilon c=\pm 1$ and $\epsilon=\pm 1$ ,

(2) $S_{1}=E_{2,\alpha},$ $S_{2}=KI$ and $[_{f(u_{2}^{2})}^{f(h)}]=\left\{\begin{array}{l}b\epsilon\\ 0\delta\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ or

(3) $S_{1}=KI,$ $S_{2}=E_{2,\beta}$ and $[_{f(m_{2}^{2})}^{f(h)}]=\left\{\begin{array}{l}b\epsilon\\ 0\delta\end{array}\right\}\left\{\begin{array}{l}h_{1}\\u_{\iota}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ .
REMARK 1. The condition (1) of Theorem 1 is equivalent to the

condition $I(h_{1}, f(h_{2}))=\pm 1$ . The condition (2) ((3) resp.) of Theorem 1 is
equivalent to the condition $I(m_{1}, f(u_{2}))=0(I(u_{1}, f(m_{2}))=0$ resp.).

REMARK 2. In the case when $M$ is not a Seifert fibered space, the
above result has been showed in Theorem of [7]. In the case when $M$ is
a Seifert fibered space, the above result has been showed in Theorem 1.1
of [3]. Theorem 1 therefore is obtained by combining these results. In
this paper, by improving the argument of the proof of Theorem of [7],
we will give a proof which is not influenced by whether $M$ is a Seifert
fibered space or not.

REMARK 3. For the details of 3-manifolds obtained from two twisted
I-bundles over a Klein bottle, see [9].
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THEOREM 2. $M=S_{1}U_{f}S_{2}$ admits at most four non-isotopic Heegaard
splittings of genus two.

In section 5, we will give a more detailed evaluation of the numbers
of Heegaard splittings of genus two, up to isotopy, of $M=S_{1}\bigcup_{f}S_{2}$ . See
Table 5.2.

By $S(b;\beta_{1}/\alpha_{1}, \beta_{2}/\alpha_{2}, \beta_{a}/\alpha_{8}, \beta_{4}/\alpha_{4})$ we denote a Seifert fibered space over
a 2-sphere with four exceptional fibers, where $\beta_{i}/\alpha_{i}$ is the Seifert invariant
of the exceptional fiber $(1\leqq i\leqq 4)$ and $b$ is an integer representing the
obstruction class (cf. [13] or [17]). Then, by Theorem 1 and Table 5.2,
we have the following corollaries.

COROLLARY 1 (cf. Theorem 1.1 of [3]). Let $M$ be a Seifert fibered
space over a 2-sphere with four exceptional fibers. Then $M$ admits a
Heegaard splitting of genus two if and only’bf $M$ is homeomorphic to
$S(O;1/2,1/2, -1/2, -a/(2a+1))$ for some positive integer $a$ .

Moreover $S(O;1/2,1/2, -1/2, -a/(2a+1))$ admits exactly one Heegaard
splitting of genus two up to isotopy.

REMARK 4. The first half of the above corollary has been already
obtained by using another method in Theorem 1.1 of [3].

COROLLARY 2. Let $M$ be an orientable Seifert fibered space over a
projective plane with two exceptional fibers. Then $M$ admits at most
two non-isotopic Heegaard splittings of genus two.

By the proof of Theorem 2, we will see that in almost cases $M$

admits at most two non-isotopic Heegaard splittings of genus two. In
particular, we will see that the 3-manifolds which may admit four non-
isotopic Heegaard splittings of genus two are only $M=E_{2,\alpha}\bigcup_{f}E_{2,\beta}$ with
$[_{f(m_{2})}^{f(h_{2})}]=\left\{\begin{array}{ll}0 & \epsilon\\\delta & 0\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}(\epsilon\delta=\pm 1)$ . We denote this manifold by $M_{\alpha,\beta,\epsilon\delta}$ . By
Theorem 8 of [1], a Heegaard splitting of genus two of an orientable
closed 3-manifold corresponds to a 6-plat representation of a 3-bridge
knot or link in $S^{3}$ . Then the four 6-plat representations of the 3-bridge
knots or links corresponding to the four Heegaard splittings of genus
two of $M_{\alpha,\beta,1}$ are those ones illustrated in Figure 0.1, where $\alpha=2a+1$

$(a>0)$ and $\beta=2b+1(b>0)$ . Since the four knots in Figure 0.1 are all
equivalent, we denote the knot by $K_{a,b,1}$ . If $a=1$ or $b=1$ , then by
Proposition 5.3, two Heegaard splittings corresponding to the 6-plat
representations $(K_{a.b,I}, S_{1})$ and $(K_{a,b,1}, S_{2})$ are mutually isotopic. If $a>1$

and $b>1$ , then it seems that the four Heegaard splittings of genus two
of $M_{\alpha.\beta,1}$ corresponding to the four 6-plat representations of $K_{a,b,1}$ are all
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mutually non-isotopic. The author, however, has no proof. For $M_{\alpha,\beta,-1}$ ,
we have the knot $K_{a,b,-1}$ similar to $K_{a,b,1}$ by substituting the tangle $T_{b}$

in the diagram of $K_{a,b,1}$ for the tangle $T_{-b}$ illustrated in Figure 0.2.

denoteS $8_{t}^{\prime}$ $X-crossi\mathfrak{n}\mathfrak{g}s$

FIGURE 0.1

$\rightarrow$

FIGURE 0.2
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Now, we will prove the above theorems as follows:
First, by improving the argument of the proof of Theorem of [7],

we will show the following lemma.

LEMMA 1.1. Let $M$ be an orientable closed 3-manifold which admits
a Heegaard splitting $(V_{1}, V_{2};F)$ of genus two.

Suppose that $M$ contains a family $\Sigma$ consisting of finitely many
mutually disjoint incompressible tori. Then $\Sigma$ is ambient isotopic to a
family of tori which intersects V. in essential annuli $(i=1,2)$ .

By applying Lemma 1.1 to $M=S_{1}\bigcup_{f}S_{2}$ and by careful consideration,
we will obtain Lemma 1.5, which minutely analyzes the intersections of
the torus $\partial S_{1}(=\partial S_{2})$ and the handlebodies of the Heegaard splitting.

Then Theorem 1 will be proved immediately by Lemma 1.5 and using
the argument similar to the proof of Theorem of [7].

REMARK 5. Lemma 1.1 does not hold in general if the genus of the
Heegaard splitting is greater than 2. See the introduction of [8] (cf.
Lemma 3.1 of [10]).

Next, we will introduce several families of Heegaard surfaces of
genus two of $M=S_{1}\bigcup_{f}S_{2}$ , which are described in section 3. Then by
Lemma 1.5, we can see that any Heegaard surface of genus two of $M$

is ambient isotopic to a Heegaard surface belonging to one of the families
(Proposition 3.1).

To prove Theorem 2 we have to evaluate the numbers, up to isotopy,
of Heegaard surfaces of each family. For this purpose, we will show
the following two theorems.

We say that an orientable closed 3-manifold is a lens space if it
admits a Heegaard splitting of genus one (cf. [5]). Let $L$ be a lens
space and $K$ a knot in $L$ . We say that $K$ is a core of $L$ if $C1(L-N(K))$
is a solid torus, where $N(K)$ is a regular neighborhood of $K$ in $L,$ $K$ is
a torus knot in $L$ if there exists a torus in $L$ which contains $K$ and
splits $L$ into two solid tori, and $K$ is a trivial knot if $K$ bounds a disk
in $L$ .

THEOREM 3. Let $L$ be a lens space and $K$ a l-bridge knot in $L$ ,
and let $(V_{1}, V_{2};G)$ be a Heegaard splitting of genus one of $L$ which gives
a l-bridge representation of $K$ i.e., $\alpha_{i}=V_{i}\cap K$ is a single trivial arc in
$V_{i}(i=1,2)$ .

Suppose that $K$ is a non-trivial torus knot and is not a core of $L$ .
Then for $i=1,2$ , there exists a disk $\Delta_{i}$ in $V_{i}$ such that $\partial V_{i}\cap\Delta_{i}=\beta$ is
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an arc in $\partial V,$ $\partial\Delta=\alpha_{i}\cup\beta_{i}$ and $\beta_{1}\cap\beta_{f}=\partial\beta_{1}=\partial\beta_{2}$

NOTE. The important point of this theorem is the last assertion
$\beta_{1}\cap\beta_{2}=\partial\beta_{1}=\partial\beta_{2}$

Theorem 3 says that any l-bridge representation of a torus knot in
a lens space is trivial. The next theorem says that 2-bridge represen-
tations of a (2, n)-torus knot in $S^{3}$ are unique up to ambient isotopy rel.
the knot.

THEOREM 4. Let $K$ be a non-trivial (2, n)-torus knot in $S^{3}$ , and let
$S_{1}$ and $S_{2}$ be 2-spheres in $S^{3}$ each of which gives a 2-bridge representation

of $K$.
Suppose $S_{1}\cap K=S_{2}\cap K$ ( $=4$-points). Then there exists an ambient

isotopy $f_{t}(0\leqq t\leqq 1)$ of $S^{a}$ such that $f_{0}=id.,$ $f_{1}(S_{2})=S_{1}$ and $f_{t}|K$ is the
identity on $K(0\leqq t\leqq 1)$ .

NOTE. The important point of this theorem is the last condition
that $f_{t}|K$ is the identity on $K(0\leqq t\leqq 1)$ .

Then, by combining these results, we will show Theorem 2.
Concerning the numbers of Heegaard splittings of genus two, M.

Boileau and J. P. Otal proved in [2] that any Seifert fibered space over a
2-sphere with three exceptional fibers admits at most three non-isotopic
Heegaard splittings of genus two. And J. Hass proved in [4] that any
orientable closed hyperbolic 3-manifold admits finitely many non-isotopic
Heegaard splittings of genus two. These facts, however, do not hold in
general. Recently M. Sakuma proved in [15] that there exist infinitely

many orientable closed 3-manifolds each of which admits infinitely many
non-isotopic Heegaard splittings of genus two. But the author does not
know whether there exists a 3-manifold which admits infinitely many
non-homeomorphic Heegaard splittings of genus two.

This paper is organized as follows. In section 1, Lemmas 1.1 and 1.5
will be proved. In section 2, we will prove Proposition 1 and Theorem 1.
In section 3, we will describe several families of Heegaard surfaces of
genus two and show Proposition 3.1. In section 4, Theorems 3 and 4 will
be proved. Then, by combining these results, we will prove Theorem 2
and Corollaries 1, 2 in section 5.

Throughout this paper we will work in the piecewise linear category.

For the definitions of the standard terms in 3-manifold topology and knot
theory, we refer, [5], [6] and [14].
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\S 1. Some lemmas to prove Theorems 1 and 2.
We say that a surface $F$ properly embedded in a compact 3-manifold

$M$ is $\partial$-parallel if $F$ is isotopic to a surface in $\partial M$ rel. $\partial F$, and $F$ is
essential in $M$ if $F$ is incompressible and is not $\partial$-parallel. For a given
manifold $X$ and a submanifold $Y,$ $N(Y)$ denotes a regular neighborhood
of $Y$ in $X$.

PROOF OF LEMMA 1.1. We may assume that each component of
$\Sigma\cap V_{1}$ is a disk and that $\#(\Sigma\cap V_{1})$ is minimal among all families con-
sisting of tori which are ambient isotopic to $\Sigma$ and intersect $V_{1}$ in disks,
where $\#(\Sigma\cap V_{1})$ is the number of components of $\Sigma\cap V_{1}$ .

Put $\Sigma_{1}=\Sigma\cap V_{1}$ and $\Sigma_{2}=\Sigma\cap V_{2}$ .
CLAIM 1. $\Sigma_{2}$ is incompressible in’ $V_{2}$ .
Since $M$ admits a Heegaard splitting of genus two and contains

incompressible tori, $M$ is irreducible. Then Claim 1 follows from the
irreducibility of $M$, the incompressibility of $\Sigma$ and the minimality of
$\#(\Sigma\cap V_{1})$ .

Let $E=E_{1}\cup E_{2}$ be a complete meridian disk system of $V_{2}$ , i.e. $E_{1}$ ,
$E_{2}$ are mutually disjoint disks properly embedded in $V_{2}(i=1,2)$ and
$C1(V_{2}-N(E_{1}\cup E_{2}))$ is a 3-ball. By Claim 1, we may assume that $\Sigma_{2}$ in-
tersects $E$ in arcs.

