On Minimum Genus Heegaard Splittings of Some Orientable Closed 3-Manifolds

Kanji MORIMOTO
Takushoku University
(Communicated by S. Suzuki)

Dedicated to Professor Fujitsugu Hosokawa on his 60th birthday

Abstract

In this paper we deal with all 3 -manifolds which are obtained by glueing the boundaries of two Seifert fibered spaces over a disk with two exceptional fibers. We will give a necessary and sufficient condition for those 3 -manifolds to admit Heegaard splittings of genus two. Moreover we will evaluate the numbers of Heegaard splittings of genus two, up to isotopy, of those 3 -manifolds. In fact, we will see that the numbers are at most four.

§ 0. Introduction.

Let M be an orientable closed 3 -manifold. Then it is well-known that M can be splitted into two handlebodies. The splitting is called a Heegaard splitting, and denoted by ($V_{1}, V_{2} ; F$), where V_{i} is a handlebody ($i=1,2$), $M=V_{1} \cup V_{2}$ and $V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}=F$. Then F is called a Heegaard surface and the genus of F is called the genus of the Heegaard splitting. Two Heegaard splittings ($V_{1}, V_{2} ; F$) and ($W_{1}, W_{2} ; G$) of the same genus of M are called homeomorphic if there exists an auto-homeomorphism f of M with $f(F)=G$, and are called isotopic if the homeomorphism f is isotopic to the identity on M.

By $D(2)$, we denote the family of all Seifert fibered spaces over a disk with two exceptional fibers. For any element S of $D(2), S$ is oriented and ∂S has the orientation induced from that of S. For a fiber h in ∂S and the boundary loop c of a cross section of S, h and c are oriented so that the algebraic intersection number of h and c (in this order) is 1.

Let S_{1} and S_{2} be two elements of $D(2)$, and let $f: \partial S_{2} \rightarrow \partial S_{1}$ be a

[^0]homeomorphism. Then we have an orientable closed 3-manifold $M=$ $S_{1} \cup_{f} S_{2}$ by glueing ∂S_{1} and ∂S_{2} by f.

We denote a fiber in ∂S_{i} by $h_{i}(i=1,2)$. We denote an orientable twisted I-bundle over a Klein bottle by $K I$, and denote a ($2, n$)-torus knot exterior in S^{3} by $E_{2, n}$ for an odd integer $n>1$. If $S_{i}=K I$, then by u_{i} we denote a fiber in ∂S_{i} as a circle bundle over a Möbius band ($i=1,2$). If $S_{i}=E_{2, n}$, then by m_{i} we denote a meridian loop in $\partial E_{2, n}(i=1,2)$. Note that if $S_{i}=K I$ ($E_{2, n}$ resp.) then u_{i} (m_{i} resp.) is the boundary loop of a cross section of $S_{i}(i=1,2)$. For two oriented loops x and y in a torus, we denote the algebraic intersection number of x and y by $I(x, y)$.

In this paper, we regard an oriented loop as an element of the first homology group. Then $\left\{h_{i}, c_{i}\right\}$ is a basis of $H_{1}\left(\partial S_{i}\right)(i=1,2)$, and f is represented by a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c= \pm 1$ such that $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(c_{2}\right)\end{array}\right]=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ c_{1}\end{array}\right]$, where c_{i} is the boundary loop of a cross section of $S_{i}(i=1,2)$. Then we have:

Proposition 1. $M=S_{1} \cup_{f} S_{2}$ admits a Heegaard splitting of genus three.

Theorem 1. $M=S_{1} \cup_{f} S_{2}$ admits a Heegaard splitting of genus two if and only if one of the following conditions holds:

$$
\left[\begin{array}{l}
f\left(h_{2}\right) \tag{1}\\
f\left(c_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
a & \varepsilon \\
c & d
\end{array}\right]\left[\begin{array}{l}
h_{1} \\
c_{1}
\end{array}\right] \text { with ad- } \varepsilon c= \pm 1 \text { and } \varepsilon= \pm 1
$$

(3) $S_{1}=K I, S_{2}=E_{2, \beta}$ and

Remark 1. The condition (1) of Theorem 1 is equivalent to the condition $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$. The condition (2) ((3) resp.) of Theorem 1 is equivalent to the condition $I\left(m_{1}, f\left(u_{2}\right)\right)=0\left(I\left(u_{1}, f\left(m_{2}\right)\right)=0\right.$ resp.).

Remark 2. In the case when M is not a Seifert fibered space, the above result has been showed in Theorem of [7]. In the case when M is a Seifert fibered space, the above result has been showed in Theorem 1.1 of [3]. Theorem 1 therefore is obtained by combining these results. In this paper, by improving the argument of the proof of Theorem of [7], we will give a proof which is not influenced by whether M is a Seifert fibered space or not.

Remark 3. For the details of 3 -manifolds obtained from two twisted I-bundles over a Klein bottle, see [9].

Theorem 2. $M=S_{1} \cup_{f} S_{2}$ admits at most four non-isotopic Heegaard splittings of genus two.

In section 5, we will give a more detailed evaluation of the numbers of Heegaard splittings of genus two, up to isotopy, of $M=S_{1} \cup_{f} S_{2}$. See Table 5.2.

By $S\left(b ; \beta_{1} / \alpha_{1}, \beta_{2} / \alpha_{2}, \beta_{3} / \alpha_{3}, \beta_{4} / \alpha_{4}\right)$ we denote a Seifert fibered space over a 2-sphere with four exceptional fibers, where β_{i} / α_{i} is the Seifert invariant of the exceptional fiber ($1 \leqq i \leqq 4$) and b is an integer representing the obstruction class (cf. [13] or [17]). Then, by Theorem 1 and Table 5.2, we have the following corollaries.

Corollary 1 (cf. Theorem 1.1 of [3]). Let M be a Seifert fibered space over a 2-sphere with four exceptional fibers. Then M admits a Heegaard splitting of genus two if and only if M is homeomorphic to $S(0 ; 1 / 2,1 / 2,-1 / 2,-a /(2 a+1))$ for some positive integer a.

Moreover $S(0 ; 1 / 2,1 / 2,-1 / 2,-a /(2 a+1))$ admits exactly one Heegaard splitting of genus two up to isotopy.

REMARK 4. The first half of the above corollary has been already obtained by using another method in Theorem 1.1 of [3].

Corollary 2. Let M be an orientable Seifert fibered space over a projective plane with two exceptional fibers. Then M admits at most two non-isotopic Heegaard splittings of genus two.

By the proof of Theorem 2, we will see that in almost cases M admits at most two non-isotopic Heegaard splittings of genus two. In particular, we will see that the 3 -manifolds which may admit four nonisotopic Heegaard splittings of genus two are only $M=E_{2, \alpha} \cup_{f} E_{2, \beta}$ with $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}0 & \varepsilon \\ \delta & 0\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right] \quad(\varepsilon \delta= \pm 1)$. We denote this manifold by $M_{\alpha, \beta, \delta \delta} . \quad$ By Theorem 8 of [1], a Heegaard splitting of genus two of an orientable closed 3 -manifold corresponds to a 6-plat representation of a 3-bridge knot or link in S^{3}. Then the four 6-plat representations of the 3-bridge knots or links corresponding to the four Heegaard splittings of genus two of $M_{\alpha, \beta, 1}$ are those ones illustrated in Figure 0.1 , where $\alpha=2 a+1$ $(a>0)$ and $\beta=2 b+1(b>0)$. Since the four knots in Figure 0.1 are all equivalent, we denote the knot by $K_{a, b, 1}$. If $a=1$ or $b=1$, then by Proposition 5.3, two Heegaard splittings corresponding to the 6-plat representations ($K_{a, b, 1}, S_{1}$) and ($K_{a, b, 1}, S_{2}$) are mutually isotopic. If $a>1$ and $b>1$, then it seems that the four Heegaard splittings of genus two of $M_{\alpha, \beta, 1}$ corresponding to the four 6-plat representations of $K_{a, b, 1}$ are all
mutually non-isotopic. The author, however, has no proof. For $M_{\alpha, \beta,-1}$, we have the knot $K_{a, b,-1}$ similar to $K_{a, b, 1}$ by substituting the tangle T_{b} in the diagram of $K_{a, b, 1}$ for the tangle T_{-b} illustrated in Figure 0.2.

Figure 0.1

Figure 0.2

Now, we will prove the above theorems as follows:
First, by improving the argument of the proof of Theorem of [7], we will show the following lemma.

Lemma 1.1. Let M be an orientable closed 3-manifold which admits a Heegaard splitting ($V_{1}, V_{2} ; F$) of genus two.

Suppose that M contains a family Σ consisting of finitely many mutually disjoint incompressible tori. Then Σ is ambient isotopic to a family of tori which intersects V_{i} in essential annuli ($i=1,2$).

By applying Lemma 1.1 to $M=S_{1} \cup_{f} S_{2}$ and by careful consideration, we will obtain Lemma 1.5 , which minutely analyzes the intersections of the torus $\partial S_{1}\left(=\partial S_{2}\right)$ and the handlebodies of the Heegaard splitting.

Then Theorem 1 will be proved immediately by Lemma 1.5 and using the argument similar to the proof of Theorem of [7].

Remark 5. Lemma 1.1 does not hold in general if the genus of the Heegaard splitting is greater than 2. See the introduction of [8] (cf. Lemma 3.1 of [10]).

Next, we will introduce several families of Heegaard surfaces of genus two of $M=S_{1} \cup_{f} S_{2}$, which are described in section 3. Then by Lemma 1.5, we can see that any Heegaard surface of genus two of M is ambient isotopic to a Heegaard surface belonging to one of the families (Proposition 3.1).

To prove Theorem 2 we have to evaluate the numbers, up to isotopy, of Heegaard surfaces of each family. For this purpose, we will show the following two theorems.

We say that an orientable closed 3 -manifold is a lens space if it admits a Heegaard splitting of genus one (cf. [5]). Let L be a lens space and K a knot in L. We say that K is a core of L if $\mathrm{Cl}(L-N(K))$ is a solid torus, where $N(K)$ is a regular neighborhood of K in L, K is a torus knot in L if there exists a torus in L which contains K and splits L into two solid tori, and K is a trivial knot if K bounds a disk in L.

Theorem 3. Let L be a lens space and K a 1-bridge knot in L, and let $\left(V_{1}, V_{2} ; G\right)$ be a Heegaard splitting of genus one of L which gives a 1-bridge representation of K i.e., $\alpha_{i}=V_{i} \cap K$ is a single trivial arc in $V_{i}(i=1,2)$.

Suppose that K is a non-trivial torus knot and is not a core of L. Then for $i=1,2$, there exists a disk Δ_{i} in V_{i} such that $\partial V_{i} \cap \Delta_{i}=\beta_{i}$ is
an arc in $\partial V_{i}, \partial \Delta_{i}=\alpha_{i} \cup \beta_{i}$ and $\beta_{1} \cap \beta_{2}=\partial \beta_{1}=\partial \beta_{2}$.
Note. The important point of this theorem is the last assertion $\beta_{1} \cap \beta_{2}=\partial \beta_{1}=\partial \beta_{2}$.

Theorem 3 says that any 1-bridge representation of a torus knot in a lens space is trivial. The next theorem says that 2-bridge representations of a ($2, n$)-torus knot in S^{3} are unique up to ambient isotopy rel. the knot.

Theorem 4. Let K be a non-trivial ($2, n$)-torus knot in S^{3}, and let S_{1} and S_{2} be 2-spheres in S^{3} each of which gives a 2-bridge representation of K.

Suppose $S_{1} \cap K=S_{2} \cap K(=4$-points). Then there exists an ambient isotopy $f_{t}(0 \leqq t \leqq 1)$ of S^{3} such that $f_{0}=$ id., $f_{1}\left(S_{2}\right)=S_{1}$ and $f_{t} \mid K$ is the identity on $K(0 \leqq t \leqq 1)$.

Note. The important point of this theorem is the last condition that $f_{t} \mid K$ is the identity on $K(0 \leqq t \leqq 1)$.

