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\S 1. Introduction.

Every real flow without fixed points on a compact metric space
induces a first return map on the union of sets in a certain family of
local cross-sections, which was first introduced by H. Whitney [9] and
after that improved by R. Bowen and P. Walters [2]. Our purpose is
to investigate relationships between a real flow and its first return map
with respect to the pseudo orbit tracing property.

H. B. Keynes and M. Sears [6] characterized already expansivity of
a real flow by making use of a family of local cross-sections and a
bijective first return map.

We denote by (X, $R$ ) a real flow (abbrev. flow) without fixed points
on a compact metric space $X$. Let $d$ denote a metric for $X$ and the
action of $t\in R$ on $x\in X$ is written $xt$ . We write

$SI=$ {$xt;t\in I$ and $x\in S$}

for an intelval $I$ and $S\subset X$, and

$\epsilon_{0}=\inf$ {$t>0;xt=x$ for some $x\in X$}.

Then $\epsilon_{0}$ is a positive number since the flow (X, $R$) has no fixed points
and $X$ is compact.

For positive numbers $\delta$ and $a$ , a pair of doubly infinite sequences
$(\{x_{i}\}_{l=-\infty}^{\infty}, \{t_{i}\}_{i=-\infty}^{\infty})$ is a $(\delta, a)$-chain for (X, $R$) if $t_{i}\geqq a$ and $ d(x_{i}t_{i}, x_{i+1})<\delta$

for all $i\in Z$, and a pair of infinite sequences $(\{x_{i}\}_{i=0}^{\infty}, \{t_{i}\}_{i- 0}^{\infty}-)$ is a half
$(\delta, a)$-chain for (X, $R$ ) if $t_{i}\geqq a$ and $ d(x_{i}t_{i}, x_{i+1})<\delta$ for $i\geqq 0$ . A $(\delta, a)-$
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chain for (X, $R$) is called the $(\delta, a)$-pseudo orbit. $\tau_{n}$ denotes a partial
sum of an infinite sequence $\{t\}$ , i.e.

$\tau_{n}=\left\{\begin{array}{ll}\sum_{0}^{n-1}t_{i} & if n\geqq 0\\-\sum_{n}^{-1}t_{t} & if n<0,\end{array}\right.$

where $\tau_{0}=\sum_{0}^{-1}t_{i}=0$ . For a $(\delta, a)$-chain $(\{x_{i}\}, \{t_{i}\})$ we write

$x_{0}*t=x_{n}(t-\tau_{n})$ if $\tau_{n}\leqq t<\tau_{n+1}$ .
A $(\delta, a)$-chain $(\{x_{t}\}_{i=-\infty}^{\infty}, \{t_{i}\}_{i=-\infty}^{\infty})$ is said to be $\epsilon$-traced $(\epsilon>0)$ by a point
$x\in X$ if there is a strictly increasing homeomorphism $h:R\rightarrow R$ such that
$h(O)=0,$ $h(R)=R$ and $ d(xh(t), x_{0}*t)<\epsilon$ for all $t\in R$ . That a half $(\delta, a)-$

chain $(\{x_{i}\}_{i=0}^{\infty}, \{t_{i}\}_{i=0}^{\infty})$ is e-traced by a point $x\in X$ is defined similarly by
restricting the time $t$ to $t\geqq 0$ .

(X, $R$) has POTP with respect to time $a$ if fol any $\epsilon>0$ there is
$\delta>0$ such that every infinite $(\delta, a)$-chain for (X, $R$) is $\epsilon$-traced by some
point of X. (X, $R$) is said to have POTP if (X, $R$) has POTP with
respect to time 1.

A subset $S\subset X$ is called a local cross-section of time $\zeta>0$ for a flow
(X, $R$) if $S$ is closed and $S\cap x[-\zeta, \zeta]=\{x\}$ fol all $xeS$, where $\zeta<\epsilon_{0}$.

If $S$ is a local cross-section of time $\zeta$ , the action maps $S\times[-\zeta, \zeta]$

homeomorphically onto $S[-\zeta, \zeta]$ . By the interior $S^{*}$ of $S$ we mean the
set $S\cap int(S[-\zeta, \zeta])$ . Note that $S^{*}(-\epsilon, \epsilon)$ is open in $X$ for any $\epsilon>0$ .

Throughout this paper our arguments are based on the following
proposition.

PROPOSITION 1 ([6], Lemma 2.4). There is $0<\zeta<\epsilon_{0}$ satisfying that
for each $\alpha>0$ we can find a finite family $\mathscr{G}=\{S_{1}, S_{2}, \cdots, S_{k}\}$ of pairwise
disjoint local cross-sections of time $\zeta$ and diameter at most $\alpha$ and a
family of local cross-sections $\ovalbox{\tt\small REJECT}^{-}=\{T_{1}, T_{2}, \cdots, T_{k}\}$ with $T_{i}\subset S_{i}^{*}(i=1,2, \cdots, k)$

such that

$X=T^{+}[0, \alpha]=T^{+}[-\alpha, 0]=S^{+}[0, \alpha]=S^{+}[-\alpha, 0]$

where $T^{+}=\bigcup_{i=1}^{k}T_{i}$ and $S^{+}=\bigcup_{i=1}^{k}S_{i}$ .
Hereafter let $\zeta$ and $0<\alpha<\zeta/3$ be as in the Proposition 1 and put

$\beta=\sup$ {$\delta>0$ ; $x(O,$ $\delta)\cap S^{+}=\emptyset$ for $x\in S^{+}$}.