Let $a$ be an outermost arc component of $E\cap\Sigma_{2}$ in $E$. If $a$ is an
inessential arc in $\Sigma_{2}$ , i.e. $a$ cuts off a disk in $\Sigma_{2}$ , then by using this
disk, we can exchange $E$ for another complete meridian disk system $E$‘

so that $\#(E’\cap\Sigma_{2})<\#(E\cap\Sigma_{2})$ . Hence as in Ch. II of [6], at each stage
by exchanging complete meridian disk systems if necessary, we have a
sequence of isotopies of type A at arcs $a_{i}(1\leqq i\leqq n)$ each of which is an
essential arc properly embedded in $\Sigma_{2}^{t-1}$ , where $\Sigma_{2}^{0}=\Sigma_{2},$ $\Sigma_{2}^{i}=C1(\Sigma_{2}^{i-1}-N(a)\rangle$

and $\Sigma_{2}^{n}$ consists of disks. For the definition of an isotopy of type $Ai$

see Ch. II of [6]. Furthermore we may assume that each $a_{i}$ is an es-
sential arc properly embedded in $\Sigma_{2}$ and that $a_{i}\cap a_{j}=\emptyset(i\neq j)$ . Then
each $a_{i}$ is one of the following three types.

We say that $a_{i}$ is of type 1 if $a_{i}$ connects distinct components of
$\partial\Sigma_{2},$

$a_{i}$ is of type 2 if $a_{i}$ meets a single component of $\partial\Sigma_{2}$ and is a
separating arc in $\Sigma_{2}$ , and $a_{i}$ is of type 3 if $a_{i}$ meets a single component
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of $\partial\Sigma_{2}$ and is a non-separating arc in $\Sigma_{2}$ . Moreover we say that $a_{i}$ is a
d-arc if $a$ is of type 1 and there exists a component $c$ of $\partial\Sigma_{2}$ which
meets $a_{i}$ such that $c$ does not meet $a_{\dot{f}}$ for any $j<i$ . See Figure 1.1.

FIGURE 1.1

CLAIM 2. Each $a$ is not a d-arc.
If an arc $a_{k}$ is a d-arc, then by the inverse operation of an isotopy

of type A defined in [12], $\Sigma$ is ambient isotopic to $\Sigma^{\prime}$ which inter8ects $V_{1}$

in disks with $\#(\Sigma^{\prime}\cap V_{1})<\#(\Sigma\cap V_{1})$ . This is a contradiction.

CLAIM 3. Each $a_{i}$ is not of type 2.
If there exists an arc of type 2, then by noting that each $a$ i8 es-

sential in $\Sigma_{2}$ , we can find a d-arc. This is contradictory to Claim 2.

Put $\Sigma^{(0)}=\Sigma$ , and let $\Sigma^{(i)}$ be the image of $\Sigma^{(i-1)}$ after an isotopy of
type A at $a_{i}(1\leqq i\leqq n)$ . Then we have $\Sigma_{2}=\Sigma^{(i)}\cap V_{2}(0\leqq i\leqq n)$ . Put $\Sigma_{1}^{i}=$

$\Sigma^{()}\cap V_{1}(0\leqq i\leqq n)$ . By performing an isotopy of type A at $a_{i}$ , a band
in $V_{1}$ is produced. We denote the band by $b$ .

Now, let $\Sigma_{1}=D_{1}\cup D_{2}\cup\cdots UD_{r}(r>0)$ be disks in $V_{1}$ .
Note that, by Claims 2 and 3, there are no pairs of two disks in

$\{D_{i}\}_{\mathfrak{i}=1}^{\prime}$ which are complete meridian disk systems of $V_{1}$ .
By Claims 2 and 3, $a_{1}$ is of type 3. If $r=1$ , then $\Sigma_{\iota}^{1}$ is a single

annulus, and the proof is completed.
Suppose $r>1$ . By Claims 2 and 3, we may assume that $a_{1}$ and $a_{2}$

are both of type 3 and that $b_{1}$ meets $D_{1}$ .
Suppose that $b_{2}$ also meets $D_{1}$ . Let $T$ be the component of $\Sigma^{(2)}$

containing $D_{1}$ , and put $T^{\prime}=T\cap V_{1}$ . Since $r>1,$ $b_{1}$ and $b_{2}$ meet $D_{1}$ in the
same side. Then $T$ ‘ is contained in a solid torus obtained by cutting $V_{1}$

by $D_{1}$ . This is contradictory to that $T$ is incompressible. Hence we
may assume that $b_{2}$ meets $D_{2}$ , and we can put $\Sigma_{1}^{2}=A_{1}UA_{2}UD_{8}\cup\cdots UD,$ ,

where $A$ is an annulus $(i=1,2)$ .
If $r=2$ , then the proof is completed. Suppose $r>2$ . If $a_{8}$ is of

type 1, then by Claim 2, $a_{\epsilon}$ connects $\partial D_{1}$ and $\partial D_{2}$ . Then, by noting the
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existence of the disk $D_{3}$ , we can push the band $b_{2}$ into $V_{2}$ missing $b_{3}$ . See
Figure 1.2 and Lemmas 3.2, 3.4 and 3.5 of [7].

FIGURE 1.2

By performing this operation, we can change the order of $a_{2}$ and $a_{8}$ ,
and we have a d-arc. This is contradictory to Claim 2. Thus $a_{3}$ is of
type 3. If $b_{3}$ meets $D_{1}$ or $D_{2}$ , then we have a compressible component of
$\Sigma$ similarly to the above, and a contradiction. Hence $b_{3}$ meets $D_{3}$ and we
have $\Sigma_{1}^{s}=A_{1}UA_{2}\cup A_{3}\cup D_{4}\cup\cdots\cup D_{r}$ , where $A_{i}$ is an annulus $(i=1,2,3)$ . By
continuing these procedures, we complete the proof of Lemma 1.1. $\square $

The following two lemmas follow from Theorem VI. 34 of [6] and the
uniqueness of the characteristic Seifert pairs, see Ch. IX of [6].

LEMMA 1.2. Suppose that $M=S_{1}U_{f}S_{2}$ is a Seifert fibered space.
Then the base space of $M$ is one of a 2-sphere with four exceptional
points, a projective plane with two exceptional points or a Klein bottle
without exceptional points.

LEMMA 1.3. (1) Any separating incompressible torus in $M=S_{1}\bigcup_{j}S_{2}$

splits $M$ into two 3-manifolds belonging to $D(2)$ .
(2) If $M=S_{1}\bigcup_{f}S_{2}$ contains a non-separating torus, then $M$ is

a torus bundle over a circle such that the torus is a fiber.
LEMMA 1.4. Let $P$ be a projective plane with two holes. Then there

exist exactly two diferent simple loops, up to ambient isotopy, eaeh of
which bounds a $M\dot{o}$bius band in $P$.
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PROOF. This can be easily proved by noting that $P$ is a Mobius
band with one hole. $\square $

For an integer $n(\geqq 0)$ , by $P(n)$ we denote the family consisting of
all orientable Seifert fibered spaces over a projective plane with $n$ ex-
ceptional fibers.

LEMMA 1.5. Suppose that $M=S_{1}\bigcup_{f}S_{2}$ admits a Heegaard splitting
$(V_{1}, V_{2};F)$ of genus two, and put $T^{\prime}=\partial S_{1}=f(\partial S_{2})$ .

Then $T^{\prime}$ is ambient isotopic to a torus $T$ which satisfies one of the
following three eonditions. (See Figure 1.3, and see also Lemmas 3.2,
3.4 and 3.5 of [7].)

(1) For $i=1,2,$ $V_{i}\cap T$ consists of a single separating essential
annulus.

(2) $V_{1}\cap T$ (or $V_{2}\cap T$ resp.) consists of two disjoint non-separating
essential annuli satisfying the following condition: there emsts a complete
meridian disk system $(D_{1}, D_{2})$ of $V_{1}$ (or $V_{2}$ resp.) such that $ D_{1}\cap(V_{1}\cap T)=\emptyset$

(or $ D_{1}\cap(V_{2}\cap T)=\emptyset$ resp.) and $D_{2}\cap(V_{1}\cap T)$ (or $D_{2}\cap(V_{2}\cap T)$ resp.) consists
of two arcs each of which is an essential arc properly embedded in each

(1)

FIGURE 1.3
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annulus of $V_{1}\cap T$ (or $V_{2}\cap T$ resp.), and $V_{2}\cap T$ (or $V_{1}\cap T$ resp.) consists
of two disjoint non-parallel separating essential annuli.

(3) For $i=1,2,$ $V_{i}\cap T$ consists of two disjoint non-separating es-
sential annuli satisfying the same condition as that of (2).

PROOF. By Lemma 1.1, $T^{\prime}$ is ambient isotopic to a torus $T$ which
intersects $V_{i}$ in essential annuli $(i=1,2)$ . Put $\Sigma_{i}=V_{i}\cap T(i=1,2)$ . Then
we have the following three cases.

Case 1: Both $\Sigma_{1}$ and $\Sigma_{2}$ consist of separating annuli.
The case when all annuli of $\Sigma_{1}$ are mutually parallel. Since, by

Lemma 3.2 of [7], there exists exactly one component of $C1(\partial V_{1}-N(\Sigma_{1}))$

which is a torus with two holes, all annuli of $\Sigma_{2}$ also are mutually
parallel. Let $A_{i}$ be a component of $\Sigma_{i}$ which cuts off a torus with two
holes $G_{i}$ in $\partial V_{i}$ with $G_{i}\cap\Sigma_{i}=\partial A_{i}(i=1,2)$ , see Figure 1.4. Since $G_{2}$ is
identified with $G_{1}$ in $M,$ $\partial A_{2}$ is identified with $\partial A_{1}$ in $M$. This shows
$T=A_{1}\cup A_{2}$ , and the conclusion (1) holds.

$z_{i}$

FIGURE 1.4

The case when $\Sigma_{1}$ contains non-parallel annuli. Since, by Lemmas
3.4 and 3.5 of [7], there exists exactly one component of $C1(\partial V_{1}-N(\Sigma_{1}))$

which is a sphere with four holes, $\Sigma_{2}$ also contains non-parallel annuli.
Let $A_{i}$ and $B_{i}$ be the components of $\Sigma_{i}$ which cut off a sphere with
four holes $G_{i}$ in $\partial V_{i}$ with $G_{i}\cap\Sigma_{i}=\partial(A_{i}\cup B_{i})(i=1,2)$ . Put $W_{i}\cup U_{i}\cup R_{i}=$

$C1(V_{l}-N(A_{i}\cup B_{i}))$ , where $W_{i}$ is a genus two handlebody and $U_{i}$ and $R_{i}$

are solid tori. Since $\partial V_{2}\cap(U_{2}\cup R_{2})$ is identified with $\partial V_{1}\cap(U_{1}\cup R_{1})$ ,
$\partial(U_{1}\cup R_{J}UU_{2}\cup R_{2})$ consists of two tori. Then $W_{1}\cup W_{2}$ is a 2-bridge link
exterior in $S^{3}$ and $A_{1}\cup B_{1}\cup A_{2}\cup B_{2}$ is two tori. This is a contradiction.

Case 2: One of $\Sigma_{1}$ or $\Sigma_{2}$ contains a non-separating annulus and the
other consists of separating annuli.

In this case we may as8ume that $\Sigma_{1}$ contains a non-separating annulus.
Since there exists exactly one component of $C1(\partial V_{1}-N(\Sigma_{1}))$ which is a
sphere with four holes, $\Sigma_{2}$ containv non-parallel annuli. Let $A_{1}$ and $B_{1}$

( $A_{2}$ and $B_{2}$ resp.) be non-separating (separating resp.) essential annuli in
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$V_{1}$ ( $V_{2}$ resp.) which cut off a sphere with four holes in $\partial V_{1}$ ($\partial V_{2}$ resp.)

disjoint from $\Sigma_{1}$ ( $\Sigma_{2}$ resp.). Note $A_{i}$ and $B_{i}$ are not components of $\Sigma_{i}$

$(i=1,2)$ . See Figure 1.5.