Then, by combining these results, we will show Theorem 2.
Concerning the numbers of Heegaard splittings of genus two, M. Boileau and J. P. Otal proved in [2] that any Seifert fibered space over a 2-sphere with three exceptional fibers admits at most three non-isotopic Heegaard splittings of genus two. And J. Hass proved in [4] that any orientable closed hyperbolic 3-manifold admits finitely many non-isotopic Heegaard splittings of genus two. These facts, however, do not hold in general. Recently M. Sakuma proved in [15] that there exist infinitely many orientable closed 3 -manifolds each of which admits infinitely many non-isotopic Heegaard splittings of genus two. But the author does not know whether there exists a 3-manifold which admits infinitely many non-homeomorphic Heegaard splittings of genus two.

This paper is organized as follows. In section 1, Lemmas 1.1 and 1.5 will be proved. In section 2, we will prove Proposition 1 and Theorem 1. In section 3, we will describe several families of Heegaard surfaces of genus two and show Proposition 3.1. In section 4, Theorems 3 and 4 will be proved. Then, by combining these results, we will prove Theorem 2 and Corollaries 1,2 in section 5.

Throughout this paper we will work in the piecewise linear category. For the definitions of the standard terms in 3-manifold topology and knot theory, we refer, [5], [6] and [14].

Acknowledgement. I am very grateful to Professor Shin'ichi Suzuki
for his encouragement, and I would like to express my gratitude to Professor Makoto Sakuma and Professor Tsuyoshi Kobayashi for their helpful suggestion.

§1. Some lemmas to prove Theorems 1 and 2.

We say that a surface F properly embedded in a compact 3-manifold M is ∂-parallel if F is isotopic to a surface in ∂M rel. ∂F, and F is essential in M if F is incompressible and is not ∂-parallel. For a given manifold X and a submanifold $Y, N(Y)$ denotes a regular neighborhood of Y in X.

Proof of Lemma 1.1. We may assume that each component of $\Sigma \cap V_{1}$ is a disk and that $\#\left(\Sigma \cap V_{1}\right)$ is minimal among all families consisting of tori which are ambient isotopic to Σ and intersect V_{1} in disks, where $\#\left(\Sigma \cap V_{1}\right)$ is the number of components of $\Sigma \cap V_{1}$.

Put $\Sigma_{1}=\Sigma \cap V_{1}$ and $\Sigma_{2}=\Sigma \cap V_{2}$.
Claim 1. Σ_{2} is incompressible in V_{2}.
Since M admits a Heegaard splitting of genus two and contains incompressible tori, M is irreducible. Then Claim 1 follows from the irreducibility of M, the incompressibility of Σ and the minimality of $\#\left(\Sigma \cap V_{1}\right)$.

Let $E=E_{1} \cup E_{2}$ be a complete meridian disk system of V_{2}, i.e. E_{1}, E_{2} are mutually disjoint disks properly embedded in $V_{2}(i=1,2)$ and $\mathrm{Cl}\left(V_{2}-N\left(E_{1} \cup E_{2}\right)\right)$ is a 3-ball. By Claim 1, we may assume that Σ_{2} intersects E in arcs.

Let a be an outermost arc component of $E \cap \Sigma_{2}$ in E. If a is an inessential arc in Σ_{2}, i.e. a cuts off a disk in Σ_{2}, then by using this disk, we can exchange E for another complete meridian disk system $E^{\prime \prime}$ so that $\#\left(E^{\prime} \cap \Sigma_{2}\right)<\#\left(E \cap \Sigma_{2}\right)$. Hence as in Ch. II of [6], at each stage by exchanging complete meridian disk systems if necessary, we have a sequence of isotopies of type A at arcs $\alpha_{i}(1 \leqq i \leqq n)$ each of which is an essential are properly embedded in Σ_{2}^{i-1}, where $\Sigma_{2}^{0}=\Sigma_{2}, \Sigma_{2}^{t}=\mathrm{Cl}\left(\Sigma_{2}^{i-1}-N\left(\alpha_{i}\right)\right)$ and Σ_{2}^{n} consists of disks. For the definition of an isotopy of type A, see Ch. II of [6]. Furthermore we may assume that each a_{i} is an essential arc properly embedded in Σ_{2} and that $a_{i} \cap a_{j}=\varnothing(i \neq j)$. Then each a_{i} is one of the following three types.

We say that a_{i} is of type 1 if a_{i} connects distinct components of $\partial \Sigma_{2}, a_{i}$ is of type 2 if a_{i} meets a single component of $\partial \Sigma_{2}$ and is a separating arc in Σ_{2}, and a_{i} is of type 3 if a_{i} meets a single component
of $\partial \Sigma_{2}$ and is a non-separating arc in Σ_{2}. Moreover we say that a_{i} is a d-arc if a_{i} is of type 1 and there exists a component c of $\partial \Sigma_{2}$ which meets a_{i} such that c does not meet a_{j} for any $j<i$. See Figure 1.1.

Figure 1.1
Claim 2. Each a_{i} is not a d-arc.
If an are a_{k} is a d-arc, then by the inverse operation of an isotopy of type A defined in [12], Σ is ambient isotopic to Σ^{\prime} which intersects V_{1} in disks with $\#\left(\Sigma^{\prime} \cap V_{1}\right)<\#\left(\Sigma \cap V_{1}\right)$. This is a contradiction.

Claim 3. Each a_{i} is not of type 2.
If there exists an arc of type 2 , then by noting that each a_{i} is essential in Σ_{2}, we can find a d-arc. This is contradictory to Claim 2.

Put $\Sigma^{(0)}=\Sigma$, and let $\Sigma^{(i)}$ be the image of $\Sigma^{(i-1)}$ after an isotopy of type A at $a_{i}(1 \leqq i \leqq n)$. Then we have $\Sigma_{2}^{i}=\Sigma^{(i)} \cap V_{2}(0 \leqq i \leqq n)$. Put $\Sigma_{1}^{i}=$ $\Sigma^{(i)} \cap V_{1}(0 \leqq i \leqq n)$. By performing an isotopy of type A at a_{i}, a band in V_{1} is produced. We denote the band by b_{i}.

Now, let $\Sigma_{1}=D_{1} \cup D_{2} \cup \cdots \cup D_{r}(r>0)$ be disks in V_{1}.
Note that, by Claims 2 and 3, there are no pairs of two disks in $\left\{D_{i}\right\}_{i=1}^{r}$ which are complete meridian disk systems of V_{1}.

By Claims 2 and 3, a_{1} is of type 3. If $r=1$, then Σ_{1}^{1} is a single annulus, and the proof is completed.

Suppose $r>1$. By Claims 2 and 3, we may assume that a_{1} and a_{2} are both of type 3 and that b_{1} meets D_{1}.

Suppose that b_{2} also meets D_{1}. Let T be the component of $\Sigma^{(2)}$ containing D_{1}, and put $T^{\prime}=T \cap V_{1}$. Since $r>1, b_{1}$ and b_{2} meet D_{1} in the same side. Then T^{\prime} is contained in a solid torus obtained by cutting V_{1} by D_{1}. This is contradictory to that T is incompressible. Hence we may assume that b_{2} meets D_{2}, and we can put $\Sigma_{1}^{2}=A_{1} \cup A_{2} \cup D_{8} \cup \cdots \cup D_{r}$, where A_{i} is an annulus ($i=1,2$).

If $r=2$, then the proof is completed. Suppose $r>2$. If a_{8} is of type 1 , then by Claim $2, a_{8}$ connects ∂D_{1} and ∂D_{2}. Then, by noting the
existence of the disk D_{3}, we can push the band b_{2} into V_{2} missing b_{3}. See Figure 1.2 and Lemmas 3.2, 3.4 and 3.5 of [7].

Figure 1.2
By performing this operation, we can change the order of a_{2} and a_{3}, and we have a d-arc. This is contradictory to Claim 2. Thus a_{3} is of type 3. If b_{3} meets D_{1} or D_{2}, then we have a compressible component of Σ similarly to the above, and a contradiction. Hence b_{3} meets D_{3} and we have $\Sigma_{1}^{3}=A_{1} \cup A_{2} \cup A_{3} \cup D_{4} \cup \cdots \cup D_{r}$, where A_{i} is an annulus ($i=1,2,3$). By continuing these procedures, we complete the proof of Lemma 1.1.

The following two lemmas follow from Theorem VI. 34 of [6] and the uniqueness of the characteristic Seifert pairs, see Ch. IX of [6].

Lemma 1.2. Suppose that $M=S_{1} \cup_{f} S_{2}$ is a Seifert fibered space. Then the base space of M is one of a 2-sphere with four exceptional points, a projective plane with two exceptional points or a Klein bottle without exceptional points.

Lemma 1.3. (1) Any separating incompressible torus in $M=S_{1} \cup_{f} S_{2}$ splits M into two 3-manifolds belonging to $D(2)$.
(2) If $M=S_{1} \cup_{f} S_{2}$ contains a non-separating torus, then M is a torus bundle over a circle such that the torus is a fiber.

Lemma 1.4. Let P be a projective plane with two holes. Then there exist exactly two different simple loops, up to ambient isotopy, each of which bounds a Möbius band in P.

Proof. This can be easily proved by noting that P is a Möbius band with one hole.

For an integer $n(\geqq 0)$, by $P(n)$ we denote the family consisting of all orientable Seifert fibered spaces over a projective plane with n exceptional fibers.

Lemma 1.5. Suppose that $M=S_{1} \cup_{f} S_{2}$ admits a Heegaard splitting $\left(V_{1}, V_{2} ; F\right)$ of genus two, and put $T^{\prime}=\partial S_{1}=f\left(\partial S_{2}\right)$.

Then T^{\prime} is ambient isotopic to a torus T which satisfies one of the following three conditions. (See Figure 1.3, and see also Lemmas 3.2, 3.4 and 3.5 of [7].)
(1) For $i=1,2, \quad V_{i} \cap T$ consists of a single separating essential annulus.
(2) $V_{1} \cap T$ (or $V_{2} \cap T$ resp.) consists of two disjoint non-separating essential annuli satisfying the following condition: there exists a complete meridian disk system $\left(D_{1}, D_{2}\right)$ of V_{1} (or V_{2} resp.) such that $D_{1} \cap\left(V_{1} \cap T\right)=\varnothing$ (or $D_{1} \cap\left(V_{2} \cap T\right)=\varnothing$ resp.) and $D_{2} \cap\left(V_{1} \cap T\right)$ (or $D_{2} \cap\left(V_{2} \cap T\right)$ resp.) consists of two arcs each of which is an essential arc properly embedded in each

Figure 1.3
annulus of $V_{1} \cap T$ (or $V_{2} \cap T$ resp.), and $V_{2} \cap T$ (or $V_{1} \cap T$ resp.) consists of two disjoint non-parallel separating essential annuli.
(3) For $i=1,2, V_{i} \cap T$ consists of two disjoint non-separating essential annuli satisfying the same condition as that of (2).

Proof. By Lemma 1.1, T^{\prime} is ambient isotopic to a torus T which intersects V_{i} in essential annuli ($i=1,2$). Put $\Sigma_{i}=V_{i} \cap T(i=1,2)$. Then we have the following three cases.

Case 1: Both Σ_{1} and Σ_{2} consist of separating annuli.
The case when all annuli of Σ_{1} are mutually parallel. Since, by Lemma 3.2 of [7], there exists exactly one component of $\mathrm{Cl}\left(\partial V_{1}-N\left(\Sigma_{1}\right)\right)$ which is a torus with two holes, all annuli of Σ_{2} also are mutually parallel. Let A_{i} be a component of Σ_{i} which cuts off a torus with two holes G_{i} in ∂V_{i} with $G_{i} \cap \Sigma_{i}=\partial A_{i}(i=1,2)$, see Figure 1.4. Since G_{2} is identified with G_{1} in $M, \partial A_{2}$ is identified with ∂A_{1} in M. This shows $T=A_{1} \cup A_{2}$, and the conclusion (1) holds.