Obviously $ 0<\beta\leqq\alpha$ . Let $\rho>0$ be a number such that $ 5\rho<\zeta$ and $ 2\rho<\beta$
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For $x\in T^{+}(x\in S^{+})$ let $t\in R$ be the smallest positive time such that
$xt\in T^{+}$ . Obviously $\beta\leqq t\leqq\alpha$ and a map $\varphi(x)=xt(\tilde{\varphi}(x)=xt)$ is well defined.
It is easily checked that $\varphi:T^{+}\rightarrow T^{+}$ is bijective and $\tilde{\varphi}:S^{+}\rightarrow T^{+}$ is sur-
jective.

Fol $S_{i}\in \mathscr{L}$ set $D_{\rho}^{i}=S_{i}[-\rho, \rho]$ and define a projective map $P_{\mu}^{i}:D_{\rho}^{i}\rightarrow S_{i}$

by $P_{\rho}^{i}(x)=xt$ , where $|t|\leqq\rho$ . Then $Pt$ is continuous and suljective. We
write

$Dt=D_{\rho}$ and $P_{\rho}^{i}=P_{\rho}$

if there is no confusion.
The following remalk is easily checked.

REMARK 2. There is an $0<a<\beta/2$ such that for $x,$ $y\in S_{i}$ if $d(x, y)\leqq a$

and $xt\in T_{j}(|t|\leqq 3\alpha)$ for some $T_{j}$ , then $yt\in D_{f^{\prime}}^{j}$ .
Using this fact, we can set up a shadowing orbit of $y$ relative to a

$\varphi$
$(\tilde{\varphi})$-orbit of $x\in T^{+}$ as follows. If $y$ is sufficiently close to $x$ , the orbit

of $y$ will closs $S_{j}$ at a time near the time when the orbit of $x$ crosses
$T_{j}$ . For $x\in T_{i}$ and $y\in S_{i}$ with $d(x, y)\leqq a$ , we can define a point $y_{1}$ so
that $y_{1}=P_{\rho}(yt)$ , where $t$ is the smallest positive time such that $\varphi(x)=xt$

$(\tilde{\varphi}(x)=xt)$ . Inductively if $d(\varphi^{i}(x), y_{i})\leqq a(d(\tilde{\varphi}^{i}(x), y_{i})\leqq a)$ , then we can de-
fine a point $y_{i+1}$ so that $y_{i+1}=P_{\rho}(y_{i}t)$ , where $t$ is the smallest positive

time such that $\varphi^{i+1}(x)=\varphi^{i}(x)t(\tilde{\varphi}^{i+1}(x)=\tilde{\varphi}^{i}(x)t)$ . Thus we obtain a time
delayed orbit of $y$ along a piece of the olbit of $x$ . We can also construct
the shadowing orbit of $y$ as above for the orbit of $x$ of negative powers

of $\varphi$ .
For simplicity we wlite $T,$ $S$ instead of $T_{i},$ $S_{i}$ respectively. For

$x\in T$ and $\eta>0$ the $\eta$-stable set of $x$ is defined by

$W_{\eta}^{l}(x)=$ {$y\in S$ ; $d(\varphi^{i}(x),$ $ y_{i})<\eta$ for all $i\geqq 0$ }

and the $\eta$-unstable set of $x$. is defined by

$W_{\eta}^{u}(x)=$ {$yeS$ ; $d(\varphi^{i}(x),$ $ y_{i})<\eta$ for all $i\leqq 0$}.

The first return map $\varphi$ is said to have a canonical coordinate if for
any $\eta>0$ there exists $\delta>0$ such that if $d(x, y)<\delta(x, y\in T^{+})$ , then
$ W^{\iota}(x)\cap W_{\eta}^{u}(y)\neq\emptyset$ . Given $\delta>0$ , a doubly infinite sequence $\{x_{i}\}_{i=-\infty}^{\infty}\subset T^{+}$ is
$ca1led\eta$

$\delta$-pseudo orbit of $\varphi$ if $ d(\varphi(x_{\ell}), x_{i+1})<\delta$ for all $i\in Z$. Similarly an
infinite sequence $\{x_{i}\}_{i=0}^{\infty}\subset S^{+}$ is called $\delta$-pseudo orbit of $\tilde{\varphi}$ if $ d(\tilde{\varphi}(x_{i}), x_{i+1})<\delta$

for all $i\geqq 0$ . If a sequence $\{x_{i}\}\subset T^{+}(S^{+})$ is a $\delta$-pseudo olbit of $\varphi(\tilde{\varphi})$ ,

we write
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$\varphi(x_{i})=x_{i}t_{i}$ and $\tilde{\varphi}(x_{i})=x_{l}t_{i}$

respectively. A $\delta$-pseudo orbit $\{x_{i}\}$ of $\varphi$ is said to be $\epsilon$-traced by a point
$y\in S^{+}$ if $y$ satisfies the following:

(1) $ d(y, x_{0})<\epsilon$ ,
(2) $y_{i}=P_{\rho}(y_{i-1}t_{i-1})$ and $y_{-i}=P_{\rho}(y_{-i+1}(-t_{-i}))$ are inductively defined for

$i\geqq 1$ and they satisfy $ d(y_{i}, x_{i})<\epsilon$ for all $i\in Z$, where $y_{0}=y$ .
A $\delta$-pseudo orbit $\{x_{i}\}_{i=0}^{\infty}$ of $\tilde{\varphi}$ is called to be $\epsilon$-traced by a point $y\in S^{+}$ if
$y$ satisfies the following:

(1) $ d(y, x_{1})<\epsilon$ ,
(2) $y_{i}=P_{\rho}(y_{i-1}t_{i-1})$ is defined inductively and $sati8fiesd(y_{i}, x_{i})<\epsilon$ fol

$i\geqq 2$ , whele $y_{1}=y$ .
$\varphi(\tilde{\varphi})$ is said to have POTP if for any $\epsilon>0$ there exists $\delta>0$ such that
every $\delta$-pseudo orbit of $\varphi(\tilde{\varphi})$ is $\epsilon$-traced by some point of $S^{+}$ .