Since there exists exactly one component $G_{i}$ of $C1(\partial V-N(\Sigma))$ which
is a sphere with four holes $(i=1,2),$ $G_{2}$ is identified with $G_{1}$ in $M$. Then
by noting that $\partial(AUB_{i})$ is ambient isotopic to $\partial G_{i}$ in $G_{i}(i=1,2)$ , we
may assume that $\partial(A_{2}\cup B_{2})$ is identified with $\partial(A_{1}\cup B_{1})$ . Put $W_{1}\cup U_{1}=$

$C1(V_{1}-N(A_{1}\cup B_{1}))$ and $W_{2}\cup U_{2}\cup R_{2}=C1(V_{2}-N(A_{2}\cup B_{2}))$ , where $W_{1}$ and $W_{2}$

are genus two handlebodies and $U_{1},$ $U_{2}$ and $R_{2}$ are solid tori. Then, by the
above argument, $\partial V_{2}\cap W_{2}$ is identified with $\partial V_{1}\cap W_{1}$ , and $\partial V_{2}\cap(U_{2}\cup R_{2})$

is identified with $\partial V_{1}\cap U_{1}$ . Put $N_{1}=W_{1}\cup W_{2}$ and $N_{2}=U_{1}\cup U_{2}\cup R_{2}$ in $M$.
Then, by [7, \S 6 Case 2.2.2], $N_{2}$ is a Seifert fibered space over a disk
with two or three exceptional fibers, and $N_{1}$ is a 2-bridge knot exterior
in $S^{3}$ .

Suppose that $N_{2}$ has three exceptional fibers. If $N_{1}$ is not a solid
torus, then $\partial N_{1}$ is a separating incompressible torus which bounds $N_{2}$ .
This is contradictory to Lemma 1.3. If $N_{1}$ is a solid torus, then, since
a meridian loop in $\partial N_{1}$ as a 2-bridge knot exterior and a fiber in $\partial N_{2}$ are
identified in $M,$ $M$ is a Seifert fibered space over a sphere with three
exceptional fibers. This is contradictory to Lemma 1.2. Hence $N_{2}$ has
two exceptional fibers. Since $T$ is contained in $N_{2},$ $T$ is ambient isotopic
to $\partial N_{2}=A_{1}\cup B_{1}\cup A_{2}\cup B_{2}$ , and the conclusion (2) holds.

Case 3: Both $\Sigma_{1}$ and $\Sigma_{2}$ contain non-separating annuli.
Let $A_{i}$ and $B_{i}$ be non-separating annuli in $V_{i}(i=1,2)$ such as $A_{1}$

and $B_{1}$ in $V_{1}$ of Case 2. Then, by the same argument as the proof of
Case 2, we may assume that $\partial(A_{2}\cup B_{2})$ is identified with $\partial(A_{1}\cup B_{1})$ in $M$.
Put $W_{i}UU_{i}=C1(V_{i}-N(A_{i}\cup B_{i}))(i=1,2)$ , where $W$ is a genus two handle-
body and $U_{i}$ is a solid torus. Put $N_{1}=W_{1}\cup W_{2}$ and $N_{2}=U_{1}\cup U_{2}$ in $M$.
Then $N_{1}$ is a 2-bridge knot or link exterior in $S^{3}$ . If $N_{1}$ is a 2-bridge
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link exterior, then a component of $\partial N_{1}$ , say $T’$ , is a non-separating torus
in $M$. Since $ T’\cap T=\emptyset$ , and by Lemma 1.3, $T$ is ambient isotopic to
$T^{\prime}$ . This is contradictory to that $T$ is a separating toru8. Thus $N_{1}$

is a 2-bridge knot exterior, and $N_{2}$ is a Seifert fibered space over a
Mobius band with $0,1$ or 2 exceptional fibers. If $N_{2}$ has no exceptional
fibers, then, since $T$ is contained in $N_{2},$ $T$ is ambient isotopic to $\partial N_{2}=$

$A_{1}\cup B_{1}\cup A_{2}\cup B_{2}$ , and the conclusion (3) holds. If $N_{2}$ has one exceptional
fiber, then by Lemma 1.3, $N_{1}$ is a solid torus. Since a meridian loop in
$\partial N_{1}$ as a 2-bridge knot exterior in $S^{3}$ and a fiber in $\partial N_{2}$ are identified in
$M,$ $M$ belongs to $P(1)$ . This is contradictory to Lemma 1.2.

Suppose that $N_{2}$ has two exceptional fibers. Then $N_{1}$ is a solid torus
and $M$ belongs to $P(2)$ . By Lemma 1.4, $T$ is ambient isotopic to one of
the two tori $T_{1}$ or $T_{2}$ indicated in Figure 1.6.

FIGURE 1.6

Since $T_{1}$ satisfies the condition (1), the proof is completed if $T$ is
ambient isotopic to $T_{1}$ .

Suppose that $T$ is ambient isotopic to $T_{2}$ . Put $T_{2}\cap V_{i}=R_{i}\cup S(i=1,2)$ .
We may assume that both $R_{i}$ and $S_{i}$ are parallel to $A_{i}$ in $V_{i}(i=1,2)$ .
Then $A_{i},$ $B_{i},$ $R_{i}$ and $S_{i}$ are four annuli illustrated in Figure 1.7 $(i=1,2)$ .

FIGURE 1.7
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Put $\partial A=a_{i}\cup a_{i}^{\prime},$ $\partial B_{i}=b_{i}\cup b_{i}^{\prime},$ $\partial R=r_{i}\cup r_{i}^{\prime}$ and $\partial S_{i}=s_{i}\cup s_{i}^{\prime}(i=1,2)$ , where
$a_{i},$

$a_{i}^{\prime},\cdots,$
$s_{i}$ are boundary components of those annuli. Since $A_{1}\cup B_{1}\cup A_{2}\cup B_{2}$

is a single torus, we may assume that $a_{1}$ ( $a_{1},$ $b_{1}$ and $b_{1}^{\prime}$ resp.) is identified
with $a_{2}$ ( $b_{2},$ $a_{2}^{\prime}$ and $b_{2}^{\prime}$ resp.) in $M$. Then, by the fact that $W_{1}\cup W_{2}=N_{1}$

is a trivial 2-bridge knot exterior in $S^{3}$ and the uniqueness of 2-bridge
representations of a trivial knot (i.e. Schubert’s normal form theorem
of [16]), we have a disk $\Delta_{i}$ in $V_{i}(i=1,2)$ with $\Delta_{1}\cap\Delta_{2}=\emptyset$ such that $\partial\Delta_{i}$ is
a union of an arc in $\partial V_{i}$ and an essential arc $(=\Delta_{i}\cap A_{i}=\partial\Delta_{i}\cap A_{i})$ in $A_{i}$ ,
see Figure 1.7. Let $D_{i}$ be a disk in $V_{i}$ containing $\Delta(i=1,2)$ such that
$\partial D_{i}$ is a union of an arc in $\partial V_{i}$ and an essential arc $(=D_{i}\cap R_{i}=\partial D_{i}\cap R_{i})$

in $R_{i}$ . Then by $\Delta_{1}\cap\Delta_{2}=\emptyset$ , we may assume $ D_{1}\cap D_{2}=\emptyset$ . Hence we can
perform the isotopies of type A along $D_{1}$ and $D_{2}$ simultaneously. Note
here that the arc $D_{1}\cap\partial V_{1}$ ( $D_{2}\cap\partial V_{2}$ resp.) connects $r_{2}$ and $s_{2}(\gamma_{1}$ and $s_{1}$

resp.) because the arc $\Delta_{1}\cap\partial V_{1}$ ( $\Delta_{2}\cap\partial V_{2}$ resp.) connects $a_{2}$ and $b_{2}(a_{1}$ and
$b_{1}$ resp.). Let $\tilde{T}_{2}$ be the image of $T_{2}$ after the isotopies. Then by the
above note, we can see that $\tilde{T}_{2}\cap V_{i}$ is a separating e8sentia1 annulus
properly embedded in $V_{i}(i=1,2)$ . Thus $\tilde{T}_{2}$ satisfies the condition (1),
and this completes the proof of Lemma 1.5. $\square $

We say that an arc $\alpha$ properly embedded in a compact 3-manifold
$M$ is trivial if there exists an arc $\beta$ in $\partial M$ with $\alpha\cap\beta=\partial\alpha=\partial\beta$ such that
$\alpha\cup\beta$ bounds a disk in $M$. Let $L$ be a lens space and $K$ a knot in $L$ .
We say that $K$ is a l-bridge knot in $L$ if there exist two solid tori $V_{1}$

and $V_{2}$ in $L$ such that $L=V_{1}\cup V_{2},$ $V_{1}\cap V_{2}=\partial V_{1}=\partial V_{2}$ and $V_{i}\cap K$ is a trivial
arc in $V_{i}(i=1,2)$ .

LEMMA 1.6. Let $S$ be an element of $D(2)$ . Let $h$ be a fiber in $\partial S$

and $\mu$ a simple loop in $\partial S$ with $I(\mu, h)=\pm 1$ . Then $S$ is a l-bridge
knot exterior in some lens space such that $\mu$ is a meridian loop of the
knot.

PROOF. Let $V$ be a solid torus and $m$ a meridian loop in $\partial V$. Let
$\psi;\partial V\rightarrow\partial S$ be a homeomorphism with $\psi(m)=\mu$ . Let $K$ be a core of $V$.
Then by $I(\mu, h)=\pm 1,$ $L=S\bigcup_{\psi}V$ admits a Seifert fibration over a 2-sphere
with two exceptional fibers such that $K$ is a regular fiber. Namely $L$ is
a lens space. Let $T$ be a torus in $L$ containing $K$ saturated in the
Seifert fibratian which splits $L$ into two solid tori each of which contains
an exceptional fiber. Let $\tilde{T}$ be a torus intersecting $K$ in two points
obtained from $T$ by slightly moving $T$. Then $\tilde{T}$ splits $L$ into two solid
tori $V_{1}$ and $V_{2}$ such that $V_{i}\cap K$ is a trivial arc in $V_{i}(i=1,2)$ . Hence $K$ is
a l-bridge knot in $L,$ $S=C1(L-N(K))$ and $\mu$ is a meridian loop.
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\S 2. Proof of Proposition 1 and Theorem 1.

PROOF OF PBOPOSITION 1. Since $S_{1}$ and $S_{2}$ belong to $D(2)$ , we can
put $S_{1}=V_{1}\cup W_{1}$ and $S_{2}=V_{2}UW_{2}$ , where $V_{i}$ and $W_{i}$ are solid tori and
$V_{l}\cap W_{i}=\partial V_{i}\cap\partial W_{i}=A_{i}$ is an essential annulus in $S_{i}(i=1,2)$ . Let $\alpha_{i}$ be an
essential arc properly embedded in $A_{i}$ and $N_{i}$ a regular neighborhood of
$\alpha_{i}$ in $S_{i}(i=1,2)$ . Put $U_{i}=C1(S_{i}-N_{i})$ , then $U_{i}$ is a genus two handlebody
$(i=1,2)$ . Since we may assume $f(N_{2}\cap\partial S_{2})\cap(N_{1}\cap\partial S_{1})=\emptyset,$ $H_{1}=U_{1}\bigcup_{f}N_{2}$

and $H_{2}=U_{2}\bigcup_{f}N_{1}$ are genus three handlebodies. Then $(H_{1}, H_{2};F)$ is a genus
three Heegaard splitting of $M$, where $F=\partial H_{1}=\partial H_{2}$ . This completes the
proof of Proposition 1. $\square $

PROOF OF THEOREM 1. Suppose that $M=S_{1}\bigcup_{f}S_{2}$ admits a Heegaard
splitting $(V_{1}, V_{2};F)$ of genus two. Put $T=\partial S_{1}=f(\partial S_{2})$ . Then by Lemma
1.5, we may assume that $T$ satisfies one of the three conditions of
Lemma 1.5. In the following proof, note that if two elements of $D(2)$

are homeomorphic, then the homeomorphism is isotopic to a fiber pre-
serving homeomorphism.