Figure 1.4
The case when Σ_{1} contains non-parallel annuli. Since, by Lemmas 3.4 and 3.5 of [7], there exists exactly one component of $\mathrm{Cl}\left(\partial V_{1}-N\left(\Sigma_{1}\right)\right)$ which is a sphere with four holes, Σ_{2} also contains non-parallel annuli. Let A_{i} and B_{i} be the components of Σ_{i} which cut off a sphere with four holes G_{i} in ∂V_{i} with $G_{i} \cap \Sigma_{i}=\partial\left(A_{i} \cup B_{i}\right)(i=1,2)$. Put $W_{i} \cup U_{i} \cup R_{i}=$ $\mathrm{Cl}\left(V_{i}-N\left(A_{i} \cup B_{i}\right)\right)$, where W_{i} is a genus two handlebody and U_{i} and R_{i} are solid tori. Since $\partial V_{2} \cap\left(U_{2} \cup R_{2}\right)$ is identified with $\partial V_{1} \cap\left(U_{1} \cup R_{1}\right)$, $\partial\left(U_{1} \cup R_{1} \cup U_{2} \cup R_{2}\right)$ consists of two tori. Then $W_{1} \cup W_{2}$ is a 2 -bridge link exterior in S^{3} and $A_{1} \cup B_{1} \cup A_{2} \cup B_{2}$ is two tori. This is a contradiction.

Case 2: One of Σ_{1} or Σ_{2} contains a non-separating annulus and the other consists of separating annuli.

In this case we may assume that Σ_{1} contains a non-separating annulus. Since there exists exactly one component of $\mathrm{Cl}\left(\partial V_{1}-N\left(\Sigma_{1}\right)\right)$ which is a sphere with four holes, Σ_{2} contains non-parallel annuli. Let A_{1} and B_{1} (A_{2} and B_{2} resp.) be non-separating (separating resp.) essential annuli in
V_{1} (V_{2} resp.) which cut off a sphere with four holes in ∂V_{1} (∂V_{2} resp.) disjoint from Σ_{1} (Σ_{2} resp.). Note A_{i} and B_{i} are not components of Σ_{i} ($i=1,2$). See Figure 1.5.

Figure 1.5
Since there exists exactly one component G_{i} of $\mathrm{Cl}\left(\partial V_{i}-N\left(\Sigma_{i}\right)\right)$ which is a sphere with four holes $(i=1,2), G_{2}$ is identified with G_{1} in M. Then by noting that $\partial\left(A_{i} \cup B_{i}\right)$ is ambient isotopic to ∂G_{i} in $G_{i}(i=1,2)$, we may assume that $\partial\left(A_{2} \cup B_{2}\right)$ is identified with $\partial\left(A_{1} \cup B_{1}\right)$. Put $W_{1} \cup U_{1}=$ $\mathrm{Cl}\left(V_{1}-N\left(A_{1} \cup B_{1}\right)\right)$ and $W_{2} \cup U_{2} \cup R_{2}=\mathrm{Cl}\left(V_{2}-N\left(A_{2} \cup B_{2}\right)\right)$, where W_{1} and W_{2} are genus two handlebodies and U_{1}, U_{2} and R_{2} are solid tori. Then, by the above argument, $\partial V_{2} \cap W_{2}$ is identified with $\partial V_{1} \cap W_{1}$, and $\partial V_{2} \cap\left(U_{2} \cup R_{2}\right)$ is identified with $\partial V_{1} \cap U_{1}$. Put $N_{1}=W_{1} \cup W_{2}$ and $N_{2}=U_{1} \cup U_{2} \cup R_{2}$ in M. Then, by [7, §6 Case 2.2.2], N_{2} is a Seifert fibered space over a disk with two or three exceptional fibers, and N_{1} is a 2-bridge knot exterior in S^{3}.

Suppose that N_{2} has three exceptional fibers. If N_{1} is not a solid torus, then ∂N_{1} is a separating incompressible torus which bounds N_{2}. This is contradictory to Lemma 1.3. If N_{1} is a solid torus, then, since a meridian loop in ∂N_{1} as a 2-bridge knot exterior and a fiber in ∂N_{2} are identified in M, M is a Seifert fibered space over a sphere with three exceptional fibers. This is contradictory to Lemma 1.2. Hence N_{2} has two exceptional fibers. Since T is contained in N_{2}, T is ambient isotopic to $\partial N_{2}=A_{1} \cup B_{1} \cup A_{2} \cup B_{2}$, and the conclusion (2) holds.

Case 3: Both Σ_{1} and Σ_{2} contain non-separating annuli.
Let A_{i} and B_{i} be non-separating annuli in $V_{i}(i=1,2)$ such as A_{1} and B_{1} in V_{1} of Case 2. Then, by the same argument as the proof of Case 2, we may assume that $\partial\left(A_{2} \cup B_{2}\right)$ is identified with $\partial\left(A_{1} \cup B_{1}\right)$ in M. Put $W_{i} \cup U_{i}=\mathrm{Cl}\left(V_{i}-N\left(A_{i} \cup B_{i}\right)\right)(i=1,2)$, where W_{i} is a genus two handlebody and U_{i} is a solid torus. Put $N_{1}=W_{1} \cup W_{2}$ and $N_{2}=U_{1} \cup U_{2}$ in M. Then N_{1} is a 2-bridge knot or link exterior in S^{3}. If N_{1} is a 2-bridge
link exterior, then a component of ∂N_{1}, say T^{\prime}, is a non-separating torus in M. Since $T^{\prime} \cap T=\varnothing$, and by Lemma 1.3, T is ambient isotopic to T^{\prime}. This is contradictory to that T is a separating torus. Thus N_{1} is a 2-bridge knot exterior, and N_{2} is a Seifert fibered space over a Möbius band with 0,1 or 2 exceptional fibers. If N_{2} has no exceptional fibers, then, since T is contained in N_{2}, T is ambient isotopic to $\partial N_{2}=$ $A_{1} \cup B_{1} \cup A_{2} \cup B_{2}$, and the conclusion (3) holds. If N_{2} has one exceptional fiber, then by Lemma 1.3, N_{1} is a solid torus. Since a meridian loop in ∂N_{1} as a 2-bridge knot exterior in S^{3} and a fiber in ∂N_{2} are identified in M, M belongs to $P(1)$. This is contradictory to Lemma 1.2.

Suppose that N_{2} has two exceptional fibers. Then N_{1} is a solid torus and M belongs to $P(2)$. By Lemma 1.4, T is ambient isotopic to one of the two tori T_{1} or T_{2} indicated in Figure 1.6.

Figure 1.6
Since T_{1} satisfies the condition (1), the proof is completed if T is ambient isotopic to T_{1}.

Suppose that T is ambient isotopic to T_{2}. Put $T_{2} \cap V_{i}=R_{i} \cup S_{i}(i=1,2)$. We may assume that both R_{i} and S_{i} are parallel to A_{i} in $V_{i}(i=1,2)$. Then A_{i}, B_{i}, R_{i} and S_{i} are four annuli illustrated in Figure $1.7(i=1,2)$.

Figure 1.7

Put $\partial A_{i}=a_{i} \cup a_{i}^{\prime}, \partial B_{i}=b_{i} \cup b_{i}^{\prime}, \partial R_{i}=r_{i} \cup r_{i}^{\prime}$ and $\partial S_{i}=s_{i} \cup s_{i}^{\prime}(i=1,2)$, where $a_{i}, a_{i}^{\prime}, \cdots, s_{i}^{\prime}$ are boundary components of those annuli. Since $A_{1} \cup B_{1} \cup A_{2} \cup B_{2}$ is a single torus, we may assume that a_{1} (a_{1}^{\prime}, b_{1} and b_{1}^{\prime} resp.) is identified with a_{2} (b_{2}, a_{2}^{\prime} and b_{2}^{\prime} resp.) in M. Then, by the fact that $W_{1} \cup W_{2}=N_{1}$ is a trivial 2-bridge knot exterior in S^{3} and the uniqueness of 2-bridge representations of a trivial knot (i.e. Schubert's normal form theorem of [16]), we have a disk Δ_{i} in $V_{i}(i=1,2)$ with $\Delta_{1} \cap \Delta_{2}=\varnothing$ such that $\partial \Delta_{i}$ is a union of an arc in ∂V_{i} and an essential arc $\left(=\Delta_{i} \cap A_{i}=\partial \Delta_{i} \cap A_{i}\right)$ in A_{i}, see Figure 1.7. Let D_{i} be a disk in V_{i} containing $\Delta_{i}(i=1,2)$ such that ∂D_{i} is a union of an arc in ∂V_{i} and an essential arc ($=D_{i} \cap R_{i}=\partial D_{i} \cap R_{i}$) in R_{i}. Then by $\Delta_{1} \cap \Delta_{2}=\varnothing$, we may assume $D_{1} \cap D_{2}=\varnothing$. Hence we can perform the isotopies of type A along D_{1} and D_{2} simultaneously. Note here that the arc $D_{1} \cap \partial V_{1}\left(D_{2} \cap \partial V_{2}\right.$ resp.) connects r_{2} and $s_{2}\left(r_{1}\right.$ and s_{1} resp.) because the arc $\Delta_{1} \cap \partial V_{1}\left(\Delta_{2} \cap \partial V_{2}\right.$ resp.) connects a_{2} and b_{2} (a_{1} and b_{1} resp.). Let \widetilde{T}_{2} be the image of T_{2} after the isotopies. Then by the above note, we can see that $\widetilde{T}_{2} \cap V_{i}$ is a separating essential annulus properly embedded in $V_{i}(i=1,2)$. Thus \widetilde{T}_{2} satisfies the condition (1), and this completes the proof of Lemma 1.5.

We say that an arc α properly embedded in a compact 3-manifold M is trivial if there exists an arc β in ∂M with $\alpha \cap \beta=\partial \alpha=\partial \beta$ such that $\alpha \cup \beta$ bounds a disk in M. Let L be a lens space and K a knot in L. We say that K is a 1-bridge knot in L if there exist two solid tori V_{1} and V_{2} in L such that $L=V_{1} \cup V_{2}, V_{1} \cap V_{2}=\partial V_{1}=\partial V_{2}$ and $V_{i} \cap K$ is a trivial arc in $V_{i}(i=1,2)$.

Lemma 1.6. Let S be an element of $D(2)$. Let h be a fiber in ∂S and μ a simple loop in ∂S with $I(\mu, h)= \pm 1$. Then S is a 1-bridge $k n o t$ exterior in some lens space such that μ is a meridian loop of the knot.

Proof. Let V be a solid torus and m a meridian loop in ∂V. Let $\psi: \partial V \rightarrow \partial S$ be a homeomorphism with $\psi(m)=\mu$. Let K be a core of V. Then by $I(\mu, h)= \pm 1, L=S \cup_{\psi} V$ admits a Seifert fibration over a 2-sphere with two exceptional fibers such that K is a regular fiber. Namely L is a lens space. Let T be a torus in L containing K saturated in the Seifert fibratian which splits L into two solid tori each of which contains an exceptional fiber. Let \widetilde{T} be a torus intersecting K in two points obtained from T by slightly moving T. Then \widetilde{T} splits L into two solid tori V_{1} and V_{2} such that $V_{i} \cap K$ is a trivial arc in $V_{i}(i=1,2)$. Hence K is a 1-bridge knot in $L, S=\mathrm{Cl}(L-N(K)$) and μ is a meridian loop.

§2. Proof of Proposition 1 and Theorem 1.

Proof of Proposition 1. Since S_{1} and S_{2} belong to $D(2)$, we can put $S_{1}=V_{1} \cup W_{1}$ and $S_{2}=V_{2} \cup W_{2}$, where V_{i} and W_{i} are solid tori and $V_{i} \cap W_{i}=\partial V_{i} \cap \partial W_{i}=A_{i}$ is an essential annulus in $S_{i}(i=1,2)$. Let α_{i} be an essential are properly embedded in A_{i} and N_{i} a regular neighborhood of α_{i} in $S_{i}(i=1,2)$. Put $U_{i}=\mathrm{Cl}\left(S_{i}-N_{i}\right)$, then U_{i} is a genus two handlebody ($i=1,2$). Since we may assume $f\left(N_{2} \cap \partial S_{2}\right) \cap\left(N_{1} \cap \partial S_{1}\right)=\varnothing, H_{1}=U_{1} \cup_{f} N_{2}$ and $H_{2}=U_{2} \cup_{f} N_{1}$ are genus three handlebodies. Then $\left(H_{1}, H_{2} ; F\right)$ is a genus three Heegaard splitting of M, where $F=\partial H_{1}=\partial H_{2}$. This completes the proof of Proposition 1.

Proof of Theorem 1. Suppose that $M=S_{1} \cup_{f} S_{2}$ admits a Heegaard splitting ($V_{1}, V_{2} ; F$) of genus two. Put $T=\partial S_{1}=f\left(\partial S_{2}\right)$. Then by Lemma 1.5, we may assume that T satisfies one of the three conditions of Lemma 1.5. In the following proof, note that if two elements of $D(2)$ are homeomorphic, then the homeomorphism is isotopic to a fiber preserving homeomorphism.