The following are our $re8ults$ .

THEOREM A. If (X, $R$) has POTP, then the bijective first return
map $\varphi$ obeys POTP.

COROLLARY B. If (X, $R$) has POTP, then the bijective first return
map $\varphi$ has a canonical coordinate.

THEOREM C. (X, $R$) has POTP if and only if so does $\tilde{\varphi}:S^{+}\rightarrow T^{+}$ .

\S 2. Proofs of Theorem A and Corollary B.

Let $0<\zeta<\epsilon_{0}$ and $0<\alpha<\zeta/3$ be as in \S 1. Choose $0<a<\beta/2$ as in
Remark 2 and $\rho>0$ as in \S 1 ($ 5\rho<\zeta$ and $ 2\rho<\beta$). Let $\mathscr{G}$ and $\ovalbox{\tt\small REJECT}^{-}$ be
families of local cross-sections as in Proposition 1. Before starting the
proof of Theorem $A$ , we prepare Claims 1 and 2 that suffice for oul
needs.

CLAIM 1. For $\eta>0$ and $ 0<\mu<\zeta$ there are positive numbers $\epsilon_{1},$ $e_{2},$ $\epsilon_{3}$

and $\epsilon_{4}$ such that
(A1) $\epsilon_{1}<\eta$ and $2\epsilon_{2}<\epsilon_{1}$ ,
(A2) if $d(u, v)<\epsilon_{1}$ for $u,$ $v\in S(\in \mathscr{L})$ , then $d(u, vt)>\epsilon_{1}$ for $\mu\leqq|t|\leqq\zeta$ ,
(A3) if $d(u, v)<2e_{2}$ for $ueT$ and $veS$ , then $d(\varphi(u), v_{1})<e_{1}$

$(d(\tilde{\varphi}(u), v_{1})<\epsilon_{1})$ , $d(\varphi^{-1}(u), v_{-1})<\epsilon_{1}$ , where $\tau\in\ovalbox{\tt\small REJECT}^{-}$ and $S\in \mathscr{G}$

$(T\subset S^{*})$ ,
(A4) if $d(u, v)\geqq\epsilon_{2}$ for $u,$ $v\in S(\in\ovalbox{\tt\small REJECT}^{-})$ , then $d(u, vt)>\epsilon_{a}$ for $|t|\leqq\mu$ ,
(A5) if $d(x, y)<\epsilon_{4}$ for $x,$ $y\in X$, then $d(xt, yt)<\epsilon_{1}$ for $|t|\leqq\alpha$ .
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CLAIM 2. For any $e,$ $\tau>0$ there are positive numbers $0<\theta<\tau,$ $\epsilon_{6}$ ,
$\epsilon_{6},$ $\epsilon_{7}$ and $e_{8}$ such that for any $x$, yeX

(B1) $d(x, xt)<e/4$ for any $|t|\leqq\theta$ ,
(B2) if $d(x, y)<\epsilon_{b}$ , then $d(xt, ys)<e/4$ for $t,$ $s\in R$ with $|t|\leqq\alpha$ and

$|t-s|<\theta$ ,
(B3) if $d(x, y)<\epsilon_{6}$ and $xt\in T_{j}(|t|\leqq\alpha)$ for some $T_{j}$ , then $yt\in D^{j}$ and

$P_{\rho}(yt)=y(t+s)$ with $|s|<\theta/4$ ,
(B4) if $d(x, y)<\epsilon_{7}$ , then $d(xt^{\prime}, y(t+t’))>e_{7}$ for $\theta/2\leqq|t|\leqq\zeta$ and $|t^{\prime}|\leqq\alpha$ ,
(B5) if $d(x, y)<e_{8}$ , then $d(xt, yt)<\epsilon_{7}/2$ for $|t|\leqq\alpha$ .
PROOF OF THEOREM A. Take $\eta$ and $\mu$ such that $0<\eta<a$ and

$ 0<\mu<\zeta-\alpha-\rho$ . Fix $0<\epsilon<\min\{\epsilon_{2}, \epsilon_{3}, e_{4}\}$ and $0<\tau<\min\{\mu, \beta\}$ .
Since (X, $R$) has POTP and $\beta>0,$ $(X, R)$ has POTP with respect to

time $\beta$ by Proposition 1.4 [7]. Let $0<e^{\prime}<\min\{\epsilon/4, \epsilon_{6}, \epsilon_{7}/2\}$ . Then there
exist8 $0<\delta<\epsilon^{\prime}$ such that any $(\delta, \beta)$-chain of (X, $R$) is $\epsilon$’-traced by some
point of $X$. It is enough to see that $\delta$ is our asking numbel for
$\eta>0$ .