Case 1: $T$ satisfies the condition (1).
For $i=1,2$ , put $W_{i}\cup U_{i}=C1(V_{i}-N(T))$ , where $W_{i}$ is a genus two

handlebody and $U_{i}$ is a solid torus. Put $N_{1}=W_{1}\cup W_{2}$ and $N_{2}=U_{1}UU_{2}$ in
$M$. Then $N_{1}$ is a l-bridge knot exterior in a lens space $L$ , and a meridian
loop in $\partial N_{1}$ is identified with a fiber in $\partial N_{2}$ . Let $\mu$ be a meridian loop
in $\partial N_{1}$ and $h_{i}$ a fiber in $\partial N_{i}(i=1,2)$ . If $|I(\mu, h_{1})|>1$ , then $L$ admits a
Seifert fibration whose base space is a 2-sphere with three exceptional
points. This is a contradiction. If $I(\mu, h_{1})=0$ , then by Theorem of Ch.
1 of [13], $L$ is a connected sum of two lens spaces. This also is a con-
tradiction. Thus $I(\mu, h_{1})=\pm 1$ . Since $I(\mu, f(h_{2}))=0$ , we have $I(h_{1}, f(h_{2}))=$

$\pm 1$ . Then by Remark 1, we have the conclusion (1) of Theorem 1.
Case 2: $T$ satisfies the condition (2).
We may assume that $T\cap V_{1}$ is two non-separating annuli and $T\cap V_{2}$

is two separating annuli. Put $W_{1}\cup U_{1}=C1(V_{1}-N(T))$ and $W_{2}UU_{2}\cup R_{2}=$

$C1(V_{2}-N(T))$ , where $W_{1}$ and $W_{2}$ are genus two handlebodies and $U_{1},$ $U_{2}$ and
$R_{2}$ are solid tori. Put $N_{1}=W_{1}\cup W_{2}$ and $N_{2}=U_{1}\cup U_{2}\cup R_{2}$ in $M$. Then $N_{1}$

is a 2-bridge knot exterior in $S^{3}$ and a meridian loop in $\partial N_{1}$ is identified
with a fiber in $\partial N_{2}$ . Then, by the same argument as the proof of Case
1, we have $I(h_{1}, f(h_{2}))=\pm 1$ and the conclusion (1) of Theorem 1.

Case 3: $T$ satisfies the condition (3).
Put $W_{i}UU_{i}=C1(V_{i}-N(T))(i=1,2)$ , where $W_{i}$ is a genus two handle-

body and $U_{i}$ is a solid torus. Put $N_{1}=W_{1}\cup W_{2}$ and $N_{2}=U_{1}\cup U_{2}$ . Then
$N_{1}$ is a 2-bridge knot exterior in $S^{3}$ , and a meridian loop in $\partial N_{1}$ is
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identified with a fiber in $\partial N_{2}$ as a circle bundle over a Mobius band.
Since $N_{1}$ is an element of $D(2)$ , by Theorem 2 of [11], $N_{1}$ is a torus
knot exterior. Furthermore, since 2-bridge torus knot is a (2, n)-torus
knot, $N_{1}$ is homeomorphic to $E_{2,n}$ for some odd integer $n>1$ . Hence,
$S_{1}=E_{2,\alpha},$ $S_{2}=KI$ and $I(m_{1}, f(u_{2}))=0$ if $S_{1}=N_{1}$ , or $S_{1}=KI,$ $S_{2}=E_{2,\beta}$ and
$I(u_{1}, f(m_{2}))=0$ if $S_{1}=N_{2}$ . Then by Remark 1, we have the conclusion (2)
or (3) of Theorem 1.

Conversely, $suppo8eI(h_{1}, f(h_{2}))=\pm 1$ . Then by Lemma 1.6, $S_{1}i8$ a
l-bridge knot exterior in a lens space such that $f(h_{2})$ is a meridian loop
of the knot. Then by tracing back the above procedure of Case 1, we
can construct a Heegaard splitting of genus two of $M$. If $S_{1}=E_{a.\alpha}$ ,
$S_{2}=KI$ and $I(m_{1}, f(u_{2}))=0$ or $S_{1}=KI,$ $S_{2}=E_{2,\beta}$ and $I(u_{\iota}, f(m_{2}))=0$ , then
by tracing back the above procedure of Case 3, we can construct a
Heegaard splitting of genus two of $M$.

This completes the proof of Theorem 1. $\square $

\S 3. Several families of Heegaard surfaces of genus two.

Let $S$ be an element of $D(2),$ $h$ a fiber in $\partial S$ and $\mu$ a simple loop in
$\partial S$ with $I(\mu, h)=\pm 1$ . Then by Lemma 1.6, $S$ is a l-bridge knot exterior
in a lens space such that $\mu$ is a meridian loop of the knot, and there exists
a torus with two holes properly embedded in $S$ which gives a l-bridge
representation of the knot. We call such a punctured toru8 a l-bridge
representing p-torus in $Sw$ . $r.t$ . $\mu$ . Let $E$ be a 2-bridge knot exterior
in $S^{3}$ and $m$ a meridian loop in $\partial E$. Then there exists a sphere with
four holes properly embedded in $E$ which gives a 2-bridge representation
of the knot. We call such a punctured sphere a 2-bridge representing
p-sphere in $E$.

REMARK 6. Since all (non-trivial) 2-bridge knots have property $P$ by
[18], the meridian loop in $E$ is unique up to ambient isotopy of $\partial E$.

Put $M=S_{1}\bigcup_{f}S_{2}$ . In the following we introduce several families
consisting of Heegaard surfaces of genus two of $M$.

Case 1: $I(h_{1}, f(h_{2}))=\pm 1$ .
Let $F$ be an orientable closed surface of genus two in $M$ such that

$F\cap S_{1}$ is a l-bridge representing p-torus $w.r.t$ . $f(h_{2})$ and $F\cap S_{2}$ is a single
essential annulus saturated in the Seifert fibration of $S_{2}$ . Then, by the
proof of Theorem 1, $F$ is a genus two Heegaard surface of $M$. We
denote the family consisting of all such genus two Heegaard surfaces
by $F(1- 1)$ . Similarly $F(1- 2)$ denotes the family consisting of all genus
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two Heegaard surfaces $F$ such that $F\cap S_{1}$ is a single essential annulus
saturated in the Seifert fibration of $S_{1}$ and $F\cap S_{2}$ is a l-bridge representing
p-torus $w$ . $r$ . $t$ . $f^{-1}(h_{1})$ .

Case 2: $S_{1}=E_{2,a}$ and $I(m_{1}, f(h_{2}))=0$ or $S_{2}=E_{2,\beta}$ and $I(h_{1}, f(m_{2}))=0$ .
Suppose $S_{1}=E_{2,\alpha}$ and $I(m_{1}, f(h_{2}))=0$ . Let $F$ be an orientable closed

surface of genus two in $M$ such that $F\cap S_{1}$ is a 2-bridge representing
p-sphere and $F\cap S_{2}$ is two disjoint essential annuli saturated in the
Seifert fibration of $S_{2}$ . Then, by the proof of Theorem 1, $F$ is a genus
two Heegaard surface of $M$. We denote the family consisting of all
such genus two Heegaard surfaces by $F(2- 1)$ . Similarly if $S_{2}=E_{2,\beta}$ and
$I(h_{1}, f(m_{2}))=0$ , then $F(2- 2)$ denotes the family consisting of all genus
two Heegaard surfaces $F$ such that $F\cap S_{1}$ is two disjoint essential annuli
saturated in the Seifert fibration of $S_{1}$ and $F\cap S_{2}$ is a 2-bridge representing
p-sphere.

Case 3: $S_{1}=E_{2,\alpha},$ $S_{2}=KI$ and $I(m_{1}, f(u_{2}))=0$ or $S_{1}=KI,$ $S_{2}=E_{2,\beta}$ and
$I(u_{1}, f(m_{2}))=0$ .

Suppose $S_{1}=E_{2,\alpha},$ $S_{2}=KI$ and $I(m_{1}, f(u_{2}))=0$ . Let $F$ be an orientable
closed surface of genus two in $M$ such that $F\cap S_{1}$ is a 2-bridge repre-
senting p-sphere and $F\cap S_{2}$ is two disjoint essential annuli saturated in
the fibration of $S_{2}$ as a circle bundle over a Mobius band. Then, by the
proof of Theorem 1, $F$ is a genus two Heegaard surface of $M$. We
denote the family consisting of all such genus two Heegaard surfaces
by $F(3- 1)$ . Similarly if $S_{I}=KI,$ $S_{2}=E_{2,\beta}$ and $I(u_{1}, f(m_{2}))=0$ , then $F(3- 2)$

denotes the family consisting of all genus two Heegaard surfaces $F$ such
that $F\cap S_{1}$ is two disjoint essential annuli saturated in the fibration of $S_{1}$

as a circle bundle over a M\"obius band and $F\cap S_{2}$ is a 2-bridge representing
p-sphere.

Furthermore we put $F(1)=F(1- 1)\cup F(1- 2),$ $F(2)=F(2- 1)\cup F(2- 2)$ and
$F(3)=F(3- 1)\cup F(3- 2)$ . Then the following proposition follows from Lemma
1.5 immediately.

PROPOSITION 3.1. Any genus two Heegaard surface of $M=S_{1}\bigcup_{f}S$,
is ambient isotopic to a Heegaard surface belonging to one of $F(1),$ $F(2)$

or $F(3)$ .
\S 4. Proof of Theorems 3 and 4.

PROOF OF THEOREM 3. Since $K$ is a torus knot, there exists a torus
$T$ in $L$ which contains $K$ and splits $L$ into two solid tori. Then we
may assume that $T$ intersects $V_{1}$ in disks because $T$ is ambient isotopic
to a torus rel. $K$ which intersects $V_{1}$ in disks. Furthermore we assume
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that $\#(V_{1}\cap T)$ is minimal among all tori which are ambient isotopic to
$T$ rel. $K$ and intersect $V_{1}$ in disks, where $\#(V_{1}\cap T)$ denotes the number
of components of $V_{1}\cap T$.

Let $N$ be a small regular neighborhood of $K$ in $L$ such that $N\cap T$

is an annulus in $T$. Put $\Sigma=C1(T-N)$ , then, since $K$ does not bound a
disk, $\Sigma$ is an incompressible annulus properly embedded in $C1(L-N)$ .
Put $W_{i}=C1(V_{i}-N)(i=1,2)$ , then $W_{i}$ is a genus two handlebody. Put
$\Sigma_{i}=W_{i}\cap\Sigma(i=1,2)$ . Then $\Sigma_{1}=D_{1}\cup D_{2}\cup(essential$ disks properly embedded
in $W_{i}$), where $D_{i}$ is a disk which meets $N$ as in Figure 4.1 or 4.2
$(i=1,2)$ .

FIGURE 4.1 FIGURE 4.2

CLAIM 1. $\Sigma_{2}$ is incompressible in $W_{2}$ .
Suppose that there exists a disk $D$ in $W_{2}$ such that $D\cap\Sigma_{2}=\partial D$ is an

essential loop in $\Sigma_{2}$ . Since $\Sigma$ is incompressible in $C1(L-N),$ $\partial D$ bounds
a disk $D^{\prime}$ in $\Sigma$ . Since $D$ is contained in a solid torus cut off by $T$ in
$L,$ $D\cup D^{\prime}$ bounds a 3-ball. Then we can remove at least one component
of $\Sigma_{1}$ . This is contradictory to the minimality of $\#(V_{1}\cap T)$ . Thus $\Sigma_{2}$ is
incompressible in $W_{2}$ .

Let $E_{1}$ and $E_{2}$ be two disjoint non-parallel meridian disks in $W_{2}$

such that $ E_{1}\cap N=\emptyset$ and $E_{2}\cap N$ is a single arc disjoint from $\Sigma_{2}$ as in
Figure 4.3.

FIGURE 4.3

Put $E=E_{1}\cup E_{2}$ . By Claim 1, we may assume that $\Sigma_{2}$ intersects $E$

in arcs. Note that $ E\cap\Sigma_{2}\neq\emptyset$ . Put $N\cap\Sigma_{2}=\gamma_{1}\cup\gamma_{2}$ . Since $E\cap N$ is a
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single arc in $\partial E$, we can find an outermost arc component $a$ of $E\cap\Sigma_{2}$

in $E$ which cuts off a disk $\Delta$ in $E$ with $\Delta\cap\Sigma_{2}=a$ and $\Delta\cap N=\emptyset$ .
If $a$ cuts off a disk in $\Sigma_{2}$ which does not contain $\gamma_{1}$ or $\gamma_{2}$ , then by

using the disk, we can exchange $E$ for another complete meridian disk
system $E$’ so that $\#(E^{\prime}\cap\Sigma_{2})<\#(E\cap\Sigma_{2})$ . Thus we may assume that $a$ does
not cut off such a disk in $\Sigma_{2}$ .