Case 1: T satisfies the condition (1).
For $i=1,2$, put $W_{i} \cup U_{i}=\mathrm{Cl}\left(V_{i}-N(T)\right)$, where W_{i} is a genus two handlebody and U_{i} is a solid torus. Put $N_{1}=W_{1} \cup W_{2}$ and $N_{2}=U_{1} \cup U_{2}$ in M. Then N_{1} is a 1-bridge knot exterior in a lens space L, and a meridian loop in ∂N_{1} is identified with a fiber in ∂N_{2}. Let μ be a meridian loop in ∂N_{1} and h_{i} a fiber in $\partial N_{i}(i=1,2)$. If $\left|I\left(\mu, h_{1}\right)\right|>1$, then L admits a Seifert fibration whose base space is a 2 -sphere with three exceptional points. This is a contradiction. If $I\left(\mu, h_{1}\right)=0$, then by Theorem of Ch. 1 of [13], L is a connected sum of two lens spaces. This also is a contradiction. Thus $I\left(\mu, h_{1}\right)= \pm 1$. Since $I\left(\mu, f\left(h_{2}\right)\right)=0$, we have $I\left(h_{1}, f\left(h_{2}\right)\right)=$ ± 1. Then by Remark 1, we have the conclusion (1) of Theorem 1.

Case 2: T satisfies the condition (2).
We may assume that $T \cap V_{1}$ is two non-separating annuli and $T \cap V_{2}$ is two separating annuli. Put $W_{1} \cup U_{1}=\mathrm{Cl}\left(V_{1}-N(T)\right)$ and $W_{2} \cup U_{2} \cup R_{2}=$ $\mathrm{Cl}\left(V_{2}-N(T)\right)$, where W_{1} and W_{2} are genus two handlebodies and U_{1}, U_{2} and R_{2} are solid tori. Put $N_{1}=W_{1} \cup W_{2}$ and $N_{2}=U_{1} \cup U_{2} \cup R_{2}$ in M. Then N_{1} is a 2-bridge knot exterior in S^{3} and a meridian loop in ∂N_{1} is identified with a fiber in ∂N_{2}. Then, by the same argument as the proof of Case 1 , we have $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$ and the conclusion (1) of Theorem 1.

Case 3: T satisfies the condition (3).
Put $W_{i} \cup U_{i}=\mathrm{Cl}\left(V_{i}-N(T)\right)(i=1,2)$, where W_{i} is a genus two handlebody and U_{i} is a solid torus. Put $N_{1}=W_{1} \cup W_{2}$ and $N_{2}=U_{1} \cup U_{2}$. Then N_{1} is a 2 -bridge knot exterior in S^{3}, and a meridian loop in ∂N_{1} is
identified with a fiber in ∂N_{2} as a circle bundle over a Möbius band. Since N_{1} is an element of $D(2)$, by Theorem 2 of [11], N_{1} is a torus knot exterior. Furthermore, since 2-bridge torus knot is a (2, n)-torus knot, N_{1} is homeomorphic to $E_{2, n}$ for some odd integer $n>1$. Hence, $S_{1}=E_{2, \alpha}, S_{2}=K I$ and $I\left(m_{1}, f\left(u_{2}\right)\right)=0$ if $S_{1}=N_{1}$, or $S_{1}=K I, S_{2}=E_{2, \beta}$ and $I\left(u_{1}, f\left(m_{2}\right)\right)=0$ if $S_{1}=N_{2}$. Then by Remark 1, we have the conclusion (2) or (3) of Theorem 1.

Conversely, suppose $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$. Then by Lemma 1.6, S_{1} is a 1-bridge knot exterior in a lens space such that $f\left(h_{2}\right)$ is a meridian loop of the knot. Then by tracing back the above procedure of Case 1, we can construct a Heegaard splitting of genus two of M. If $S_{1}=E_{2, \alpha}$, $S_{2}=K I$ and $I\left(m_{1}, f\left(u_{2}\right)\right)=0$ or $S_{1}=K I, S_{2}=E_{2, \beta}$ and $I\left(u_{1}, f\left(m_{2}\right)\right)=0$, then by tracing back the above procedure of Case 3 , we can construct a Heegaard splitting of genus two of M.

This completes the proof of Theorem 1.

§3. Several families of Heegaard surfaces of genus two.

Let S be an element of $D(2), h$ a fiber in ∂S and μ a simple loop in ∂S with $I(\mu, h)= \pm 1$. Then by Lemma $1.6, S$ is a 1 -bridge knot exterior in a lens space such that μ is a meridian loop of the knot, and there exists a torus with two holes properly embedded in S which gives a 1-bridge representation of the knot. We call such a punctured torus a 1-bridge representing p-torus in S w. r.t. μ. Let E be a 2 -bridge knot exterior in S^{3} and m a meridian loop in ∂E. Then there exists a sphere with four holes properly embedded in E which gives a 2 -bridge representation of the knot. We call such a punctured sphere a 2-bridge representing p-sphere in E.

Remark 6. Since all (non-trivial) 2-bridge knots have property P by [18], the meridian loop in E is unique up to ambient isotopy of ∂E.

Put $M=S_{1} \cup_{f} S_{2}$. In the following we introduce several families consisting of Heegaard surfaces of genus two of M.

Case 1: $\quad I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$.
Let F be an orientable closed surface of genus two in M such that $F \cap S_{1}$ is a 1 -bridge representing p-torus w. r. t. $f\left(h_{2}\right)$ and $F \cap S_{2}$ is a single essential annulus saturated in the Seifert fibration of S_{2}. Then, by the proof of Theorem 1, F is a genus two Heegaard surface of M. We denote the family consisting of all such genus two Heegaard surfaces by $F(1-1)$. Similarly $F(1-2)$ denotes the family consisting of all genus
two Heegaard surfaces F such that $F \cap S_{1}$ is a single essential annulus saturated in the Seifert fibration of S_{1} and $F \cap S_{2}$ is a 1-bridge representing p-torus w.r.t. $f^{-1}\left(h_{1}\right)$.

Case 2: $\quad S_{1}=E_{2, \alpha}$ and $I\left(m_{1}, f\left(h_{2}\right)\right)=0$ or $S_{2}=E_{2, \beta}$ and $I\left(h_{1}, f\left(m_{2}\right)\right)=0$.
Suppose $S_{1}=E_{2, \alpha}$ and $I\left(m_{1}, f\left(h_{2}\right)\right)=0$. Let F be an orientable closed surface of genus two in M such that $F \cap S_{1}$ is a 2-bridge representing p-sphere and $F \cap S_{2}$ is two disjoint essential annuli saturated in the Seifert fibration of S_{2}. Then, by the proof of Theorem 1, F is a genus two Heegaard surface of M. We denote the family consisting of all such genus two Heegaard surfaces by $F(2-1)$. Similarly if $S_{2}=E_{2, \beta}$ and $I\left(h_{1}, f\left(m_{2}\right)\right)=0$, then $F(2-2)$ denotes the family consisting of all genus two Heegaard surfaces F such that $F \cap S_{1}$ is two disjoint essential annuli saturated in the Seifert fibration of S_{1} and $F \cap S_{2}$ is a 2-bridge representing p-sphere.

Case 3: $S_{1}=E_{2, \alpha}, S_{2}=K I$ and $I\left(m_{1}, f\left(u_{2}\right)\right)=0$ or $S_{1}=K I, S_{2}=E_{2, \beta}$ and $I\left(u_{1}, f\left(m_{2}\right)\right)=0$.

Suppose $S_{1}=E_{2, \alpha}, S_{2}=K I$ and $I\left(m_{1}, f\left(u_{2}\right)\right)=0$. Let F be an orientable closed surface of genus two in M such that $F \cap S_{1}$ is a 2-bridge representing p-sphere and $F \cap S_{2}$ is two disjoint essential annuli saturated in the fibration of S_{2} as a circle bundle over a Möbius band. Then, by the proof of Theorem 1, F is a genus two Heegaard surface of M. We denote the family consisting of all such genus two Heegaard surfaces by $F(3-1)$. Similarly if $S_{1}=K I, S_{2}=E_{2, \beta}$ and $I\left(u_{1}, f\left(m_{2}\right)\right)=0$, then $F(3-2)$ denotes the family consisting of all genus two Heegaard surfaces F such that $F \cap S_{1}$ is two disjoint essential annuli saturated in the fibration of S_{1} as a circle bundle over a Möbius band and $F \cap S_{2}$ is a 2-bridge representing p-sphere.

Furthermore we put $F(1)=F(1-1) \cup F(1-2), F(2)=F(2-1) \cup F(2-2)$ and $F(3)=F(3-1) \cup F(3-2)$. Then the following proposition follows from Lemma 1.5 immediately.

Proposition 3.1. Any genus two Heegaard surface of $M=S_{1} \cup_{f} S_{2}$ is ambient isotopic to a Heegaard surface belonging to one of $F(1), F(2)$ or $F(3)$.

§4. Proof of Theorems 3 and 4.

Proof of Theorem 3. Since K is a torus knot, there exists a torus T in L which contains K and splits L into two solid tori. Then we may assume that T intersects V_{1} in disks because T is ambient isotopic to a torus rel. K which intersects V_{1} in disks. Furthermore we assume
that \#($\left.V_{1} \cap T\right)$ is minimal among all tori which are ambient isotopic to T rel. K and intersect V_{1} in disks, where $\#\left(V_{1} \cap T\right)$ denotes the number of components of $V_{1} \cap T$.

Let N be a small regular neighborhood of K in L such that $N \cap T$ is an annulus in T. Put $\Sigma=\mathrm{Cl}(T-N)$, then, since K does not bound a disk, Σ is an incompressible annulus properly embedded in $\operatorname{Cl}(L-N)$. Put $W_{i}=\mathrm{Cl}\left(V_{i}-N\right)(i=1,2)$, then W_{i} is a genus two handlebody. Put $\Sigma_{i}=W_{i} \cap \Sigma(i=1,2)$. Then $\Sigma_{1}=D_{1} \cup D_{2} \cup$ (essential disks properly embedded in W_{i}), where D_{i} is a disk which meets N as in Figure 4.1 or 4.2 ($i=1,2$).

Figure 4.1

Figure 4.2

Claim 1. Σ_{2} is incompressible in W_{2}.
Suppose that there exists a disk D in W_{2} such that $D \cap \Sigma_{2}=\partial D$ is an essential loop in Σ_{2}. Since Σ is incompressible in $\mathrm{Cl}(L-N), \partial D$ bounds a disk D^{\prime} in Σ. Since D is contained in a solid torus cut off by T in L, $D \cup D^{\prime}$ bounds a 3 -ball. Then we can remove at least one component of Σ_{1}. This is contradictory to the minimality of $\#\left(V_{1} \cap T\right)$. Thus Σ_{2} is incompressible in W_{2}.

Let E_{1} and E_{2} be two disjoint non-parallel meridian disks in W_{2} such that $E_{1} \cap N=\varnothing$ and $E_{2} \cap N$ is a single arc disjoint from Σ_{2} as in Figure 4.3.

Figure 4.3
Put $E=E_{1} \cup E_{2}$. By Claim 1, we may assume that Σ_{2} intersects E in arcs. Note that $E \cap \Sigma_{2} \neq \varnothing$. Put $N \cap \Sigma_{2}=\gamma_{1} \cup \gamma_{2}$. Since $E \cap N$ is a
single arc in ∂E, we can find an outermost arc component a of $E \cap \Sigma_{2}$ in E which cuts off a disk Δ in E with $\Delta \cap \Sigma_{2}=a$ and $\Delta \cap N=\varnothing$.

If a cuts off a disk in Σ_{2} which does not contain γ_{1} or γ_{2}, then by using the disk, we can exchange E for another complete meridian disk system E^{\prime} so that $\#\left(E^{\prime} \cap \Sigma_{2}\right)<\#\left(E \cap \Sigma_{2}\right)$. Thus we may assume that a does not cut off such a disk in Σ_{2}.