Let $\{x_{i}\}_{i=-\infty}^{\infty}\subset T^{+}$ be any $\delta$-pseudo orbit of the first leturn map $\varphi$ .
Let $\{t_{i}\}_{i=-\infty}^{\infty}$ be a sequence such that $\varphi(x_{i})=x_{i}t_{i}$ fol each $ieZ$. Fol a
$(\delta, \beta)$-chain $(\{x_{\ell}\}_{i=-\infty}^{\infty}, \{t_{l}\}_{i=-\infty}^{\infty})$ there exists $z\in X$ which $\epsilon$’-tlaces the $(\delta, \beta)-$

chain. Thelefore there exists a stlictly increasing homeomolphism $h$ of
$R$ such that $h(O)=0,$ $h(R)=R$ and

$d(zh(t), x_{0}*t)<e$
’ for all $t\in R$ .

Since $x_{0}\in T(T\in\ovalbox{\tt\small REJECT}^{-})$ and $d(z, x_{0})=d(zh(0), x_{0})<\epsilon’<\epsilon_{6}$ , we have $P_{\rho}(z)=zl\in S$

and $|l|<\theta/4$ by (B3). Put $z_{0}=zl$ and take $\xi_{0}\in R$ with $h(\xi_{0})=l$ . Then we
claim that $\xi_{0}$ does not satisfy $|h(\xi_{0})-\xi_{0}|\geqq\theta/2$ .

If $|h(\xi_{0})-\xi_{0}|\geqq\theta/2$ , then there is $t’\in R$ such that $|h(t^{\prime})-t^{\prime}|=\theta/2$ and
$|t^{\prime}|\leqq|\xi_{0}|$ , and

$|t^{\prime}|\leqq\theta/2+|h(\xi_{0})|<\theta/2+\theta/4<\theta<\tau<\beta\leqq\alpha$ .
For the case $t^{\prime}\geqq 0$ , since $d(z, x_{0})<e^{\prime}<\epsilon_{7}$ , by (B4) we have

$d(zh(t^{\prime}), x_{0}*t’)=d(z(t’\pm\theta/2), x_{0}t^{\prime})>\epsilon_{7}$ ,

which contradicts $d(zh(t^{\prime}), x_{0}*t^{\prime})<\epsilon’<e_{7}$ . From the fact that $ d(z, x_{0})<\epsilon$
’

and $ d(x_{0}, \varphi(x_{-1}))<\delta$ , it follows that

$d(z, x_{-1}(-\tau_{-1}))=d(z, \varphi(x_{-1}))$

$\leqq d(z, x_{0})+d(x_{0}, \varphi(x_{-1}))$

$<\epsilon’+\delta<2e^{\prime}<\epsilon_{7}$ .
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Hence that $t^{\prime}<0$ can not happen. This follows fiom the fact that
$d(zh(t^{\prime}), x_{0}*t^{\prime})=d(z(t^{\prime}\pm\theta/2), x_{-1}(t^{\prime}-\tau_{-1}))>\epsilon_{7}$ .

Since $|h(\xi_{0})-\xi_{0}|<\theta/2$ , we have

$\xi_{0}<h(\xi_{0})+\theta/2=l+\theta/2<\theta/4+\theta/2<\theta$ ,
$\xi_{0}>h(\xi_{0})-\theta/2>-\theta$ ,

and so $-\theta<\xi_{0}<\theta$ .
Now we are in the position to plove that the point $z_{0}=zl\in S$ e/2-

traces the $(\delta, \beta)$-chain $(\{x_{i}\}_{=-\infty}^{\infty}, \{t\}_{i=-\infty}^{\infty})$ . Put $g(t)=h(t+\xi_{0})-h(\xi_{0})$ for any
$t\in R$ . Then $g$ is a strictly incleasing homeomorphism of $R$ such that
$g(O)=0,$ $g(R)=R$ . Thus

$d(z_{0}g(t), x_{0}*(t+\xi_{0}))=d(z(l+g(t)), x_{0}*(t+\xi_{0}))$

$=d(zh(t+\xi_{0}), x_{0}*(t+\xi_{0}))$

$<e’<\epsilon/4$ . (1)

For $\tau_{i}\leqq t<\tau_{i+1}(i\in Z)$ , it is enough to prove the following to obtain the
conclusion.

$d(z_{0}g(t), x_{i}(t-\tau_{i}))<\epsilon/2$ .
Indeed, if $\tau_{i}\leqq t+\xi_{0}<\tau_{i+1}$ , we have by (B1) and (1)

$d(z_{0}g(t), x_{i}(t-\tau_{i}))$

$\leqq d(z_{0}g(t), x_{0}*(t+\xi_{0}))+d(x_{0}*(t+\xi_{0}), x(t-\tau))$

$<e/4+d(x_{i}(t+\xi_{0}-\tau_{i}), x_{i}(t-\tau_{i}))$

$<e/4+\epsilon/4=e/2$ ,

and if $\tau_{i+1}\leqq t+\xi_{0}<\tau_{i+2}$ , then

$d(z_{0}g(t), x_{i}(t-\tau_{l}))$

$\leqq d(z_{0}g(t), x_{0}*(t+\xi_{0}))+d(x_{0}*(t+\xi_{0}), x(t-\tau_{i}))$

$<\epsilon/4+d(x_{i+1}(t+\xi_{0}-\tau_{i+1}), x_{i}(\tau_{i+1}-\tau_{i})(t-\tau_{i+1}))$ .
Since $d(x_{i+1}, x(\tau_{i+1}-\tau_{i}))=d(x_{i+1}, \varphi(x_{i}))<\delta<\epsilon’$ , we have by (B2)