We call an inessential arc properly embedded in $\Sigma_{2}$ which cuts off a
disk containing $\gamma_{1}$ or $\gamma_{2}$ “s-inessential.” See Figure 4.4. Then as in
Ch. II of [6], at each stage by exchanging complete meridian disk systems
if necessary, we have a sequence of isotopies of type $A$ , rel. $N$, at arcs
$a_{i}(1\leqq i\leqq n)$ each of which is an essential arc or an s-inessential arc
properly embedded in $\Sigma_{2}^{i-1}$ , where $\Sigma_{2}^{0}=\Sigma_{2},$ $\Sigma_{2}^{t}=C1(\Sigma_{2}^{i-1}-N(a_{i}))$ and $\Sigma_{2}^{n}$ con-
sists of disks. Furthermore we may assume that each $a_{i}$ is an arc
properly embedded in $\Sigma_{2}$ and that $a_{l}\cap a_{j}=\emptyset(i\neq j)$ . Then for an essential
arc $a_{i}$ , we have the following four types.

We say that $a_{i}$ is of type 1 if $a_{i}$ connects two distinct components
of $\partial\Sigma_{2}$ and at least one of the two components is a component of
$\partial(\Sigma_{1}-(D_{1}\cup D_{2})),$ $a_{i}$ is of type 2 if $a_{i}$ meets one component, say $c$ , of $\partial\Sigma_{2}$

and there exists a component $e$ of $c-a_{i}$ such that $e\cup a_{i}$ bounds a disk
in $\Sigma,$

$a_{i}$ is of type 3 if $a_{i}$ meets one component, say $c$ , of $\partial\Sigma_{2}$ and $e\cup a_{i}$

is an essential loop in $\Sigma$ for each component $e$ of $c-a_{l},$ $a_{i}$ is of type 4
if $a_{i}$ connects $\partial D_{1}$ and $\partial D_{2}$ . See Figure 4.4.

s-inessential

FIGURE 4.4

Moreover we say that $a_{i}$ is a d-arc if $a_{i}$ is of type 1 and there
exists a component $c$ of $\partial(\Sigma_{1}-(D_{1}\cup D_{2}))$ which meets $a_{l}$ such that $c$ does
not meet $a_{j}$ for any $j<i$ .
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The following two claims are proved similarly to the proof of Claims
2 and 3 of Lemma 1.1.

CLAIM 2. Each $a_{i}$ is not a d-arc.

CLAIM 3. Each $a$ is not of type 2.

By Claim 2 and by noting that if $a_{i}$ is of type 3, then $a_{i}$ is essential
in $\Sigma_{2}^{i-1}$ , we have the following claim.

CLAIM 4. If two arc$sa_{i}$ and $a_{j}(i\neq j)$ are both of type 3, then $a_{i}$

and $a_{j}$ meet diferent components of $\partial\Sigma_{2}$ .
Put $\Sigma^{(0)}=\Sigma$ , and let $\Sigma^{\{)}$ be the image of $\Sigma^{(i-1)}$ after the $i8otopy$ of

type A at $a_{i}(1\leqq i\leqq n)$ . Then we have $\Sigma_{2}^{i}=\Sigma^{(i)}\cap W_{2}$ . Put $\Sigma i=\Sigma^{(i)}\cap W_{1}$ .
Note that $\Sigma_{j}^{0}=\Sigma_{j}(j=1,2)$ .

CLAIM 5. $\Sigma_{1}=D_{1}\cup D_{2}$ or some $a_{k}$ is an s-inessential arc.
Suppose that $\Sigma_{1}\neq D_{1}UD_{2}$ and that each $a_{i}$ is an essential arc. By

Claims 2 and 3, $a_{1}$ is of type 3 or 4. If $a_{1}$ is of type 4, then we can
find a d-arc. This is a contradiction.

Suppose $a_{1}$ is of type 3. Since we can not have two arcs of type 3
and 4 simultaneously, each $a_{i}$ is of type 1 or 3. Suppose that $a$

$(1\leqq i\leqq k-1)$ is of type 3 and $a_{k}$ is of type 1. Then by Claim 4, we can
put $\Sigma_{1}^{k-1}=D_{1}UD_{2}\cup A_{1}U\cdots UA_{k-1}U$ (disks), where $A_{i}$ is an annulus in $W_{1}$

produced by the isotopy of type A at $a_{i}$ . Since $A_{i}$ is incompressible in
$W_{1}$ , the case as in Figure 4.2 does not occur. Let $b_{k}$ be a core of the
band in $W_{1}$ produced by the isotopy of type A at $a_{k}$ . Then, since $a_{k}$ is
not a d-arc, $b_{k}$ connects two annuli $A_{p}$ and $A_{p+1}$ or one annulus $A_{k-1}$ and
the disk $D_{1}$ or $D_{2}$ . If $b_{k}$ connects $A_{p}$ and $A_{p+1}$ , then by noting that $A_{p}$

and $A_{p+1}$ are mutually parallel, we can change the order of $a_{k}$ and $a$

for any $i$ with $p+1\leqq i\leqq k-1$ as in the proof of Lemma 1.1 (cf. Figure
1.2). Then we have a d-arc, and a contradiction. If $b_{k}$ connects $A_{k-1}$

and the disk $D_{1}$ or $D_{2}$ , then by the deformation of $b_{k}$ as in Figure 4.5,

FIGURE 4.5
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we can change the order of $a_{k-1}$ and $a_{k}$ . Then we have a d-arc, and a
contradiction again. This completes the proof of Claim 5.

Now we show that in both cases of Claim 5 we have required disks
$\Delta_{1}$ and $\Delta_{2}$ .

The case when some $a_{k}$ is an s-inessential arc. Suppose that $a$

$(1\leqq i\leqq k-1)$ is an essential arc and $a_{k}$ is an s-inessential arc. If $a_{1}$ is
of type 4, then by noting the proof of Claim 5 we have $\Sigma_{1}=D_{1}\cup D_{2}$ .
Thus, by noting the proof of Claim 5, we may assume that each $a_{i}$ is
of type 3, and we can put $\Sigma_{1}^{k-1}=D_{1}\cup D_{2}\cup A_{1}\cup\cdots\cup A_{k-1}\cup(disks)$ .

Let $D$ be a disk in $\Sigma_{2}$ cut off by $a_{k}$ . We may assume that $\partial D$ con-
tains $\gamma_{1}$ . Since $a_{k}$ is an outermost arc component of $\Sigma_{2}^{k-1}\cap E$ in $E$ for
some complete meridian disk system $E$, we have a disk $\Delta$ in $E$ with
$\Delta\cap\Sigma_{2}^{k-1}=a_{k}$ and $\Delta\cap N=\emptyset$ . Put $a^{\prime}=C1(\partial\Delta-a_{k})$ . Then $a^{\prime}$ is an arc in
$C1(\partial W_{1}-N)$ with $\partial a^{\prime}\subset\partial D_{1}$ . Let $\tilde{a}$ be an arc in $\partial D_{1}$ cut off by $a^{\prime}$ with
$\tilde{a}\cap N=\emptyset$ . If $a^{\prime}\cup\tilde{a}$ bounds a disk in $C1(\partial W_{1}-N)$ , then by noting $\partial\Delta=$

$a_{k}\cup a^{\prime}$ , we can see that $a_{k}\cup\tilde{a}$ bounds a disk. This is contradictory to
that $A$ is incompressible in $C1(L-N)$ . Thus $a^{\prime}\cup\tilde{a}$ is an essential loop
in $C1(\partial W_{1}-N)$ as in Figure 4.6.

Let $R_{1}$ be the component of $((V_{1}\cap N\cap T)-K)$ which intersects $D_{2}$ ,
and let $R_{2}$ be the component of $((V_{2}\cap N\cap T)-K)$ which intersects $\gamma_{1}$ .
Put $\Delta_{1}=C1(R_{1}\cup D_{2})$ and $\Delta_{2}=C1(R_{2}\cup DU\Delta)$ . Then $\Delta_{i}$ is a disk in $V_{i}$ with
$\Delta\cap K=V_{i}\cap K=\alpha_{i}(i=1,2)$ . Put $\beta_{i}=C1(\partial\Delta_{i}-\alpha_{i})(i=1,2)$ . Then $\beta_{i}\subset\partial V_{i}$

and $\beta_{1}\cap\beta_{2}=\partial\beta_{1}=\partial\beta_{2}$ . This shows that the disks $\Delta_{1}$ and $\Delta_{2}$ are required
disks.

The case when $\Sigma_{1}=D_{1}\cup D_{2}$ . In this case $a_{1}$ is an s-inessential arc or
is of type 4. If $a_{1}$ is an s-inessential arc, then we have required disks
similarly to the above.

Suppose $a_{1}$ is of type 4. Let $T_{1}$ be the image of $T$ after the isotopy
of type $A$ at $a_{1}$ , and put $A_{i}=V_{i}\cap T_{1}(i=1,2)$ , i.e. $A_{i}=\Sigma_{i}^{1}\cup(V_{i}\cap N\cap T)$ is
an annulus properly embedded in $V_{i}$ . If the case as in Figure 4.2 occurs,
then $A_{i}$ is compressible in $V$ and $K$ is a core. This is a contradiction.
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Thus only the case as in Figure 4.1 occurs, and $A_{i}$ is an incompressible
annulus properly embedded in $V_{i}(i=1,2)$ . Since any incompressible annuli
properly embedded in a solid torus are $\partial$-parallel, $A_{i}$ is isotopic to an annulus
in $\partial V_{i}$ rel. $\partial A_{i}(i=1,2)$ , say $B_{i}$ . Let $U_{i}$ be a solid torus in $V_{i}$ bounded by
$A_{i}\cup B_{i}(i=1,2)$ . Put $C_{i}=C1(\partial V_{i}-B_{i})(i=1,2)$ , and let $\psi;\partial V_{2}\rightarrow\partial V_{1}$ be an
attaching homeomorphism so that $L=V_{1}\bigcup_{\psi}V_{2}$ . See Figure 4.7.

FIGURE 4.7

Since $\psi(\partial A_{2})=\partial A_{1}$ , we have the following two cases.
The case when $\psi(B_{2})=C_{1}$ . Let $\beta_{i}$ be an arc in $B_{i}$ such that

$\beta_{i}\cap\alpha_{i}=\partial\beta_{i}=\partial\alpha_{i}$ and $\alpha_{i}\cup\beta_{i}$ bounds a disk $\Delta_{i}$ in $U_{i}(i=1,2)$ . Then by
$\psi(\beta_{2})\subset C_{1},$ $\Delta_{1}$ and $\Delta_{2}$ are required disks.

The case when $\psi(B_{2})=B_{1}$ . Let $m_{i}$ be a meridian loop in $\partial V_{i}$ and $a_{i}$

a component of $\partial A_{i}(i=1,2)$ . If both $|I(m_{1}, a_{1})|$ and $|I(m_{2}, a_{2})|$ are greater
than 1, then we can see that the torus $T_{1}=A_{1}\cup A_{2}$ bounds a Seifert fibered
space over a disk with two exceptional fibers. This is contradictory to
that $T$ splits $L$ into two solid tori. Thus we may assume $I(m_{1}, a_{1})=\pm 1$ .
Then there exists a meridian disk $D$ in $V_{1}$ with $D\cap A_{1}=\alpha_{1}$ . Put $\beta_{1}=$

$C1(\partial D-U_{1})$ and $\Delta_{1}=C1(D-U_{1})$ . Let $\beta_{2}$ be an arc in $B_{2}$ such that
$\beta_{2}\cap\alpha_{2}=\partial\beta_{2}=\partial\alpha_{2}$ and $\beta_{2}\cup\alpha_{2}$ bounds a disk $\Delta_{2}$ in $U_{2}$ . Then $\Delta_{1}$ and $\Delta_{2}$ are
required disks. This completes the proof of Theorem 3. $\square $

Let $S$ be an element of $D(2)$ . Let $\nu_{1}$ and $\nu_{2}$ be mutually disjoint
fibers in $\partial S$, and let $\mu_{1}$ and $\mu_{2}$ be mutually disjoint parallel simple loops

$u_{1}$
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in $\partial S$ each of which intersects $\nu_{i}$ in a single point $(i=1,2)$ . Let $B_{I},$ $B_{z}$ ,
$C_{1}$ and $C_{2}$ be the closure of the components of $\partial S-(\nu_{1}\cup\nu_{2}\cup\mu_{\iota}\cup\mu_{2})$ so that
those are the four disks as in Figure 4.8. Then $B_{1}\cap C_{2}=B_{2}\cap C_{1}$ consists
of four points.

COROLLARY 4.1. Under the above notations, fix an essential annulus
A properly embedded in $S$ which is saturated in the Seifert fibration
with $\partial A=\nu_{1}\cup\nu_{2}$ .