We call an inessential arc properly embedded in Σ_{2} which cuts off a disk containing γ_{1} or γ_{2} " s-inessential." See Figure 4.4. Then as in Ch. II of [6], at each stage by exchanging complete meridian disk systems if necessary, we have a sequence of isotopies of type A, rel. N, at arcs $a_{i}(1 \leqq i \leqq n)$ each of which is an essential arc or an s-inessential arc properly embedded in Σ_{2}^{i-1}, where $\Sigma_{2}^{0}=\Sigma_{2}, \Sigma_{2}^{i}=\mathrm{Cl}\left(\Sigma_{2}^{i-1}-N\left(a_{i}\right)\right)$ and Σ_{2}^{n} consists of disks. Furthermore we may assume that each α_{i} is an arc properly embedded in Σ_{2} and that $a_{i} \cap a_{j}=\varnothing(i \neq j)$. Then for an essential arc a_{i}, we have the following four types.

We say that a_{i} is of type 1 if a_{i} connects two distinct components of $\partial \Sigma_{2}$ and at least one of the two components is a component of $\partial\left(\Sigma_{1}-\left(D_{1} \cup D_{2}\right)\right), a_{i}$ is of type 2 if a_{i} meets one component, say c, of $\partial \Sigma_{2}$ and there exists a component e of $c-\alpha_{i}$ such that $e \cup \alpha_{i}$ bounds a disk in Σ, a_{i} is of type 3 if a_{i} meets one component, say c, of $\partial \Sigma_{2}$ and $e \cup a_{i}$ is an essential loop in Σ for each component e of $c-a_{i}, a_{i}$ is of type 4 if a_{i} connects ∂D_{1} and ∂D_{2}. See Figure 4.4.

Figure 4.4
Moreover we say that a_{i} is a d-arc if a_{i} is of type 1 and there exists a component c of $\partial\left(\Sigma_{1}-\left(D_{1} \cup D_{2}\right)\right)$ which meets a_{i} such that c does not meet a_{j} for any $j<i$.

The following two claims are proved similarly to the proof of Claims 2 and 3 of Lemma 1.1.

Claim 2. Each a_{i} is not a d-arc.
Claim 3. Each a_{i} is not of type 2.
By Claim 2 and by noting that if a_{i} is of type 3, then a_{i} is essential in Σ_{2}^{i-1}, we have the following claim.

Claim 4. If two arcs a_{i} and $a_{j}(i \neq j)$ are both of type 3, then a_{i} and a_{j} meet different components of $\partial \Sigma_{2}$.

Put $\Sigma^{(0)}=\Sigma$, and let $\Sigma^{(i)}$ be the image of $\Sigma^{(i-1)}$ after the isotopy of type A at $a_{i}(1 \leqq i \leqq n)$. Then we have $\Sigma_{2}^{i}=\Sigma^{(i)} \cap W_{2}$. Put $\Sigma_{1}^{i}=\Sigma^{(i)} \cap W_{1}$. Note that $\Sigma_{j}^{0}=\Sigma_{j}(j=1,2)$.

Claim 5. $\Sigma_{1}=D_{1} \cup D_{2}$ or some a_{k} is an s-inessential arc.
Suppose that $\Sigma_{1} \neq D_{1} \cup D_{2}$ and that each a_{i} is an essential arc. By Claims 2 and 3, a_{1} is of type 3 or 4. If a_{1} is of type 4, then we can find a d-arc. This is a contradiction.

Suppose a_{1} is of type 3. Since we can not have two arcs of type 3 and 4 simultaneously, each a_{i} is of type 1 or 3 . Suppose that a_{i} ($1 \leqq i \leqq k-1$) is of type 3 and a_{k} is of type 1. Then by Claim 4, we can put $\Sigma_{1}^{k-1}=D_{1} \cup D_{2} \cup A_{1} \cup \cdots \cup A_{k-1} \cup($ disks $)$, where A_{i} is an annulus in W_{1} produced by the isotopy of type A at a_{i}. Since A_{i} is incompressible in W_{1}, the case as in Figure 4.2 does not occur. Let b_{k} be a core of the band in W_{1} produced by the isotopy of type A at a_{k}. Then, since a_{k} is not a d-arc, b_{k} connects two annuli A_{p} and A_{p+1} or one annulus A_{k-1} and the disk D_{1} or D_{2}. If b_{k} connects A_{p} and A_{p+1}, then by noting that A_{p} and A_{p+1} are mutually parallel, we can change the order of a_{k} and a_{i} for any i with $p+1 \leqq i \leqq k-1$ as in the proof of Lemma 1.1 (cf. Figure 1.2). Then we have a d-arc, and a contradiction. If b_{k} connects A_{k-1} and the disk D_{1} or D_{2}, then by the deformation of b_{k} as in Figure 4.5,

Figure 4.5
we can change the order of a_{k-1} and a_{k}. Then we have a d-arc, and a contradiction again. This completes the proof of Claim 5.

Now we show that in both cases of Claim 5 we have required disks Δ_{1} and Δ_{2}.

The case when some a_{k} is an s-inessential arc. Suppose that a_{i} $(1 \leqq i \leqq k-1)$ is an essential arc and a_{k} is an s-inessential arc. If a_{1} is of type 4, then by noting the proof of Claim 5 we have $\Sigma_{1}=D_{1} \cup D_{2}$. Thus, by noting the proof of Claim 5, we may assume that each a_{i} is of type 3 , and we can put $\Sigma_{1}^{k-1}=D_{1} \cup D_{2} \cup A_{1} \cup \cdots \cup A_{k-1} \cup$ (disks).

Let D be a disk in Σ_{2} cut off by a_{k}. We may assume that ∂D contains γ_{1}. Since a_{k} is an outermost arc component of $\Sigma_{2}^{k-1} \cap E$ in E for some complete meridian disk system E, we have a disk Δ in E with $\Delta \cap \sum_{2}^{k-1}=a_{k}$ and $\Delta \cap N=\varnothing$. Put $a^{\prime}=\mathrm{Cl}\left(\partial \Delta-a_{k}\right)$. Then a^{\prime} is an arc in $\mathrm{Cl}\left(\partial W_{1}-N\right)$ with $\partial a^{\prime} \subset \partial D_{1}$. Let \tilde{a} be an arc in ∂D_{1} cut off by a^{\prime} with $\tilde{a} \cap N=\varnothing$. If $a^{\prime} \cup \tilde{a}$ bounds a disk in $\mathrm{Cl}\left(\partial W_{1}-N\right)$, then by noting $\partial \Delta=$ $a_{k} \cup a^{\prime}$, we can see that $a_{k} \cup \tilde{a}$ bounds a disk. This is contradictory to that A is incompressible in $\mathrm{Cl}(L-N)$. Thus $a^{\prime} \cup \tilde{a}$ is an essential loop in $\mathrm{Cl}\left(\partial W_{1}-N\right)$ as in Figure 4.6.

Figure 4.6
Let R_{1} be the component of $\left(\left(V_{1} \cap N \cap T\right)-K\right)$ which intersects D_{2}, and let R_{2} be the component of ($\left.\left(V_{2} \cap N \cap T\right)-K\right)$ which intersects γ_{1}. Put $\Delta_{1}=\mathrm{Cl}\left(R_{1} \cup D_{2}\right)$ and $\Delta_{2}=\mathrm{Cl}\left(R_{2} \cup D \cup \Delta\right)$. Then Δ_{i} is a disk in V_{i} with $\Delta_{i} \cap K=V_{i} \cap K=\alpha_{i}(i=1,2)$. Put $\beta_{i}=\operatorname{Cl}\left(\partial \Delta_{i}-\alpha_{i}\right)(i=1,2)$. Then $\beta_{i} \subset \partial V_{i}$ and $\beta_{1} \cap \beta_{2}=\partial \beta_{1}=\partial \beta_{2}$. This shows that the disks Δ_{1} and Δ_{2} are required disks.

The case when $\Sigma_{1}=D_{1} \cup D_{2}$. In this case a_{1} is an s-inessential arc or is of type 4. If a_{1} is an s-inessential arc, then we have required disks similarly to the above.

Suppose a_{1} is of type 4. Let T_{1} be the image of T after the isotopy of type A at a_{1}, and put $A_{i}=V_{i} \cap T_{1}(i=1,2)$, i.e. $A_{i}=\Sigma_{i}^{1} \cup\left(V_{i} \cap N \cap T\right)$ is an annulus properly embedded in V_{i}. If the case as in Figure 4.2 occurs, then A_{i} is compressible in V_{i} and K is a core. This is a contradiction.

Thus only the case as in Figure 4.1 occurs, and A_{i} is an incompressible annulus properly embedded in $V_{i}(i=1,2)$. Since any incompressible annuli properly embedded in a solid torus are ∂-parallel, A_{i} is isotopic to an annulus in ∂V_{i} rel. $\partial A_{i}(i=1,2)$, say B_{i}. Let U_{i} be a solid torus in V_{i} bounded by $A_{i} \cup B_{i}(i=1,2)$. Put $C_{i}=\operatorname{Cl}\left(\partial V_{i}-B_{i}\right)(i=1,2)$, and let $\psi: \partial V_{2} \rightarrow \partial V_{1}$ be an attaching homeomorphism so that $L=V_{1} \cup_{\psi} V_{2}$. See Figure 4.7.

Since $\psi\left(\partial A_{2}\right)=\partial A_{1}$, we have the following two cases.
The case when $\psi\left(B_{2}\right)=C_{1}$. Let β_{i} be an arc in B_{i} such that $\beta_{i} \cap \alpha_{i}=\partial \beta_{i}=\partial \alpha_{i}$ and $\alpha_{i} \cup \beta_{i}$ bounds a disk Δ_{i} in $U_{i}(i=1,2)$. Then by $\psi\left(\beta_{2}\right) \subset C_{1}, \Delta_{1}$ and Δ_{2} are required disks.

The case when $\psi\left(B_{2}\right)=B_{i}$. Let m_{i} be a meridian loop in ∂V_{i} and a_{i} a component of $\partial A_{i}(i=1,2)$. If both $\left|I\left(m_{1}, a_{1}\right)\right|$ and $\left|I\left(m_{2}, a_{2}\right)\right|$ are greater than 1, then we can see that the torus $T_{1}=A_{1} \cup A_{2}$ bounds a Seifert fibered space over a disk with two exceptional fibers. This is contradictory to that T splits L into two solid tori. Thus we may assume $I\left(m_{1}, a_{1}\right)= \pm 1$. Then there exists a meridian disk D in V_{1} with $D \cap A_{1}=\alpha_{1}$. Put $\beta_{1}=$ $\mathrm{Cl}\left(\partial D-U_{1}\right)$ and $\Delta_{1}=\mathrm{Cl}\left(D-U_{1}\right)$. Let β_{2} be an arc in B_{2} such that $\beta_{2} \cap \alpha_{2}=\partial \beta_{2}=\partial \alpha_{2}$ and $\beta_{2} \cup \alpha_{2}$ bounds a disk Δ_{2} in U_{2}. Then Δ_{1} and Δ_{2} are required disks. This completes the proof of Theorem 3.

Let S be an element of $D(2)$. Let ν_{1} and ν_{2} be mutually disjoint fibers in ∂S, and let μ_{1} and μ_{2} be mutually disjoint parallel simple loops

Figure 4.8
in ∂S each of which intersects ν_{t} in a single point ($i=1,2$). Let B_{1}, B_{2}, C_{1} and C_{2} be the closure of the components of $\partial S-\left(\nu_{1} \cup \nu_{2} \cup \mu_{1} \cup \mu_{2}\right)$ so that those are the four disks as in Figure 4.8. Then $B_{1} \cap C_{2}=B_{2} \cap C_{1}$ consists of four points.

Corollary 4.1. Under the above notations, fix an essential annulus A properly embedded in S which is saturated in the Seifert fibration with $\partial A=\nu_{1} \cup \nu_{2}$.

Let G be a torus with two holes properly embedded in S which is a 1-bridge representing p-torus with $\partial G=\mu_{1} \cup \mu_{2}$. Then G is isotopic to one of $A \cup B_{1} \cup C_{2}$ or $A \cup B_{2} \cup C_{1}$. In addition the isotopy fixes ∂G setwise.

Conversely put $G_{1}^{\prime}=A \cup B_{1} \cup C_{2}$ and $G_{2}^{\prime}=A \cup B_{2} \cup C_{1}$, and let G_{i} be a torus with two holes obtained from G_{i}^{\prime} by pushing $\operatorname{Int}\left(G_{i}^{\prime}\right)$ into $\operatorname{Int}(S)$ ($i=1,2$). Then G_{i} is a 1-bridge representing p-torus in S w.r.t. μ_{1}.