$d(x_{i+1}(t+\xi_{0}-\tau_{i+1}), x_{i}(\tau_{i+1}-\tau_{i})(t-\tau_{+1}))<e/4$ ,

and hence

$d(z_{0}g(t), x(t-\tau_{i}))<\epsilon/2$ .
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Fol the case that $\tau_{i-1}\leqq t+\xi_{0}<\tau_{t}$ the analogous argument ensures
that

$d(z_{0}g(t), x_{i}(t-\tau,))<\epsilon/2$ for $\tau_{i}\leqq t<\tau_{\iota+1}$ $(ieZ)$ .
To obtain Theorem A it is enough to see that $ z_{0}\eta$-traces the $\delta-$

pseudo olbit $\{x_{i}\}_{i=-\infty}^{\infty}$ . To do this assume that the $\delta$-pseudo orbit $\{x_{i}\}_{i=-\infty}^{\infty}$

is not $\eta$-traced by $z_{0}$ in the positive direction. Since $ d(z_{0}, x_{0})<\epsilon/2<\eta$ ,
thele is $j$ such that $ d(z_{i}, x_{i})<\eta$ fol $0\leqq i<j$ and

$ d(z_{j}, x_{l})\geqq\eta$ ,

where $z_{i}=P_{\rho}(z_{i-1}t_{i-1})$ . Put $z_{i+1}=z_{i}u_{t}$ for $u_{i}$ with $|t_{i}-u_{i}|\leqq\rho$ . Since $ 2\rho<\beta$ ,
each $u_{t}$ is determined uniquely. For simplicity wlite

$l_{j}=\sum_{n=0}^{j-1}u_{\hslash}$ and $\tau_{j}=\sum_{n=0}^{j-1}t_{n}$ .
Then we have either

(a) $|g(\tau_{j})-l_{j}|\leqq\mu$ ,

ol

(b) $|g(\tau_{j})-l_{j}|>\mu$ .
For the both cases (a) and (b) we can delive contradictions as follows.
For the case (a), from (A4) and the fact that $d(z_{\dot{f}}, x_{j})\geqq\eta>\epsilon_{2}$ , we have

$e/2>d(z_{0}g(\tau_{\dot{f}}), x_{0}*\tau_{\dot{f}})$

$=d(z_{\dot{f}}(g(\tau_{j})-l_{j}), x_{\dot{f}})>e_{s}>e$ ,

which is a contladiction. Fol the case (b), we can find $0<k\leqq j$ such
that $|g(\tau_{k})-l_{k}|>\mu$ and $|g(\tau_{i})-l_{i}|\leqq\mu(0\leqq i<k)$ . If there is $0\leqq i<k$ such
that $d(z_{i}, x_{i})\geqq e_{2}$ , then $d(zg(\tau_{i}), x_{i})>\epsilon_{3}>e$ by (A4) (since $z_{i}=zl_{i}$ and
$|g(\tau_{i})-l_{i}|\leqq\mu)$ . However $d(z_{0}g(\tau_{i}), x)=d(z_{0}g(\tau_{i}), x_{0}*\tau_{l})<\epsilon/2$ , which is im-
possible. Therefore we have

$d(z_{i}, x_{i})<\epsilon_{2}$ $(0\leqq i<k)$ . (2)

Combing (2) and (A3), we have

$d(z_{k}, \varphi(x_{k-1}))<\epsilon_{1}$ . (3)

It is easily checked that (3) is inconsistent with $|g(\tau_{k})-l_{k}|>\mu$ . Fol, if
$ l_{k}-\mu>g(\tau_{k})\geqq l_{k-1}-\mu$ , then
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$\mu<l_{k}-g(\tau_{k})\leqq l_{k}-l_{k-1}+\mu=u_{k-1}+\mu\leqq\alpha+\rho+\mu<\zeta$ .
By (3) and (A2) we have $d(z_{0}g(\tau_{k}), \varphi(x_{b-1}))>\epsilon_{1}$ . Thus

$\epsilon/2>d(z_{0}g(\tau_{l}), x_{0}*\tau_{k})$

$=d(z_{0}g(\tau_{\iota}), x_{k})$

$\geqq d(z_{0}g(\tau_{k}), \varphi(x_{k-1}))-d(\varphi(x_{k-1}), x_{k})$

$>\epsilon_{1}-\delta>\epsilon-\epsilon/2=\epsilon/2$ ,

which is impossible. If $ g(\tau_{k})<l_{k-1}-\mu$ , then $g(\tau_{k})<l_{k-1}-\mu\leqq g(\tau_{k-1})$ (since
$|g(\tau_{k-1})-l_{k-1}|\leqq\mu)$ which contradicts the facts that $g$ is stlictly incleasing
and $\tau_{k-1}<\tau_{k}$ . If $ g(\tau_{k})-l_{k}>\mu$ , then there exist8 $\tau_{k-1}<t’<\tau_{k}$ with $g(t’)=$

$ l_{h}+\mu$ since $g(\tau_{k-1})\leqq l_{b-1}+\mu<l_{k}+\mu<g(\tau_{k})$ . And so
$\mu<\mu+\tau_{k}-t<\mu+(\tau_{k}-\tau_{k-1})\leqq\mu+\alpha<\zeta$ .