Let $G$ be a torus with two holes properly embedded in $S$ which is a
l-bridge representing p-torus with $\partial G=\mu_{1}\cup\mu_{2}$ . Then $G$ is isotopic to one
of $A\cup B_{1}\cup C_{2}$ or A $UB_{2}\cup C_{1}$ . In addition the isotopy fixes $\partial G$ setwise.

Conversely put $G_{1}^{\prime}=A\cup B_{1}UC_{2}$ and $G_{2}^{\prime}=A\cup B_{2}UC_{I}$ , and let $G_{i}$ be a
torus with two holes obtained from $G!$ by pushing Int $(G_{i})$ into Int$(S)$

$(i=1,2)$ . Then $G_{i}$ is a l-bridge representing p-torus in $Sw.r$ . t. $\mu_{1}$ .
PROOF. Let $V$ be a solid torus, $m$ a meridian loop in $\partial V$ and $K$ a

core of $V$. Let $\psi;\partial V\rightarrow\partial S$ be a homeomorphism with $\psi(m)=\mu_{1}$ . Since
$I(\mu_{1}, \nu_{1})=\pm 1,$ $L=SU_{\psi}V$ is a lens space, which admits a Seifert fibration
containing $K$ as a regular fiber. Then we have a torus in $L$ containing
$K$ which is saturated in the Seifert fibration and splits $L$ into two solid
tori each of which contains an exceptional fiber. Thus $K$ is a non-trivial
torus knot in $L$ and is not a core. Since $\psi^{-1}(\mu_{\ell})$ is a meridian loop in
$\partial V(i=1,2),$ $\psi^{-1}(\mu_{i})$ bounds a disk $D_{i}$ in $V$ such that $ D_{1}\cap D_{2}=\emptyset$ and $D$

intersects $K$ in a single point. Put $\tilde{G}=GU_{\psi}D_{1}\bigcup_{\psi}D_{2}$ , then $\tilde{G}$ is a l-bridge
representing torus of $K$ in $L$ . Let $V_{1}$ and $V$ be the two solid tori in
$L$ which are bounded by $\tilde{G}$ . Then by Theorem 3, there exists a disk $\tilde{\Delta}_{i}$

in $V_{i}(i=1,2)$ such that $\tilde{\Delta}_{i}\cap\tilde{G}=\partial\tilde{\Delta}_{i}\cap\tilde{G}=\tilde{\beta}_{i}$ is an arc, $\tilde{\Delta}_{i}\cap K=\partial\tilde{\Delta}_{i}\cap K=$

$V_{i}\cap K=\tilde{\alpha}_{i}$ is an arc, $\partial\tilde{\Delta}_{i}=\tilde{\alpha}_{i}\cup\tilde{\beta}_{i}$ and $\tilde{\beta}_{1}\cap\tilde{\beta}_{2}=\partial\tilde{\beta}_{1}=\partial\tilde{\beta}_{2}$

Put $\Delta_{i}=C1(\tilde{\Delta}_{i}-V)$ and $\beta_{i}=\tilde{\beta}_{i}\cap\Delta_{i}(i=1,2)$ . Then $\Delta_{i}$ is a disk and $\beta_{i}$

is an arc. See Figure 4.9.
Let $P_{i}$ and $Q_{i}$ be two points in $\mu_{i}(i=1,2)$ such that $\{P_{i}, Q_{i}\}$ separates

FIGURE 4.9
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two points $\mu\cap(\beta_{1}\cup\beta_{2})$ as in Figure 4.10. Let $E_{i}$ be a regular neighbor-
hood of $\beta_{i}$ in $G(i=1,2)$ as in Figure 4.10.

Put $E_{8}=C1(G-(E_{1}\cup E_{2}))$ , then $E_{8}$ is an annulus. By using $\Delta_{i}(i=1,2)$ ,
we have an ambient isotopy $h_{t}(0\leqq t\leqq 1)$ of $L$ such that $h_{0}=id,$ $h_{t}|D_{i}=id.|D_{i}$

and $h_{1}(G)\cap V=h_{1}(G)\cap\partial V=h_{1}(E_{1}\cup E_{2})\cap\partial V=h_{1}(E_{1})\cup h_{1}(E_{2})$ . Put $h_{1}(E_{i})=F$

$(i=1,2,3)$ . Then it is easily seen that $F_{3}$ is an essential annulus properly
embedded in $S$.

Since any two essential annuli properly embedded in $S$ are mutually
ambient isotopic, we have an ambient isotopy $f_{t}(0\leqq t\leqq 1)$ of $L$ such that
$f_{0}=id.,$ $f(V)=V,$ $f_{t}(D_{i})=D_{i}(i=1,2)(0\leqq t\leqq 1)$ and $f_{1}(F_{8})=A$ . Then we
have $f_{1}(F_{1})=B_{1}$ and $f_{1}(F_{2})=C_{2}$ or $f_{1}(F_{1})=B_{2}$ and $f_{1}(F_{2})=C_{1}$ . Namely
$f_{1}(F_{1}\cup F_{2}\cup F_{3})=AUB_{1}\cup C_{2}$ or $A\cup B_{2}\cup C_{1}$ . Thus by using ambient isotopies
$h_{t}$ and $f_{l}$ and by noting $h_{\iota}(D_{i})=D$ and $f_{t}(D_{i})=D(i=1,2)$ , we have a
required isotopy of $S$.

On the other hand, by the above argument, the converse is clear.
Thus the proof is completed. $\square $

To prove Theorem 4 we prepare the following two lemmas.

LEMMA 4.2. Let $V$ be a standard solid torus in $S^{3}$ , and let $K$ be a
non-trivial $(2, n)$-torus knot contained in $\partial V$ such that $K$ intersects a
meridian loop in $\partial V$ in two points. Let $S$ be a 2-sphere in $S^{8}$ which
gives a 2-bridge representation of K. Then there exists an ambient
isotopy $f_{l}(0\leqq t\leqq 1)$ of $S^{8}$ such that $f_{0}=id.,$ $f_{l}|K=id$ . on $K$ and $f_{1}(S)$

intersects $V$ in two meridian disks.

PROOF. Let $B_{1}$ and $B_{2}$ be the closure of the components of $S^{s}-S$.
Then $B_{i}$ is a 3-ball and $B_{i}\cap K=\alpha_{i}U\beta_{i}$ are two trivial arcs in $B_{i}(i=1,2)$ .
Put $T=\partial V$. Then we may assume that $T$ intersects $B_{1}$ in disks because
$T$ is ambient isotopic to a torus rel. $K$ which intersects $B_{1}$ in disks.
Furthermore we assume that $\#(B_{1}\cap T)$ is minimal among all tori which
are ambient isotopic to $T$ rel. $K$ and intersect $B_{1}$ in disks, where $\#(B_{1}\cap T)$

denotes the number of $component8$ of $B_{1}\cap T$.
Let $N$ be a small regular neighborhood of $K$ in $S^{s}$ such that $N\cap T$
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is an annulus in $T$. Put $\Sigma=C1(T-N)$ . Then, since $K\ddagger s$ a non-trivial
knot, $\Sigma$ is an incompressible annulus properly embedded in $C1(S^{3}-N)$ .
Put $W_{i}=C1(B_{i}-N)(i=1,2)$ , then $W_{i}$ is a genus two handlebody. Put
$\Sigma_{i}=W_{i}\cap\Sigma(i=1,2)$ . Then $\Sigma_{1}=D_{1}\cup D_{2}UD_{3}\cup D_{4}\cup$ ($separating$ disks), where
$D_{i}$ is a non-separating disk $(1\leqq i\leqq 4)$ such that both $\{D_{1}, D_{8}\}$ and $\{D_{2}, D_{4}\}$

are complete meridian disk systems of $W_{1}$ as in Figure 4.11.

FIGURE 4.11

CLAIM 1. $\Sigma_{2}$ is incompressible in $W_{2}$ .
This can be proved by the argument similar to the proof of Claim 1

of Lemma 1.1.

Let $N_{1}$ and $N_{2}$ be two components of $N\cap B_{2}$ and $E$ a disk properly
embedded in $W_{2}$ which separates $N_{1}$ from $N_{2}$ .

CLAIM 2. $\Sigma_{1}=D_{1}\cup D_{2}\cup D_{3}\cup D_{4}$ .
Since $\Sigma_{2}$ connects $N_{1}$ and $N_{2},$ $E\cap\Sigma_{2}$ is not empty. By Claim 1, we

may assume that each component of $E\cap\Sigma_{2}$ is an arc. Let $a_{1}$ be an
outermost arc component of $E\cap\Sigma_{2}$ in $E$ and $b_{1}$ the band in $W_{1}$ produced
by the isotopy of type A at $a_{1}$ . Let $\Sigma^{1}$ ( $T^{1}$ resp.) be the image of $\Sigma$

( $T$ resp.) after the isotopy, and put $\Sigma_{i}^{1}=\Sigma^{1}\cap W_{i}(i=1,2)$ .
Suppose $\Sigma_{1}\neq D_{1}\cup D_{2}\cup D_{8}UD_{4}$ . If $b_{1}$ meets a single component of $\Sigma_{1}$ ,

then by noting Figure 4.12, there exists a component of $\Sigma_{1}^{1}$ which is a
compressible annulus. Then, by the minimality of $\#(B_{1}\cap T)$ and the
incompressibility of $\Sigma,$

$a_{1}$ cuts off a disk in $\Sigma_{2}$ which is disjoint from
$N_{1}UN_{2}$ . Then we can exchange the disk $E$ for another disk $E^{\prime}$ with
$\#(E^{\prime}\cap\Sigma_{2})<\#(E\cap\Sigma_{2})$ . Thus we may assume that $b_{1}$ connects two distinct
components of $\partial\Sigma_{1}$ .

If $ b_{1}\cap(\Sigma_{1}-(D_{1}\cup D_{2}\cup D_{3}\cup D_{4}))\neq\emptyset$ , then each component of $B_{1}\cap T^{1}$ is
a disk, and we have a contradiction for the minimality of $\#(B_{1}\cap T)$ . If
$b_{1}$ connects $D_{1}$ and $D_{2}$ or $D_{3}$ and $D_{4}$ . Then there exists a disk $\Delta$ in
$C1(\partial W_{1}-N)$ such that $\partial\Delta$ consists of an arc in $\partial N$ and an arc in $\partial\Sigma_{1}^{1}$ as
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in Figure 4.12.

$w_{1}$

FIGURE 4.12

Then by using $\Delta$ , we can find a disk $D$ in $S^{a}$ with $D\cap T=\partial D$ and
$I(\partial D, K)=\pm 1$ . This is contradictory to that $K$ is not a trivial knot.
After all we have $\Sigma_{1}=D_{1}\cup D_{2}\cup D_{3}\cup D_{4}$ .

Now, by the argument similar to the proof of Claim 2, we may
assume that $b_{1}$ connects $D_{1}$ and $D_{3}$ , and $\Sigma_{1}^{1}$ consists of three disks as in
Figure 4.13.

Since $\Sigma_{2}^{1}$ is a single disk connecting $N_{1}$ and $N_{2},$ $E\cap\Sigma_{2}^{1}$ is not empty
and we have an outermost arc component $a_{2}$ of $E\cap\Sigma_{2}^{1}$ in $E$.

Let $\Sigma^{2}$ ( $T^{2}$ resp.) be the image of $\Sigma^{1}$ ( $T^{1}$ resp.) after the isotopy of
type A at $a_{2}$ . Let $b_{2}$ be the band in $W_{1}$ produced by the isotopy. Then,
by the argument similar to the proof of Claim 2, we may assume that
$b_{2}$ connects $D_{2}$ and $D_{4}$ . Hence $W_{i}\cap\Sigma^{2}$ consists of two disks $(i=1,2)$ .
Then, for $i=1,2,$ $T^{2}\cap B_{i}$ is an annulus and each component of $\partial(T^{2}\cap B)$

bounds a disk in $\partial B_{i}$ which is a meridian disk of a solid torus bounded
by $T^{2}$ . Then by tracing back the above ambient isotopies, we have a
required ambient isotopy and complete the proof of Lemma 4.2.

LEMMA 4.3. Let $A$ be a $M\dot{0}$ bius band, let $a$ and $\beta$ be non-separating
arcs properly embedded in $A$ with $\partial\alpha=\partial\beta$ . Then $\alpha$ and $\beta$ are mutually
ambient isotopic by an ambient isotopy fixing $\partial A$ pointwise.

PROOF. This can be easily proved.