Proof. Let V be a solid torus, m a meridian loop in ∂V and K a core of V. Let $\psi: \partial V \rightarrow \partial S$ be a homeomorphism with $\psi(m)=\mu_{1}$. Since $I\left(\mu_{1}, \nu_{1}\right)= \pm 1, L=S \cup_{\psi} V$ is a lens space, which admits a Seifert fibration containing K as a regular fiber. Then we have a torus in L containing K which is saturated in the Seifert fibration and splits L into two solid tori each of which contains an exceptional fiber. Thus K is a non-trivial torus knot in L and is not a core. Since $\psi^{-1}\left(\mu_{t}\right)$ is a meridian loop in $\partial V(i=1,2), \psi^{-1}\left(\mu_{i}\right)$ bounds a disk D_{i} in V such that $D_{1} \cap D_{2}=\varnothing$ and D_{i} intersects K in a single point. Put $\widetilde{G}=G \cup_{\psi} D_{1} \cup_{\psi} D_{2}$, then \widetilde{G} is a 1-bridge representing torus of K in L. Let V_{1} and V_{2} be the two solid tori in L which are bounded by \widetilde{G}. Then by Theorem 3, there exists a disk $\tilde{\Delta}_{i}$ in $V_{i}(i=1,2)$ such that $\tilde{\Delta}_{i} \cap \widetilde{G}=\partial \widetilde{\Delta}_{i} \cap \widetilde{G}=\widetilde{\beta}_{i}$ is an arc, $\widetilde{\Delta}_{i} \cap K=\partial \widetilde{\Lambda}_{i} \cap K=$ $V_{i} \cap K=\widetilde{\alpha}_{i}$ is an arc, $\partial \widetilde{\Lambda}_{i}=\widetilde{\alpha}_{i} \cup \widetilde{\beta}_{i}$ and $\widetilde{\beta}_{1} \cap \widetilde{\beta}_{2}=\partial \widetilde{\beta}_{1}=\partial \widetilde{\beta}_{2}$.

Put $\Delta_{i}=\mathrm{Cl}\left(\widetilde{\Delta}_{i}-V\right)$ and $\beta_{i}=\widetilde{\beta}_{i} \cap \Delta_{i}(i=1,2)$. Then Δ_{i} is a disk and β_{i} is an arc. See Figure 4.9.

Let P_{i} and Q_{i} be two points in $\mu_{i}(i=1,2)$ such that $\left\{P_{i}, Q_{i}\right\}$ separates

Figure 4.9
two points $\mu_{i} \cap\left(\beta_{1} \cup \beta_{2}\right)$ as in Figure 4.10. Let E_{i} be a regular neighborhood of β_{i} in $G(i=1,2)$ as in Figure 4.10.

Figure 4.10
Put $E_{3}=\mathrm{Cl}\left(G-\left(E_{1} \cup E_{2}\right)\right)$, then E_{8} is an annulus. By using $\Delta_{i}(i=1,2)$, we have an ambient isotopy $h_{t}(0 \leqq t \leqq 1)$ of L such that $h_{0}=\mathrm{id}, h_{t} \mid D_{i}=\mathrm{id}$. $\mid D_{i}$ and $h_{1}(G) \cap V=h_{1}(G) \cap \partial V=h_{1}\left(E_{1} \cup E_{2}\right) \cap \partial V=h_{1}\left(E_{1}\right) \cup h_{1}\left(E_{2}\right)$. Put $h_{1}\left(E_{i}\right)=F_{i}$ ($i=1,2,3$). Then it is easily seen that F_{8} is an essential annulus properly embedded in S.

Since any two essential annuli properly embedded in S are mutually ambient isotopic, we have an ambient isotopy $f_{t}(0 \leqq t \leqq 1)$ of L such that $f_{0}=$ id., $f_{t}(V)=V, f_{t}\left(D_{i}\right)=D_{i}(i=1,2)(0 \leqq t \leqq 1)$ and $f_{1}\left(F_{8}\right)=A$. Then we have $f_{1}\left(F_{1}\right)=B_{1}$ and $f_{1}\left(F_{2}\right)=C_{2}$ or $f_{1}\left(F_{1}\right)=B_{2}$ and $f_{1}\left(F_{2}\right)=C_{1}$. Namely $f_{1}\left(F_{1} \cup F_{2} \cup F_{3}\right)=A \cup B_{1} \cup C_{2}$ or $A \cup B_{2} \cup C_{1}$. Thus by using ambient isotopies h_{t} and f_{t} and by noting $h_{t}\left(D_{i}\right)=D_{i}$ and $f_{t}\left(D_{i}\right)=D_{i}(i=1,2)$, we have a required isotopy of S.

On the other hand, by the above argument, the converse is clear. Thus the proof is completed.

To prove Theorem 4 we prepare the following two lemmas.
LEMMA 4.2. Let V be a standard solid torus in S^{3}, and let K be a non-trivial $(2, n)$-torus knot contained in ∂V such that K intersects a meridian loop in ∂V in two points. Let S be a 2-sphere in S^{s} which gives a 2-bridge representation of K. Then there exists an ambient isotopy $f_{t}(0 \leqq t \leqq 1)$ of S^{s} such that $f_{0}=\mathrm{id}$., $f_{t} \mid K=\mathrm{id}$. on K and $f_{1}(S)$ intersects V in two meridian disks.

Proof. Let B_{1} and B_{2} be the closure of the components of $S^{s}-S$. Then B_{i} is a 3 -ball and $B_{i} \cap K=\alpha_{i} \cup \beta_{i}$ are two trivial arcs in $B_{i}(i=1,2)$. Put $T=\partial V$. Then we may assume that T intersects B_{1} in disks because T is ambient isotopic to a torus rel. K which intersects B_{1} in disks. Furthermore we assume that $\#\left(B_{1} \cap T\right)$ is minimal among all tori which are ambient isotopic to T rel. K and intersect B_{1} in disks, where $\#\left(B_{1} \cap T\right)$ denotes the number of components of $B_{1} \cap T$.

Let N be a small regular neighborhood of K in S^{s} such that $N \cap T$
is an annulus in T. Put $\Sigma=\mathrm{Cl}(T-N)$. Then, since K is a non-trivial knot, Σ is an incompressible annulus properly embedded in $\mathrm{Cl}\left(S^{3}-N\right)$. Put $W_{i}=\mathrm{Cl}\left(B_{i}-N\right)(i=1,2)$, then W_{i} is a genus two handlebody. Put $\Sigma_{i}=W_{i} \cap \Sigma(i=1,2)$. Then $\Sigma_{1}=D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \cup$ (separating disks), where D_{i} is a non-separating disk ($1 \leqq i \leqq 4$) such that both $\left\{D_{1}, D_{3}\right\}$ and $\left\{D_{2}, D_{4}\right\}$ are complete meridian disk systems of W_{1} as in Figure 4.11.

Figure 4.11
Claim 1. $\quad \Sigma_{2}$ is incompressible in W_{2}.
This can be proved by the argument similar to the proof of Claim 1 of Lemma 1.1.

Let N_{1} and N_{2} be two components of $N \cap B_{2}$ and E a disk properly embedded in W_{2} which separates N_{1} from N_{2}.

Claim 2. $\quad \Sigma_{1}=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$.
Since Σ_{2} connects N_{1} and $N_{2}, E \cap \Sigma_{2}$ is not empty. By Claim 1, we may assume that each component of $E \cap \Sigma_{2}$ is an arc. Let a_{1} be an outermost arc component of $E \cap \Sigma_{2}$ in E and b_{1} the band in W_{1} produced by the isotopy of type A at a_{1}. Let Σ^{1} (T^{1} resp.) be the image of Σ (T resp.) after the isotopy, and put $\Sigma_{i}^{1}=\Sigma^{1} \cap W_{i}(i=1,2)$.

Suppose $\Sigma_{1} \neq D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$. If b_{1} meets a single component of Σ_{1}, then by noting Figure 4.12, there exists a component of Σ_{1}^{1} which is a compressible annulus. Then, by the minimality of $\#\left(B_{1} \cap T\right)$ and the incompressibility of Σ, a_{1} cuts off a disk in Σ_{2} which is disjoint from $N_{1} \cup N_{2}$. Then we can exchange the disk E for another disk E^{\prime} with $\#\left(E^{\prime} \cap \Sigma_{2}\right)<\#\left(E \cap \Sigma_{2}\right)$. Thus we may assume that b_{1} connects two distinct components of $\partial \Sigma_{1}$.

If $b_{1} \cap\left(\Sigma_{1}-\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4}\right)\right) \neq \varnothing$, then each component of $B_{1} \cap T^{1}$ is a disk, and we have a contradiction for the minimality of \#($\left.B_{1} \cap T\right)$. If b_{1} connects D_{1} and D_{2} or D_{3} and D_{4}. Then there exists a disk Δ in $\mathrm{Cl}\left(\partial W_{1}-N\right)$ such that $\partial \Delta$ consists of an are in ∂N and an are in $\partial \Sigma_{1}^{1}$ as
in Figure 4.12.

Figure 4.12
Then by using Δ, we can find a disk D in S^{3} with $D \cap T=\partial D$ and $I(\partial D, K)= \pm 1$. This is contradictory to that K is not a trivial knot. After all we have $\Sigma_{1}=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$.

Now, by the argument similar to the proof of Claim 2, we may assume that b_{1} connects D_{1} and D_{3}, and Σ_{1}^{1} consists of three disks as in Figure 4.13.

Figure 4.13
Since Σ_{2}^{1} is a single disk connecting N_{1} and $N_{2}, E \cap \Sigma_{2}^{1}$ is not empty and we have an outermost arc component a_{2} of $E \cap \Sigma_{2}^{1}$ in E.

Let Σ^{2} (T^{2} resp.) be the image of Σ^{1} (T^{1} resp.) after the isotopy of type A at a_{2}. Let b_{2} be the band in W_{1} produced by the isotopy. Then, by the argument similar to the proof of Claim 2, we may assume that b_{2} connects D_{2} and D_{4}. Hence $W_{i} \cap \Sigma^{2}$ consists of two disks ($i=1,2$). Then, for $i=1,2, T^{2} \cap B_{i}$ is an annulus and each component of $\partial\left(T^{2} \cap B_{i}\right)$ bounds a disk in ∂B_{i} which is a meridian disk of a solid torus bounded by T^{2}. Then by tracing back the above ambient isotopies, we have a required ambient isotopy and complete the proof of Lemma 4.2.

Lemma 4.3. Let A be a Möbius band, let α and β be non-separating arcs properly embedded in A with $\partial \alpha=\partial \beta$. Then α and β are mutually ambient isotopic by an ambient isotopy fixing ∂A pointwise.

Proof. This can be easily proved.
Proof of Theorem 4. Let V be a standard solid torus in S^{3} with
$K \subset \partial V$ such that K intersects a meridian loop in ∂V in two points. Then by Lemma 4.2 , we may assume that $S_{i} \cap V=D_{i} \cup E_{i}$ are two meridian disks of $V(i=1,2)$. Moreover we may assume that $D_{1} \cap K=D_{2} \cap K$ and $E_{1} \cap K=E_{2} \cap K$. Let A be a Möbius band properly embedded in V with $\partial A=K$. Then by using Lemma 4.3 and noting the incompressibility of A and the irreducibility of V, we can see that D_{i} and E_{i} are ambient isotopic rel. K to two meridian disks D and $E(i=1,2)$. Let \widetilde{S}_{i} be the image of S_{i} after the ambient isotopy ($i=1,2$), and put $W=\mathrm{Cl}\left(S^{s}-V\right)$. Then W is a solid torus and $\widetilde{S}_{i} \cap W(i=1,2)$ is an incompressible annulus in W. Hence by noting that $\partial\left(\widetilde{S}_{1} \cap W\right)=\partial\left(\widetilde{S}_{2} \cap W\right)$, we have a required ambient isotopy and complete the proof.