From (3) and (A2) it follows that $d(z_{k}(\mu+\tau_{k}-t’), \varphi(x_{k-1}))>\epsilon_{1}$ . Since
$\varphi(x_{k-1})=x_{k-1}t_{k-1}=x_{k-1}(\tau_{k}-\tau_{k-1})$ , we have $\varphi(x_{k-1})(t^{\prime}-\tau_{k})=x_{k-1}(t-\tau_{k-1})$ . Thus
by (A5)

$\epsilon/2>d(z_{0}g(t^{\prime}), x_{l-1}(t-\tau_{k-1}))$

$=d(z_{0}(l_{k}+\mu), x_{l-1}(t’-\tau_{k-1}))$

$=d(z_{k}(\mu+\tau_{k}-t)(t^{\prime}-\tau_{k}), \varphi(x_{l-1})(t^{\prime}-\tau_{\iota}))$

$\geqq e>e$ ,

thus contradicting. Thelefore the point $ z_{0}\eta$-trace8 the $\delta$-pseudo olbit
$\{x_{i}\}_{=-\infty}^{\infty}$ in the positive direction.

It lemains only to prove that the point $ z_{0}\eta$-traces the $\delta$-pseudo olbit
$\{x_{i}\}^{\infty}=-\infty$ in the negative direction. To do this if this is false, then there
exists $j<0$ such that $ d(z_{i}, x_{i})<\eta$ for $i<i\leqq 0$ and $ d(z_{j}, x_{\dot{f}})\geqq\eta$ , whele $z=$

$P_{\rho}(z_{+1}(-t))$ for $j\leqq i<0$ . Let $u_{i}eR$ satisfy $z=z_{i+1}(-u)$ and $|t-u_{i}|\leqq\rho$ .
Put $l_{j}=-\sum^{-1};u_{n}$ and $\tau_{j}=-\sum_{j}^{-1}t_{n}$ . If $|g(\tau_{j})-l_{j}|\leqq\mu$ , then

$d(zl, x_{j})=d(z_{\dot{9}}, x_{j})\geqq\eta>\epsilon_{1}>\epsilon_{l}$

and by (A4)

$ d(z_{0}g(\tau_{\dot{f}}), x_{j})>e_{\theta}>\epsilon$ ,

which contradicts $d(z_{0}g(\tau_{\dot{J}}), x_{0}*\tau_{j})<e/2$ . Hence $|g(\tau_{j})-l_{j}|>\mu$ . Since thele
is $j\leqq k<0$ such that $|g(\tau_{k})-l_{k}|>\mu$ and $|g(\tau)-l|\leqq\mu(k<i<0)$ , we have as
in (2)

$ d(z, x_{i})<\epsilon$, fol $k<i\leqq 0$ ,
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fiom which

$d(\varphi(x_{k}), z_{k+1})\leqq d(\varphi(x_{k}), x_{k+1})+d(x_{k+1}, z_{k+1})$

$<\delta+e_{2}<2\epsilon_{2}$ .
From (A3) together with $(z_{k+1})_{-1}=z_{k}$ , we have $d(z_{k}, x_{k})<e_{1}$ , which is in-
consistent with $|g(\tau_{k})-l_{k}|\geqq\mu$ . Therefole the point $ z_{0}\eta$-traces the $\delta$-pseudo
orbit $\{x_{i}\}_{i=-\infty}^{\infty}$ in the negative direction.

PROOF OF COROLLARY B. Let (X, $R$) have POTP. Then $\varphi$ has POTP
by Theorem A. For $\eta>0$ there is $0<\delta<\eta/2$ such that any $\delta$-pseudo olbit
of $\varphi$ is $\eta/2$-traced by some point of $S^{+}$ .

If $ d(x, y)<\delta$ fol $x,$ $y\in T^{+}$ , then a doubly infinite sequence $\{\cdot\cdot,$ $\varphi^{-l}(y)$ ,.., $\varphi^{-1}(y),$ $x,$ $\varphi(x),$
$\cdot\cdot,$

$\varphi^{i}(x),$ $\cdot\cdot$ } is a $\delta$-pseudo orbit of $\varphi$ , and hence it is
$\eta/2$-traced by some point $zeS^{+}$ . Thelefore $z\in W_{7/}^{*}(x)$ and $d(\varphi^{-i}(y), z_{-i})<\eta/2$

for $i\geqq 1$ . On the other hand, since $ d(x, y)<\delta$ and $d(x, z)<\eta/2$ , we have

$ d(y, z)\leqq d(y, x)+d(x, z)<\delta+\eta/2<\eta/2+\eta/2=\eta$ ,

fiom which $zeW_{\eta}^{u}(y)$ . Therefore $ W_{\dot{\eta}}(x)\cap W_{\eta}^{u}(y)\neq\emptyset$ , which implies that
$\varphi$ has a canonical coordinate.