PROOF OF THEOREM 4. Let $V$ be a standard solid torus in $S^{3}$ with
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$K\subset\partial V$ such that $K$ intersects a meridian loop in $\partial V$ in two points. Then
by Lemma 4.2, we may assume that $S_{i}\cap V=D_{\dot{l}}\cup E_{i}$ are two meridian
disks of $V(i=1,2)$ . Moreover we may assume that $D_{1}\cap K=D_{2}\cap K$ and
$E_{1}\cap K=E_{2}\cap K$. Let $A$ be a M\"obius band properly embedded in $V$ with
$\partial A=K$. Then by using Lemma 4.3 and noting the incompressibility of
$A$ and the irreducibility of $V$, we can see that $D_{i}$ and $E_{i}$ are ambient
isotopic rel. $K$ to two meridian disks $D$ and $E(i=1,2)$ . Let $\tilde{S}_{i}$ be the
image of $S_{i}$ after the ambient isotopy $(i=1,2)$ , and put $W=C1(S^{3}-V)$ .
Then $W$ is a solid torus and $\tilde{S}_{i}\cap W(i=1,2)$ is an incompressible annulus
in $W$. Hence by noting that $\partial(\tilde{S}_{1}\cap W)=\partial(\tilde{S}_{2}\cap W)$ , we have a required
ambient isotopy and complete the proof. $\square $

By Theorem 4, we have the following corollary.

COROLLARY 4.4. Let $E$ be a non-trivial (2, n)-torus knot exterior in
$S^{3}$ , and let $G_{1}$ and $G_{2}$ be 2-bridge representing p-spheres properly embedded
in $E$ with $\partial G_{1}=\partial G_{2}$ . Then $G_{1}$ and $G_{2}$ are mutually ambient isotopic in
$E$ by an ambient isotopy fixing $\partial E$ pointwise.

\S 5. Proof of Theorem 2 and Corollaries 1, 2.

Recall the definitions of the families of Heegaard surfaces defined
in \S 3.

LEMMA 5.1. If $I(h_{1}, f(h_{2}))=\pm 1$ , then any genus two Heegaard surface
belonging to $F(1- 2)$ is ambient isotopic to a Heegaard surface belonging
to $F(1- 1)$ .

PROOF. Let $F$ be a genus two Heegaard surface belonging to $F(1- 2)$ .
Then $F\cap S_{1}$ is an essential annulus properly embedded in $S_{1}$ and $F\cap S_{2}$

is a l-bridge representing p-torus $w$ . $r$ . $t$ . $f^{-1}(h_{1})$ . Then by using the
isotopy of Corollary 4.1, we can see that $F$ is ambient isotopic to a
surface $F$ such that $F^{\prime}\cap\partial S_{2}=F^{\prime}\cap\partial S_{1}$ is two disks and $C1(F^{\prime}\cap Int(S_{i}))$ is
an essential annulus properly embedded in $S_{i}(i=1,2)$ . Let $\tilde{F}$ be a surface
obtained from $F$ by pushing the two disks $F^{\prime}\cap\partial S_{1}$ into Int $(S_{1})$ . Then
by the latter half of Corollary 4.1, $\tilde{F}\cap S_{1}$ is a l-bridge representing p-torus
$w$ . $r$ . $t$ . $f(h_{2})$ . This shows that $\tilde{F}$ is a Heegaard surface belonging to
$F(1- 1)$ .

Let $A_{1}$ be an essential annulus properly embedded in $S_{1}$ such that
$\partial A_{1}=\nu_{1}\cap\nu_{2}$ are two disjoint fibers in $\partial S_{1}$ and $A_{2}$ be an essential annulus
properly embedded in $S_{2}8uch$ that $\partial A_{2}=\mu_{1}\cup\mu_{2}$ are two disjoint fibers in
$\partial S_{2}$ . Suppose $I(h_{1}, f(h_{2}))=\pm 1$ . Then we may assume that $f(\mu_{i})$ intersects
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$\nu_{j}$ in a single point $(i=1,2)(j=1,2)$ . Let $B_{1},$ $B_{2},$ $C_{1}$ and $C_{2}$ be four
disks as in Corollary 4.1, see Figure 4.8. Put $F_{1}=A_{1}\cup B_{1}UC_{2}\cup A_{2}$ and
$F_{2}=A_{1}UB_{2}\cup C_{1}UA_{2}$ .

PROPOSITION 5.2. Under the above notations, any genus two Heegaard

surface $F$ belonging to $F(1)$ is ambient isotopic to $F_{\iota}$ or $F_{2}$ in M. Thus
$F(1)$ contains at most two non-isotopic Heegaard surfaces of genus two
if $I(h_{1}, f(h_{2}))=\pm 1$ .

PROOF. By Lemma 5.1, we may assume that $F$ belongs to $F(1- 1)$ .
Then we may assume that $F\cap S_{2}=A_{2}$ and $F\cap S_{1}$ is a l-bridge representing
p-torus w.r. $t$ . $f(h_{2})$ . Then by Corollary 4.1, $F\cap S_{1}$ is isotopic to $A_{1}UB_{1}\cup C_{2}$

or $A_{1}\cup B_{2}\cup C_{1}$ in $S_{1}$ . By using this isotopy, we can see that $F$ is ambient
isotopic to a surface $\tilde{F}$ in $M$ such that $\tilde{F}\cap S_{1}=A_{1}\cup B_{1}\cup C_{2}$ or $A_{1}UB_{2}\cup C_{1}$ .
Since the isotopy of Corollary 4.1 fixes $\partial(F\cap S_{1})$ setwise, we may assume
that the above ambient isotopy fixes $A_{2}$ setwise. Hence $F$ is ambient
isotopic to $A_{1}\cup B_{1}UC_{2}UA_{2}$ or $A_{1}\cup B_{2}UC_{1}UA_{2}$ . $\square $

Let $S$ be an element of $D(2)$ . For a fiber $h$ in $\partial S$ and the boundary
loop $c$ of a cross section of $S$, let $\alpha/p$ and $\beta/q$ be the Seifert invariants
of two exceptional fibers. Then we denote this state by $S=D(\alpha/p, \beta/q)$

$w.r$ . $t$ . $h$ and $c$ . The following proposition was proved by M. Sakuma.

PROPOSITION 5.3. Suppose that one of $S_{1}$ or $S_{2}$ , say $S_{1}$ , is $D(\pm 1/p$ ,
$\pm 1/q)w.r$.t. $h_{1}$ and $c_{1}$ . If $I(c_{1}, f(h_{2}))=0$ , then $F(1)$ contains exactly one
Heegaard surface of genus two up to isotopy.

PROOF. Let $x_{1}$ and $x_{2}$ be two exceptional fibers of $S_{1}$ , and let $y$ be
one of two exceptional fibers of $S_{2}$ . Let $N_{i}$ be a regular neighborhood

of $x_{i}$ in $S_{1}(i=1,2)$ with $ N_{1}\cap N_{2}=\emptyset$ , and let $N$ be a regular neighborhood
of $y$ in $S_{2}$ . Let $E_{1}$ be the cross section of $S_{1}$ , i.e. $E_{1}$ is a disk with two
holes properly embedded in $C1(S_{1}-(N_{1}UN_{2}))$ with $E_{1}\cap\partial S_{1}=c_{1}$ , and let $E_{2}$

be a cross section of $S_{2}$ . Then we may assume that $E_{1}$ and $E_{2}$ intersects
in a single point, say $P$. Let $a_{i}$ be an arc in $E_{1}$ connecting $P$ and $N_{i}$

$(i=1,2)$ , and let $b$ be an arc in $E_{2}$ connecting $P$ and $N$. See Figure 5.1.
Put $V_{i}=N_{i}\cup N(a_{i}\cup b)\cup N(i=1,2)$ , where $N(a_{i}\cup b)$ is a regular neigh-

borhood of $a_{i}Ub$ in $M$. Then $V_{i}$ is a genus two handlebody. Let $F_{1}$ and
$F_{2}$ be two Heegaard surfaces of genus two defined in Proposition 5.2,

then by changing the letters if necessary, we can see that $F_{i}$ is ambient
isotopic to $\partial V_{i}(i=1,2)$ in $M$.

Now, let $d_{i}$ be the component of $\partial E_{1}-c_{1}$ which intersects $a_{i}(i=1,2)$ ,

and put $W_{:}=N(d_{i}\cup a_{i}Ub)\cup N$. Since the Seifert invariants of $x_{1}$ and $x_{z}$
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$\Phi$

$J$,

FIGURE 5.1

are $\pm 1/p$ and $\pm 1/q,$ $x_{i}$ is ambient isotopic to $d_{i}(i=1,2)$ in $S_{1}$ , and hence
$V_{i}$ is ambient isotopic to $W_{i}(i=1,2)$ . By the way, since $c_{1}$ is identified
with $h_{2}$ , we can do the deformation of $W_{2}$ illustrated in Figure 5.1. This
shows that $F_{1}$ and $F_{2}$ are mutually ambient isotopic. Thus, together
with Proposition 5.2, we complete the proof of Proposition 5.3. $\square $

PROPOSITION 5.4. (1) $F(2- 1)$ contains exactly one Heegaard surface
of genus two up to isotopy if $S_{1}=E_{2,\alpha}$ and $I(m, f(h_{2}))=0$ .

(2) $F(2- 2)$ contains exactly one Heegaard surface of genus two up
to isotopy if $S_{2}=E_{2,\beta}$ and $I(h_{1}, f(m_{2}))=0$ .

PROOF. Suppose $S_{1}=E_{2,\alpha}$ and $I(m_{1}, f(h_{2}))=0$ . Let $F_{1}$ and $F_{2}$ be two
Heegaard surfaces belonging to $F(2- 1)$ . Since $F_{i}\cap S_{2}$ are two essential
annuli properly embedded in $S_{2}$ saturated in the Seifert fibration $(i=1,2)$ ,
$F_{2}$ is ambient isotopic to a surface $F_{2}^{\prime}$ with $F_{2}^{\prime}\cap S_{2}=F_{1}\cap S_{2}$ . Put $G_{1}=F_{1}\cap S_{1}$
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and $G_{2}^{\prime}=F_{2}^{\prime}\cap S_{1}$ . Then $G_{1}$ and $G_{2}^{\prime}$ are 2-bridge representing p-sphere in
$S_{1}=E_{2,\alpha}$ with $\partial G_{1}=\partial G_{2}^{\prime}$ . Then by Corollary 4.4, $G_{2}^{\prime}$ is ambient isotopic to
$G_{1}$ in $S_{1}$ rel. $\partial S_{1}$ . Hence $F_{2}$ is ambient isotopic to $F_{1}$ in $M$.

If $S_{2}=E_{2,\beta}$ and $I(h_{1}, f(m_{2}))=0$ , then we can prove (2) similarly. .
$\square $

The next proposition is proved similarly to Proposition 5.4.

PROPOSITION 5.5. (1) $F(3- 1)$ contains exactly one Heegaard surface
of genus two up to isotopy if $S_{1}=E_{2,\alpha},$ $S_{2}=KI$ and $I(m_{1}, f(u_{2}))=0$ .

(2) $F(3- 2)$ contains exactly one Heegaard surface of genus two up

to isotopy if $S_{1}=KI,$ $S_{2}=E_{2,\beta}$ and $I(u_{1}, f(m_{2}))=0$ .
PROOF OF THEOREM 2. We divide the proof into several cases. Let

$\mu$ be the number of Heegaard splittings of genus two of $M=S_{1}U_{j}S_{2}$ up
to isotopy. In the following proof; note that $E_{2,n}=D(1/2, -k/(2k+1))$

$w$ . $r$ . $t$ . $h$ and $m$ , where $n=2k+1(k>0)$ , and $KI=D(-1/2,1/2)w.r.t$ . $h$

and $u$ .
Case (1): $S_{1}\neq E_{2.\alpha}$ and $S_{2}\neq E_{2,\beta}$ .
Case (1-a): $[_{f(c_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}a & \epsilon\\ c & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\c_{1}\end{array}\right\}$ with $ad-\epsilon c=\pm 1$ and $\epsilon=\pm 1$ . In this

case, by Proposition 3.1 and the definitions of $F(1),$ $F(2)$ and $F(3)$ , any
genus two Heegaard surface of $M$ is ambient isotopic to a Heegaard

surface belonging to $F(1)$ .
Case (l-a-l): $S_{1}=D(\pm 1/p, \pm 1/q)w.r$ . t. $h_{1}$ and $c_{1}$ and $a=0$ or $S_{2}=$

$D(\pm 1/p, \pm 1/q)w.r$ . t. $h_{2}$ and $c_{2}$ and $d=0$ . In this case by Proposition
5.3, $\mu$ is 1.