By Theorem 4, we have the following corollary.
Corollary 4.4. Let E be a non-trivial ($2, n$)-torus knot exterior in S^{3}, and let G_{1} and G_{2} be 2-bridge representing p-spheres properly embedded in E with $\partial G_{1}=\partial G_{2}$. Then G_{1} and G_{2} are mutually ambient isotopic in E by an ambient isotopy fixing ∂E pointwise.

§5. Proof of Theorem 2 and Corollaries 1, 2.

Recall the definitions of the families of Heegaard surfaces defined in $\S 3$.

LEMMA 5.1. If $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$, then any genus two Heegaard surface belonging to $F(1-2)$ is ambient isotopic to a Heegaard surface belonging to $F(1-1)$.

Proof. Let F be a genus two Heegaard surface belonging to $F(1-2)$. Then $F \cap S_{1}$ is an essential annulus properly embedded in S_{1} and $F \cap S_{2}$ is a 1 -bridge representing p-torus w. r.t. $f^{-1}\left(h_{1}\right)$. Then by using the isotopy of Corollary 4.1, we can see that F is ambient isotopic to a surface F^{\prime} such that $F^{\prime} \cap \partial S_{2}=F^{\prime} \cap \partial S_{1}$ is two disks and $\mathrm{Cl}\left(F^{\prime} \cap \operatorname{Int}\left(S_{i}\right)\right)$ is an essential annulus properly embedded in $S_{i}(i=1,2)$. Let \widetilde{F} be a surface obtained from F^{\prime} by pushing the two disks $F^{\prime} \cap \partial S_{1}$ into $\operatorname{Int}\left(S_{1}\right)$. Then by the latter half of Corollary 4.1, $\widetilde{F} \cap S_{1}$ is a 1-bridge representing p-torus w. r.t. $f\left(h_{2}\right)$. This shows that \widetilde{F} is a Heegaard surface belonging to $F(1-1)$.

Let A_{1} be an essential annulus properly embedded in S_{1} such that $\partial A_{1}=\nu_{1} \cap \nu_{2}$ are two disjoint fibers in ∂S_{1} and A_{2} be an essential annulus properly embedded in S_{2} such that $\partial A_{2}=\mu_{1} \cup \mu_{2}$ are two disjoint fibers in ∂S_{2}. Suppose $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$. Then we may assume that $f\left(\mu_{i}\right)$ intersects
ν_{j} in a single point $(i=1,2)(j=1,2)$. Let B_{1}, B_{2}, C_{1} and C_{2} be four disks as in Corollary 4.1, see Figure 4.8. Put $F_{1}=A_{1} \cup B_{1} \cup C_{2} \cup A_{2}$ and $F_{2}=A_{1} \cup B_{2} \cup C_{1} \cup A_{2}$.

Proposition 5.2. Under the above notations, any genus two Heegaard surface F belonging to $F(1)$ is ambient isotopic to F_{1} or F_{2} in M. Thus $F(1)$ contains at most two non-isotopic Heegaard surfaces of genus two if $I\left(h_{1}, f\left(h_{2}\right)\right)= \pm 1$.

Proof. By Lemma 5.1, we may assume that F belongs to $F(1-1)$. Then we may assume that $F \cap S_{2}=A_{2}$ and $F \cap S_{1}$ is a 1-bridge representing p-torus w.r.t. $f\left(h_{2}\right)$. Then by Corollary 4.1, $F \cap S_{1}$ is isotopic to $A_{1} \cup B_{1} \cup C_{2}$ or $A_{1} \cup B_{2} \cup C_{1}$ in S_{1}. By using this isotopy, we can see that F is ambient isotopic to a surface \widetilde{F} in M such that $\widetilde{F} \cap S_{1}=A_{1} \cup B_{1} \cup C_{2}$ or $A_{1} \cup B_{2} \cup C_{1}$. Since the isotopy of Corollary 4.1 fixes $\partial\left(F \cap S_{1}\right)$ setwise, we may assume that the above ambient isotopy fixes A_{2} setwise. Hence F is ambient isotopic to $A_{1} \cup B_{1} \cup C_{2} \cup A_{2}$ or $A_{1} \cup B_{2} \cup C_{1} \cup A_{2}$.

Let S be an element of $D(2)$. For a fiber h in ∂S and the boundary loop c of a cross section of S, let α / p and β / q be the Seifert invariants of two exceptional fibers. Then we denote this state by $S=D(\alpha / p, \beta / q)$ w.r.t. h and c. The following proposition was proved by M. Sakuma.

Proposition 5.3. Suppose that one of S_{1} or S_{2}, say S_{1}, is $D(\pm 1 / p$, $\pm 1 / q)$ w.r.t. h_{1} and c_{1}. If $I\left(c_{1}, f\left(h_{2}\right)\right)=0$, then $F(1)$ contains exactly one Heegaard surface of genus two up to isotopy.

Proof. Let x_{1} and x_{2} be two exceptional fibers of S_{1}, and let y be one of two exceptional fibers of S_{2}. Let N_{i} be a regular neighborhood of x_{i} in $S_{1}(i=1,2)$ with $N_{1} \cap N_{2}=\varnothing$, and let N be a regular neighborhood of y in S_{2}. Let E_{1} be the cross section of S_{1}, i.e. E_{1} is a disk with two holes properly embedded in $\operatorname{Cl}\left(S_{1}-\left(N_{1} \cup N_{2}\right)\right)$ with $E_{1} \cap \partial S_{1}=c_{1}$, and let E_{2} be a cross section of S_{2}. Then we may assume that E_{1} and E_{2} intersects in a single point, say P. Let a_{i} be an arc in E_{1} connecting P and N_{i} ($i=1,2$), and let b be an arc in E_{2} connecting P and N. See Figure 5.1.

Put $V_{i}=N_{i} \cup N\left(a_{i} \cup b\right) \cup N(i=1,2)$, where $N\left(a_{i} \cup b\right)$ is a regular neighborhood of $a_{i} \cup b$ in M. Then V_{i} is a genus two handlebody. Let F_{1} and F_{2} be two Heegaard surfaces of genus two defined in Proposition 5.2, then by changing the letters if necessary, we can see that F_{i} is ambient isotopic to $\partial V_{i}(i=1,2)$ in M.

Now, let d_{i} be the component of $\partial E_{1}-c_{1}$ which intersects $a_{i}(i=1,2)$, and put $W_{i}=N\left(d_{i} \cup a_{i} \cup b\right) \cup N$. Since the Seifert invariants of x_{1} and x_{2}

I

Figure 5.1
are $\pm 1 / p$ and $\pm 1 / q, x_{i}$ is ambient isotopic to $d_{i}(i=1,2)$ in S_{1}, and hence V_{i} is ambient isotopic to $W_{i}(i=1,2)$. By the way, since c_{1} is identified with h_{2}, we can do the deformation of W_{2} illustrated in Figure 5.1. This shows that F_{1} and F_{2} are mutually ambient isotopic. Thus, together with Proposition 5.2, we complete the proof of Proposition 5.3.

Proposition 5.4. (1) $F(2-1)$ contains exactly one Heegaard surface of genus two up to isotopy if $S_{1}=E_{2, \alpha}$ and $I\left(m, f\left(h_{2}\right)\right)=0$.
(2) $F(2-2)$ contains exactly one Heegaard surface of genus two up to isotopy if $S_{2}=E_{2, \beta}$ and $I\left(h_{1}, f\left(m_{2}\right)\right)=0$.

Proof. Suppose $S_{1}=E_{2, \alpha}$ and $I\left(m_{1}, f\left(h_{2}\right)\right)=0$. Let F_{1} and F_{2} be two Heegaard surfaces belonging to $F(2-1)$. Since $F_{i} \cap S_{2}$ are two essential annuli properly embedded in S_{2} saturated in the Seifert fibration ($i=1,2$), F_{2} is ambient isotopic to a surface $F_{2}^{\prime \prime}$ with $F_{2}^{\prime} \cap S_{2}=F_{1} \cap S_{2}$. Put $G_{1}=F_{1} \cap S_{1}$
and $G_{2}^{\prime}=F_{2}^{\prime} \cap S_{1}$. Then G_{1} and G_{2}^{\prime} are 2 -bridge representing p-sphere in $S_{1}=E_{2, \alpha}$ with $\partial G_{1}=\partial G_{2}^{\prime}$. Then by Corollary 4.4, G_{2}^{\prime} is ambient isotopic to G_{1} in S_{1} rel. ∂S_{1}. Hence F_{2} is ambient isotopic to F_{1} in M.

If $S_{2}=E_{2, \beta}$ and $I\left(h_{1}, f\left(m_{2}\right)\right)=0$, then we can prove (2) similarly.
The next proposition is proved similarly to Proposition 5.4.
Proposition 5.5. (1) $F(3-1)$ contains exactly one Heegaard surface of genus two up to isotopy if $S_{1}=E_{2, \alpha}, S_{2}=K I$ and $I\left(m_{1}, f\left(u_{2}\right)\right)=0$.
(2) $F(3-2)$ contains exactly one Heegaard surface of genus two up to isotopy if $S_{1}=K I, S_{2}=E_{2, \beta}$ and $I\left(u_{1}, f\left(m_{2}\right)\right)=0$.

Proof of Theorem 2. We divide the proof into several cases. Let μ be the number of Heegaard splittings of genus two of $M=S_{1} \cup_{f} S_{2}$ up to isotopy. In the following proof, note that $E_{2, n}=D(1 / 2,-k /(2 k+1))$ w.r.t. h and m, where $n=2 k+1(k>0)$, and $K I=D(-1 / 2,1 / 2)$ w.r.t. h and u.

Case (1): $\quad S_{1} \neq E_{2, \alpha}$ and $S_{2} \neq E_{2, \beta \cdot}$
Case (1-a): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(c_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1},{ }_{1} \\ c_{1}\end{array}\right]$ with $a d-\varepsilon c= \pm 1$ and $\varepsilon= \pm 1$. In this case, by Proposition 3.1 and the definitions of $F(1), F(2)$ and $F(3)$, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1)$.

Case (1-a-1): $\quad S_{1}=D(\pm 1 / p, \pm 1 / q)$ w.r.t. h_{1} and c_{1} and $a=0$ or $S_{2}=$ $D(\pm 1 / p, \pm 1 / q)$ w.r.t. h_{2} and c_{2} and $d=0$. In this case by Proposition 5.3, μ is 1 .

Case (1-a-2): $\quad M$ does not belong to Case (1-a-1). In this case, μ is at most 2.

In other cases, by Theorem 1, μ is 0 .
Case (2): $S_{1}=E_{2, \alpha}$ and $S_{2} \neq K I$ nor $E_{2, \beta \cdot}$
Case (2-a): $\left[\begin{array}{c}f\left(h_{2}\right) \\ f\left(c_{2}\right)\end{array}\right]=\left[\begin{array}{cc}0 & \varepsilon \\ \delta & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1) \cup F(2-1)$.

Case (2-a-1): $\alpha=3$ or $S_{2}=D(\pm 1 / p, \pm 1 / q)$ w.r.t. h_{2} and c_{2} and $d=0$. In this case, by Propositions 5.4 and $5.3, \mu$ is at most two.

Case (2-a-2): M does not belong to Case (2-a-1). In this case, by Propositions 5.2 and 5.4, μ is at most 3.

Case (2-b): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(c_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $a d-\varepsilon c= \pm 1, \varepsilon= \pm 1$ and $a \neq 0$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1)$.

Case (2-b-1): $\alpha=3$ and $\varepsilon a=-1$ or $S_{2}=D(\pm 1 / p, \pm 1 / q)$ w. r.t. h_{2} and
c_{2} and $d=0$. By noting that $D(1 / 2,-a /(2 a+1))$ w.r.t. h_{1} and $m_{1}=$ $D(-1 / 2,-a /(2 a+1))$ w.r.t. h_{1} and $h_{1}^{-1} m_{1}$, we can see that μ is 1 similarly to Case (1-a-1).

Case (2-b-2): $\quad M$ does not belong to Case (2-b-1). In this case, μ is at most 2 similarly to Case (1-a-2).

In other cases, by Theorem $1, \mu$ is 0 .
Case (2^{\prime}): $\quad S_{1} \neq K I$ nor $E_{2, \alpha}$ and $S_{2}=E_{2, \beta}$. This case can be substituted for Case (2).