\S 3. Proof of Theorem $C$ .
Let $0<\zeta<\epsilon_{0}$ and $0<\alpha<\zeta/3$ be as in \S 1. Choose $0<a<\beta/2$ as in

Remark 2 and $\rho>0$ as in \S 1 ($ 5\rho<\zeta$ and $ 2\rho<\beta$).
Filst we plove the “only if” palt. Take $\eta$ and $\mu$ such that $0<\eta<a$

and $ 0<\mu<\zeta-\alpha-\rho$ . For $\eta$ and $\mu$ as befole we can choose positive
numbers $\epsilon_{1},$ $\epsilon_{2},$ $e_{3}$ and $\epsilon_{4}$ as in Claim 1 of \S 2. For $0<\epsilon<\min\{\epsilon_{2}, e_{3}, \epsilon_{4}\}$ and
$0<\tau<\min\{\mu, \beta\}$ as in Claim 2 of \S 2 we can choose positive numbers 0,

es’ $\epsilon_{6},$ $e_{7}$ and $e_{8}$ .
Since (X, $R$) has POTP and $\beta>0,$ $(X, R)$ has POTP with respect to

time $\beta$ fiom Proposition 1.4 [7]. For $0<\epsilon^{\prime}<\min\{\epsilon/4, e_{6}, \epsilon_{7}/2, e_{8}\}$ there ex-
ists $ 0<\delta<\epsilon$

’ such that any $(\delta, \beta)$-chain of (X, $R$) is e’-traced by some
point of $X$. It is enough to show that $\delta$ is a numbel with ploperty
POTP fol $\eta$ .

Now let $\{x_{i}\}_{=0}^{\infty}$ be a $\delta$-pseudo orbit of $\tilde{\varphi}$ . Then a pail $(\{x\}_{i=0}^{\infty}, \{t_{i}\}_{i=0}^{\infty})$

is a half $(\delta, \beta)$-chain of (X, $R$), where $\tilde{\varphi}(x_{i})=x_{i}t_{i}$ . Then there is a point
$zeX$ which $e^{\prime}$-traces the $(\delta, \beta)$-chain. Thus thele exists a 8trictly in-
creasing homeomolphism $h$ of $R$ such that $h(O)=0,$ $h(R)=R$ and

$d(zh(t), x_{0}*t)<e^{\prime}$ fol all $t\in R$ .
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Since $d(z, x_{0})=d(zh(0), x_{0})<e^{\prime}<e_{6}$ , thele exists $l>0$ such that $zl\in S_{j}$ and
$|l-t_{0}|<\theta/4$ by (B3) $(\tilde{\varphi}(x_{0})=x_{0}t_{0}\in T_{\dot{f}})$ . Put $z_{1}=zl$ and take $\xi_{0}>0$ with
$h(\xi_{0})=l$ . Then we have that $|h(\xi_{0})-\xi_{0}|<\theta/2$ and 80

$-\theta<\xi_{0}-t_{0}<\theta$ . (4)

Indeed, if $|h(\xi_{0})-\xi_{0}|\geqq\theta/2$ , then there is $0<t^{\prime}\leqq\xi_{0}$ such that $|h(t^{\prime})-t^{\prime}|=\theta/2$ .
Since $h(\xi_{0})=l<t_{0}+\theta/4<t_{0}+\rho/4$ , we have $ 0<t’<t_{0}+\beta$ Fol $t_{0}\leqq t^{\prime}<t_{0}+t_{1}$ ,
since

$ 0<t^{\prime}-t_{0}\leqq\theta/2+h(\xi_{0})-t_{0}<\theta/2+\theta/4<\theta<\beta$ ,

we have
$d(zh(t’), x_{0}*t^{\prime})=d(z(t^{\prime}\pm\theta/2), x_{1}(t’-t_{0}))$

$=d(zt_{0}(t’-t_{0}\pm\theta/2), x_{1}(t’-t_{0}))$ ,

$d(x_{1}, x_{0}t_{0})<\delta<e’<\epsilon_{7}/2$ .
Since $d(zt_{0}, x_{0}t_{0})<\epsilon_{7}/2$ by (B5), we have by (B4)

$\epsilon’>d(zh(t’), x_{0}*t’)>\epsilon_{7}$ ,

thus contradicting. Since $d(z, x_{0})<\epsilon’<e_{7}$ , if $0<t<t_{0}$ , we have by (B4)

$\epsilon^{\prime}>d(zh(t’), x_{0}*t^{\prime})=d(z(t’\pm\theta/2), x_{0}t’)>\epsilon_{7}$ ,

which is a contradiction. Thelefore $|h(\xi_{0})-\xi_{0}|<\theta/2$ .
Put $g(t)=h(t+\xi_{0})-h(\xi_{0})$ fol any $teR$ . Then $g$ is a stlictly incleasing

homeomorphism of $R$ with $g(O)=0,$ $g(R)=R$ , and so
$d(z_{1}g(t), x_{0}*(t+\xi_{0}))=d(z(l+g(t)), x_{0}*(t+\xi_{0}))$

$=d(zh(t+\xi_{0}), x_{0}*(t+\xi_{0}))$

$<e^{\prime}<e/4$ . (5)

Let $y_{i}=x_{i+1}$ and $s_{t}=t_{+1}$ for $i\geqq 0$ . Put $\tilde{\tau}_{i}=\sum_{n=}^{i}t(i\geqq 1),$ $\tau_{0}\sim=0$ . Using (4)

and (5), we can easily check that

$d(z_{1}g(t), y_{i}(t-\tilde{\tau}_{i}))<\epsilon/2$ for $\tilde{\tau}_{i}\leqq t<\tilde{\tau}_{i+1}$

for each $i\geqq 0$ . Thu8 $z_{1}\epsilon/2$-tlaces the half $(\delta, \beta)$-chain $(\{y_{i}\}_{=0}^{\infty}, \{s\}_{=0}^{\infty})$ , which
ensure8 that $ z_{1}\eta$-traces the $\delta$-pseudo olbit $\{x_{i}\}_{=0}^{\infty}$ of $\tilde{\varphi}$ .