Case (l-a-2): $M$ does not belong to Case (l-a-l). In this case, $\mu$ is
at most 2.

In other cases, by Theorem 1, $\mu$ is $0$ .
Case (2): $S_{1}=E_{2,\alpha}$ and $S_{2}\neq KI$ nor $E_{2.\beta}$ .
Case (2-a): $[_{f(c_{2})}^{f(h_{2})}]=\left\{\begin{array}{ll}0 & \epsilon\\\delta & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ . In this case, any genus

two Heegaard surface of $M$ is ambient isotopic to a Heegaard surface
belonging to $F(1)UF(2- 1)$ .

Case (2-a-l): $\alpha=3$ or $S_{2}=D(\pm 1/p, \pm 1/q)w.r$ . t. $h_{2}$ and $c_{2}$ and $d=0$ .
In this case, by Propositions 5.4 and 5.3, $\mu$ is at most two.

Case (2-a-2): $M$ does not belong to Case (2-a-l). In this case, by

Propositions 5.2 and 5.4, $\mu$ is at most 3.

Case (2-b): $[_{f(C_{2})}^{f(h_{2})}]=[cad\epsilon]\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $ad-\epsilon c=\pm 1,$ $\epsilon=\pm 1$ and $a\neq 0$ .
In this case, any genus two Heegaard surface of $M$ is ambient isotopic

to a Heegaard surface belonging to $F(1)$ .
Case (2-b-l): $\alpha=3$ and $\epsilon a=-1$ or $S_{2}=D(\pm 1/p, \pm 1/q)w$ . $r$ . t. $h_{2}$ and
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$c_{2}$ and $d=0$ . By noting that $D(1/2, -a/(2a+1))w$ . $r$ . t. $h_{1}$ and $m_{1}=$

$D(-1/2, -a/(2a+1))w$ . $r$ . t. $h_{1}$ and $h_{1}^{-1}m_{1}$ , we can see that $\mu$ is 1 similarly
to Case (l-a-l).

Case (2-b-2): $M$ does not belong to Case (2-b-l). In this case, $\mu$ is
at most 2 similarly to Case (l-a-2).

In other cases, by Theorem 1, $\mu$ is $0$ .
Case $(2^{\prime})$ : $S_{1}\neq KI$ nor $E_{2,\alpha}$ and $S_{2}=E_{2,\beta}$ . This case can be substituted

for Case (2).
Case (3): $S_{1}=E_{2.\alpha}$ and $S_{2}=KI$.
Case (3-a); $[_{f(u_{2})}^{f(h_{2})}]=\left\{\begin{array}{ll}0 & \epsilon\\\delta & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ .
Case (3-a-l): $\alpha=3$ or $d=\pm 1$ or $0$ . By noting that $D(-1/2,1/2)$ w.r.t.

$h$ and $u=D(-1/2, -1/2)w$ . $r$ . $t$ . $h$ and $h^{-1}u=D(1/2,1/2)w$ . $r$ . $t$ . $h$ and
$hu$ , we can see that $\mu$ is at most 2 similarly to Case (2-a-l).

Case (3-a-2): $a>3$ and $|d|>1$ . In this case, we can see that $\mu$ is
at most 3 similarly to Case (2-a-2).

Case (3-b): $[_{f(u_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}\epsilon & b\\0 & \delta\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ .
Case (3-b-l); $b=\pm 1$ . In this case, any genus two Heegaard surface

of $M$ is ambient isotopic to a Heegaard surface belonging to $F(1)UF(3- 1)$ .
Furthermore we can see that $F(1)$ contains exactly one genus two
Heegaard surface up to isotopy similarly to Case (3-a-l). Hence by
Proposition 5.5, $\mu$ is at most 2.

Case (3-b-2): $b\neq\pm 1$ . In this case, any genus two Heegaard surface
of $M$ is ambient isotopic to a Heegaard surface belonging to $F(3- 1)$ . Thus
$\mu$ is 1.

Case (3-c): $[_{f(u_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}a & \epsilon\\ c & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $ad-\epsilon c=\pm 1,$ $\epsilon=\pm 1$ and $ac\neq 0$ .
Case (3-c-l): $\alpha=3$ and $\epsilon a=-1$ or $d=\pm 1$ or $0$ . In this case, by

Proposition 5.3, $\mu$ is 1.
Case (3-c-2): $M$ does not belong to Case (3-c-l). By Proposition 5.2,

$\mu$ is at most 2.
In other cases, by Theorem 1, $\mu$ is $0$ .
Case (3’): $S_{1}=KI$ and $S_{2}=E_{2,\beta}$ .
This case can be substituted for Case (3).
Case (4): $S_{1}=E_{2,\alpha}$ and $S_{2}=E_{2,\beta}$ .
Case (4-a): $[_{f(m_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}0 & \epsilon\\\delta & 0\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ . In this case, any genus

two Heegaard surface of $M$ is ambient isotopic to a Heegaard surface
belonging to $F(1)\cup F(2)$ .

Case (4-a-l): $\alpha=3$ or $\beta=3$ . By Propositions 5.3 and 5.4, $\mu$ is at
most 3.
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Case (4-a-2): $\alpha>3$ and $\beta>3$ . By Propositions 5.2 and 5.4, $\mu$ is at
most 4.

Case (4-b): $[_{f(m_{2}^{2})}^{f(h)}]=[\delta a0\epsilon]\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ and $a\neq 0$ . In this case,
any genus two Heegaard surface of $M$ is ambient isotopic to a Heegaard
surface belonging to $F(1)UF(2- 2)$ .

Case (4-b-l): $a=3$ and $\epsilon a=-1$ . In this case, $\mu$ is at most 2.
Case (4-b-2): $\alpha>3$ or $\epsilon a\neq-1$ . In this case, $\mu$ is at most 3.
Case (4-c): $[_{f(m_{2}^{2})}^{f(h)}]=\left\{\begin{array}{l}0\epsilon\\ d\delta\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ and $d\neq 0$ .
Case (4-c-l): $\beta=3$ and $\epsilon d=-1$ . In this case, $\mu$ is at most 2.
Case (4-c-2): $\beta>3$ or $\epsilon d\neq-1$ . In this case, $\mu$ is at most 3.
Case (4-d): $[_{f(m_{2}^{2})}^{f(h)}]=[cad\epsilon]\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $ad-\epsilon c=\pm 1,$ $\epsilon=\pm 1$ and $ad\neq 0$ .
Case (4-d-l): $\alpha=3$ and $\epsilon a=-1$ or $\beta=3$ and $\epsilon d=-1$ . In this case,

$\mu$ is 1 similarly to Case (l-a-l).
Case (4-d-2): $M$ does not belong to Case (4-d-l). In this case, $\mu$ is

at most 2 similarly to Case (l-a-2).
In other cases, by Theorem 1, $\mu$ is $0$ .
This completes the proof of Theorem 2. $\square $

TABLE 5.2
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In Table 5.2, we summarize the evaluation of the numbers of
Heegaard splittings of genus two of $M$ up to isotopy. In Table 5.2, $n$

denotes the upper bound of $\mu$ , namely $1\leqq\mu\leqq n$ , and “–,, means that $M$

does not contain a Heegaard surface belonging to the family $F(1)$ ,
$F(2- 1)$ , etc.

REMARK 7. By Table 5.2, it seems that $M$ does not contain a
Heegaard surface belonging to $F(3- 2)$ . But this occurs by the reason
why the Case (3’) is substituted for the Case (3). In fact, in Case
(3-b), $M$ contains a Heegaard surface belonging to $F(3- 2)$ .

PROOF OF COROLLARY 1. Let $T$ be an incompressible torus in $M$

saturated in the Seifert fibration. Then $T$ splits $M$ into two Seifert
fibered spaces $S_{1}$ and $S_{2}$ belonging to $D(2)$ . Let $h_{i}$ be a fiber in $\partial S_{i}$

$(i=1,2)$ and $f:\partial S_{2}\rightarrow\partial S_{1}$ the attaching homeomorphism. Since the fibra-
tion of $\partial S_{2}$ extends to the fibration of $S_{2}$ , we have $I(h_{1}, f(h_{2}))=0$ .

Suppose that $M$ admits a Heegaard splitting of genus two. Then,
by Theorem 1 and $I(h_{1}, f(h_{2}))=0$ , we may assume that $S_{1}=E_{2,\alpha},$ $S_{2}=KI$

and $[_{f(u_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}\epsilon & 0\\0 & \delta\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ . Furthermore, since $KI$ admits an
orientation reversing auto-homeomorphism, we may assume $\epsilon=1$ and
$\delta=-1$ .

By taking the meridian loop $m_{1}$ (the fiber $u_{2}$ resp.) for the boundary
loop of a cross section of $E_{2,\alpha}$ ($KI$ resp.), we may assume that the Seifert
invariants of the exceptional fibers of $E_{2,\alpha}$ are 1/2 and $-a/(2a+1)$ with
$a=2a+1(a>0)$ , and that the Seifert invariants of the exceptional
fibers of $KI$ are 1/2 and $-1/2$ . Then $M$ is homeomorphic to
$S(O;1/2,1/2, -1/2, -a/(2a+1))$ . This completes the proof of the first
half.

Since $M$ belongs to the Case (3-b-2), by Table 5.2 we can see that
$M$ admits exactly one Heegaard splitting of genus two up to isotopy.
This completes the proof of Corollary 1. $\square $

PROOF OF COROLLARY 2. We may assume that $M=S_{1}\bigcup_{f}KI$ and
$[_{f(u_{2}^{2})}^{f(h)}]=[\delta a0\epsilon]\left\{\begin{array}{l}h_{1}\\c_{1}\end{array}\right\}$ with $\epsilon\delta=\pm 1$ . Then $M$ belongs to one of the cases
(l-a-l), (3-a-l) or (3-c-l). Then by Table 5.2, we can see that $M$ admits
at most two non-isotopic Heegaard splittings of genus two. $\square $

EXAMPLES. (I) Let $\alpha$ and $\beta$ be odd integers larger than 1, and
put $\epsilon\delta=\pm 1$ . Put $M_{\alpha,\beta,\epsilon\delta}=E_{2,\alpha}\bigcup_{f}E_{2,\beta}$ with $[_{f(m_{2}^{2})}^{f(h)}]=\left\{\begin{array}{ll}0 & \epsilon\\\delta & 0\end{array}\right\}\left\{\begin{array}{l}h_{1}\\m_{1}\end{array}\right\}$ . Then by

the proof of Case (4) of Theorem 2, $M_{\alpha,\beta,\epsilon\delta}$ may admit four non-isotopic
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Heegaard splittings of genus two if $\alpha>3$ and $\beta>3$ . Then the 6-plat
representations of the 3-bridge knots in $S^{3}$ corresponding to the four
Heegaard splittings of genus two of $M_{\alpha,\beta,\epsilon\delta}$ are those representations
illustrated in Figure 0.1.

(II) For a matrix $\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ with ad-bc $=\pm 1$ , let $K\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ be a sapphire

space of type $\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ defined in [9], i.e. $K\left\{\begin{array}{ll}a & b\\e & d\end{array}\right\}=KI\bigcup_{f}KI$ with $[_{f(u_{2}^{2})}^{f(h)}]=$

$\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}\left\{\begin{array}{l}h_{1}\\u_{1}\end{array}\right\}$ . Then by Theorem 1, $K\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\}$ admits a Heegaard splitting of
genus two if and only if $b=\pm 1$ (Theorem 3 of [9]), and, by the proof
of Case (1) of Theorem 2, $K[ca\pm 1d]$ admits at most two non-isotopic
Heegaard splittings of genus two. Moreover, by the proof of Case (l-a-l)

and the note of Case (3-a-l) of Theorem 2, if $acd=0$ then $K[ca\pm 1d]$

admits exactly one Heegaard splitting of genus two up to isotopy.
Hence, as a special case, $K\left\{\begin{array}{l}01\\0l\end{array}\right\}$ admits exactly one Heegaard

splitting of genus two up to isotopy. Note that $K\left\{\begin{array}{l}01\\10\end{array}\right\}$ is a 2-fold
branched covering space of $S^{3}$ branched along a Borromean rings, and
is also a 3-fold cyclic branched covering space of $S^{8}$ branched along a
figure eight knot.
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