Case (3): $S_{1}=E_{2, \alpha}$ and $S_{2}=K I$.
Case (3-a): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=\left[\begin{array}{ll}0 & \varepsilon \\ \delta & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$.
Case (3-a-1): $\alpha=3$ or $d= \pm 1$ or 0 . By noting that $D(-1 / 2,1 / 2)$ w.r.t. h and $u=D(-1 / 2,-1 / 2)$ w.r.t. h and $h^{-1} u=D(1 / 2,1 / 2)$ w.r.t. h and $h u$, we can see that μ is at most 2 similarly to Case (2-a-1).

Case (3-a-2): $\alpha>3$ and $|d|>1$. In this case, we can see that μ is at most 3 similarly to Case (2-a-2).

Case (3-b): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=\left[\begin{array}{ll}\varepsilon & b \\ 0 & \delta\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$.
Case (3-b-1): $b= \pm 1$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1) \cup F(3-1)$. Furthermore we can see that $F(1)$ contains exactly one genus two Heegaard surface up to isotopy similarly to Case (3-a-1). Hence by Proposition 5.5, μ is at most 2.

Case (3-b-2): $b \neq \pm 1$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(3-1)$. Thus μ is 1 .

Case (3-c): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $a d-\varepsilon c= \pm 1, \varepsilon= \pm 1$ and $a c \neq 0$.
Case (3-c-1): $\alpha=3$ and $\varepsilon a=-1$ or $d= \pm 1$ or 0 . In this case, by Proposition 5.3, μ is 1.

Case (3-c-2): M does not belong to Case (3-c-1). By Proposition 5.2, μ is at most 2.

In other cases, by Theorem 1, μ is 0 .
Case (3^{\prime}): $S_{1}=K I$ and $S_{2}=E_{2, \beta}$.
This case can be substituted for Case (3).
Case (4): $\quad S_{1}=E_{2, \alpha}$ and $S_{2}=E_{2, \beta \cdot}$
Case (4-a): $\left[\begin{array}{c}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}0 & \varepsilon \\ \delta & 0\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1) \cup F(2)$.

Case (4-a-1): $\alpha=3$ or $\beta=3$. By Propositions 5.3 and 5.4, μ is at most 3.

Case (4-a-2): $\alpha>3$ and $\beta>3$. By Propositions 5.2 and 5.4, μ is at most 4.

Case (4-b): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ \delta & 0\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$ and $a \neq 0$. In this case, any genus two Heegaard surface of M is ambient isotopic to a Heegaard surface belonging to $F(1) \cup F(2-2)$.

Case (4-b-1): $\alpha=3$ and $\varepsilon a=-1$. In this case, μ is at most 2.
Case (4-b-2): $\alpha>3$ or $\varepsilon a \neq-1$. In this case, μ is at most 3.
Case (4-c): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}0 & \varepsilon \\ \delta & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$ and $d \neq 0$.
Case (4-c-1): $\beta=3$ and $\varepsilon d=-1$. In this case, μ is at most 2.
Case (4-c-2): $\beta>3$ or $\varepsilon d \neq-1$. In this case, μ is at most 3.
Case (4-d): $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $a d-\varepsilon c= \pm 1, \varepsilon= \pm 1$ and $a d \neq 0$.
Case (4-d-1): $\alpha=3$ and $\varepsilon \alpha=-1$ or $\beta=3$ and $\varepsilon d=-1$. In this case, μ is 1 similarly to Case (1-a-1).

Case (4-d-2): $\quad M$ does not belong to Case (4-d-1). In this case, μ is at most 2 similarly to Case (1-a-2).

In other cases, by Theorem $1, \mu$ is 0 .
This completes the proof of Theorem 2.

Cases	n	$F(1)$	$F(2-1)$	$F(2-2)$	$F(3-1)$	$F(3-2)$
Case(1-a-1)	1	1	-	-	-	-
Case(1-a-2)	2	2	-	-	-	-
Case(2-a-1)	2	1	1	-	-	-
Case(2-a-2)	3	2	1	-	-	-
Case(2-b-1)	1	1	-	-	-	-
Case(2-b-2)	2	2	-	-	-	-
Case(3-a-1)	2	1	1	-	-	-
Case(3-a-2)	3	2	1	-	-	-
Case(3-b-1)	2	1	-	-	1	-
Case(3-b-2)	1	-	-	-	1	-
Case(3-c-1)	1	1	-	-	-	-
Case(3-c-2)	2	2	-	-	-	-
Case(4-a-1)	3	1	1	1	-	-
Case(4-a-2)	4	2	1	1	-	-
Case(4-b-1)	2	1	-	1	-	-
Case(4-b-2)	3	2	-	1	-	-
Case(4-c-1)	2	1	1	-	-	-
Case(4-c-2)	3	2	1	-	-	-
Case(4-d-1)	1	1	-	-	-	-
Case(4-d-2)	2	2	-	-	-	-

Table 5.2

In Table 5.2, we summarize the evaluation of the numbers of Heegaard splittings of genus two of M up to isotopy. In Table 5.2, n denotes the upper bound of μ, namely $1 \leqq \mu \leqq n$, and "-"" means that M does not contain a Heegaard surface belonging to the family $F(1)$, $F(2-1)$, etc.

Remark 7. By Table 5.2, it seems that M does not contain a Heegaard surface belonging to $F(3-2)$. But this occurs by the reason why the Case (3^{\prime}) is substituted for the Case (3). In fact, in Case ($\left.3^{\prime}-\mathrm{b}\right), M$ contains a Heegaard surface belonging to $F(3-2)$.

Proof of Corollary 1. Let T be an incompressible torus in M saturated in the Seifert fibration. Then T splits M into two Seifert fibered spaces S_{1} and S_{2} belonging to $D(2)$. Let h_{i} be a fiber in ∂S_{i} ($i=1,2$) and $f: \partial S_{2} \rightarrow \partial S_{1}$ the attaching homeomorphism. Since the fibration of ∂S_{2} extends to the fibration of S_{2}, we have $I\left(h_{1}, f\left(h_{2}\right)\right)=0$.

Suppose that M admits a Heegaard splitting of genus two. Then, by Theorem 1 and $I\left(h_{1}, f\left(h_{2}\right)\right)=0$, we may assume that $S_{1}=E_{2, \alpha}, S_{2}=K I$ and $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=\left[\begin{array}{ll}\varepsilon & 0 \\ 0 & \delta\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$. Furthermore, since $K I$ admits an orientation reversing auto-homeomorphism, we may assume $\varepsilon=1$ and $\delta=-1$.

By taking the meridian loop m_{1} (the fiber u_{2} resp.) for the boundary loop of a cross section of $E_{2, \alpha}$ ($K I$ resp.), we may assume that the Seifert invariants of the exceptional fibers of $E_{2, \alpha}$ are $1 / 2$ and $-a /(2 a+1)$ with $\alpha=2 a+1(a>0)$, and that the Seifert invariants of the exceptional fibers of $K I$ are $1 / 2$ and $-1 / 2$. Then M is homeomorphic to $S(0 ; 1 / 2,1 / 2,-1 / 2,-a /(2 a+1))$. This completes the proof of the first half.

Since M belongs to the Case (3-b-2), by Table 5.2 we can see that M admits exactly one Heegaard splitting of genus two up to isotopy. This completes the proof of Corollary 1.

Proof of Corollary 2. We may assume that $M=S_{1} \cup_{f} K I$ and $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=\left[\begin{array}{ll}a & \varepsilon \\ \delta & 0\end{array}\right]\left[\begin{array}{l}h_{1} \\ c_{1}\end{array}\right]$ with $\varepsilon \delta= \pm 1$. Then M belongs to one of the cases (1-a-1), (3-a-1) or (3-c-1). Then by Table 5.2, we can see that M admits at most two non-isotopic Heegaard splittings of genus two.

Examples. (I) Let α and β be odd integers larger than 1, and put $\varepsilon \delta= \pm 1$. Put $M_{\alpha, \beta, \varepsilon \delta}=E_{2, \alpha} \cup_{f} E_{2, \beta}$ with $\left[\begin{array}{c}f\left(h_{2}\right) \\ f\left(m_{2}\right)\end{array}\right]=\left[\begin{array}{ll}0 & \varepsilon \\ \delta & 0\end{array}\right]\left[\begin{array}{l}h_{1} \\ m_{1}\end{array}\right]$. Then by the proof of Case (4) of Theorem 2, $M_{\alpha, \beta, \varepsilon \delta}$ may admit four non-isotopic

Heegaard splittings of genus two if $\alpha>3$ and $\beta>3$. Then the 6-plat representations of the 3 -bridge knots in S^{3} corresponding to the four Heegaard splittings of genus two of $M_{\alpha, \beta, \varepsilon \delta}$ are those representations illustrated in Figure 0.1.
(II) For a matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c= \pm 1$, let $K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a sapphire space of type $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ defined in [9], i.e. $K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=K I \cup_{f} K I$ with $\left[\begin{array}{l}f\left(h_{2}\right) \\ f\left(u_{2}\right)\end{array}\right]=$ $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}h_{1} \\ u_{1}\end{array}\right]$. Then by Theorem 1, $K\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ admits a Heegaard splitting of genus two if and only if $b= \pm 1$ (Theorem 3 of [9]), and, by the proof of Case (1) of Theorem 2, $K\left[\begin{array}{ll}a & \pm 1 \\ c & d\end{array}\right]$ admits at most two non-isotopic Heegaard splittings of genus two. Moreover, by the proof of Case (1-a-1) and the note of Case (3-a-1) of Theorem 2, if acd=0 then $K\left[\begin{array}{lr}a & \pm 1 \\ c & d\end{array}\right]$ admits exactly one Heegaard splitting of genus two up to isotopy.

Hence, as a special case, $K\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ admits exactly one Heegaard splitting of genus two up to isotopy. Note that $K\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ is a 2-fold branched covering space of S^{3} branched along a Borromean rings, and is also a 3 -fold cyclic branched covering space of S^{3} branched along a figure eight knot.

References

[1] J.S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of $S^{\mathbf{3}}$, Trans. Amer. Math. Soc., 213 (1975), 315-352.
[2] M. Boileau et J. P. Otal, Groupe des difféotopies de certains variétés de Seifert, C.R. Acad. Sci. Paris Ser. I Math., 303 (1986), 19-22.
[3] M. Boileau and H. Zieschang, Heegaard genus of closed orientable Seifert 3-manifolds, Invent. Math., 76 (1984), 455-468.
[4] J. Hass, Finiteness of Heegaard splittings of certain manifolds, Abstracts Amer. Math. Soc., 846-57-43.
[5] J. Hempel, 3-Manifolds, Ann. Math. Studies, 86, Princeton Univ. Press, 1976.
[6] W. Jaco, Lectures on Three Manifold Topology, CBMS Regional Conf. Ser. in Math., 43.
[7] T. Kobayashi, Structures of the Haken manifolds with Heegaard splittings of genus two, Osaka J. Math., 21 (1984), 437-455.
[8] Casson-Gordon's rectangle condition of Heegaard diagrams and incompressible tori in 3-manifolds, Osaka J. Math., 25 (1988), 553-573.
[9] K. Morimoto, Some orientable 3-manifolds containing Klein bottles, Kobe J. Math., 2 (1985), 37-44.
[10] —_ Structures of non-orientable closed 3-manifolds of genus two, Kobe J. Math., 4 (1987), 51-72.
[11] L. Moser, Elementary surgery along a torus knot, Pacific J. Math., 38 (1971), 737-745.
[12] M. Ochial, On Haken's theorem and its extension, Osaka J. Math., 20 (1983), 461-468.
[13] P. Orlik, Seifert Manifolds, Lecture Notes in Math., 291, Springer-Verlag, 1972.
[14] D. Rolfsen, Knots and Links, Math. Lecture Series, 7, Publish or Perish Inc., 1976.
[15] M. Sakuma, Manifolds with infinitely many non-isotopic Heegaard splittings of minimal genus, in preparation.
[16] H. Schubert, Knoten mit zwei Brücken, Math. Z., 65 (1956), 133-170.
[17] H. Seifert, Topology dreidimensionaler gefaserter Räume, Acta Math., 60 (1933), 147-238.
[18] M. Takahashi, Two bridge knots have property P, Memoirs Amer. Math. Soc., 239 (1981).

Present Address:
Department of Mathematics, Takushoku University
Tatemachi, Hachioji, Tokyo 193, Japan

[^0]: Received July 7, 1988
 Revised January 12, 1989