It remains to prove “if” palt. Let $\mathscr{G}$ be as in Ploposition 1 of \S 1.
For a local cross section $S_{i}\in \mathscr{L}$ set $D_{\epsilon}=S_{i}[-\xi, \xi](0<\xi<\zeta)$ and define a
projective map $P_{\epsilon}^{i}:D_{\text{\’{e}}}^{i}\rightarrow S_{i}$ by $P_{\text{\’{e}}}^{i}(x)=xt$ , where $xteS_{i}$ and $|t|\leqq\xi$ .

For $\eta>0$ we can find $ 0<\xi_{1}<\rho$ such that
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(C1) $d(x, xt)<\eta/2$ fol $xeX$ and $|t|\leqq\xi_{1}$ .
Let $a>0$ be as in Remark 2 and take $N>0$ such that $0<\eta/N<a$ and

(C2) if $d(x, y)<\eta/N(x, yeX)$ and $xt\in T_{j}(|t|\leqq 6\alpha)$ for some $T_{j}$ then
$yt\in D_{\epsilon}^{\dot{f}}$ , where $\xi=\xi_{1}\beta/(12\alpha)$ ,

(C3) if $d(x, y)<\eta/N(x, y\in X)$ , then $d(xt, yt)<\eta/2$ fol some $|t|\leqq 6\alpha$ .
Since $\tilde{\varphi}$ has POTP, let $0<\delta<\eta/N$ be a number with the property of
POTP of $\tilde{\varphi}$ for $\eta/N$. Choo8e $0<\xi_{2}<\xi_{1}/2$ and $0<e<\delta/2$ such that

(C4) $d(x, xt)<\delta/2$ fol $xeX$ and $|t|\leqq\xi_{2}$ ,
(C5) if $ d(x, y)<\epsilon$ ($x\in T$ and $y\in X$), then $y\in D_{\epsilon_{2}}$ .

Let $0<\delta^{\prime}<\min\{a, \delta\}$ be a number such that
(C6) if $d(x, y)<\delta’(x, yeX)$ , then $ d(xt, yt)<\epsilon$ for $|t|\leqq\alpha$ .
Let a pair $(\{x_{i}\}_{i=0}^{\infty}, \{t_{i}\}_{i=0}^{\infty})$ be a half $(\delta^{\prime}, 2\alpha)$-chain of (X, $R$). To prove

that the half $(\delta^{\prime}, 2\alpha)$-chain is $\eta$-tlaced by some point of $X$, assume that
$ 2\alpha\leqq t_{i}\leqq 4\alpha$ for any $i\geqq 0$ (cf. Proposition 1.3 [7]) and put $p.=\max\{t;0\leqq t\leqq t_{n}$

and $x_{n}t\in T^{+}$ }. Then $y_{n}^{\prime}=x_{n}p_{n}\in T(T\in \mathscr{F})$ and obviously $ p_{n}\geqq\alpha$ since $ t_{i}\geqq 2\alpha$ .
Let $\zeta_{n}=t_{n}-p_{n}$ (note that $ 0\leqq\zeta_{n}\leqq\alpha$). Since $ d(x_{n}t_{n}, x_{n+1})<\delta$

’ for $n\geqq 0$ , by
(C6)

$ d(y_{n}^{\prime}, x_{n+1}(-\zeta_{n}))=d(x_{n}t_{n}(-\zeta_{n}), x_{n+1}(-\zeta_{n}))<\epsilon$ ,

and by (C5), $x_{n+1}(-\zeta_{n})\in D_{\epsilon_{2}}$ . Thus we can find $q_{n+1}eR$ such that
$x_{n+1}(-q_{n+1})=P_{\rho}(x_{n+1}(-\zeta_{n}))\in S$ and $|\zeta_{n}-q_{n+1}|\leqq\xi_{2}$ . Fol simplicity write
$y_{n+1}=x_{n+1}(-q_{n+1})$ for $n\geqq 0$ . By (C4) we have

$d(y_{n}^{\prime}, y_{n+1})<d(y_{n}^{\prime}, x_{n+1}(-\zeta_{n}))+d(x_{n+1}(-\zeta_{n}), x_{n+1}(-q_{n+1}))$

$<e+\delta/2<\delta$ $(n\geqq 0)$ . (6)

We construct an infinite sequence $\{y_{n}\}_{n=0}^{\infty}\subset S^{+}$ such that $y_{0}=x_{0}(-q_{0})\in S^{+}$

$(0\leqq q_{0}\leqq\alpha)$ .
Note that $|q_{n}-\zeta_{n-1}|\leqq\xi_{2}(n\geqq 1)$ . From facts that $0\leqq\xi_{n}\leqq\alpha(n\geqq 0)$ and

$\xi_{2}<\alpha/4$ we have
$-\alpha/4<q_{n}<5\alpha/4$ . (7)

Let $w_{n}^{1},$
$\cdots,$

$w_{n}^{m_{n}}$ be points of $y_{n}[0, q_{n}+p_{n}]\cap T^{+}$ such that $\tilde{\varphi}(w_{n}^{i})=w_{n}^{t+1}$

$(i=0,1, \cdots, m_{n}-1)$ , whele $w_{n}^{0}=y_{n}\in S^{+}$ and $w_{n}^{m,}’=y_{n}^{\prime}\in T^{+}$ . Then by (6)

we have $ d(\tilde{\varphi}(w_{n}^{i}), w_{n}^{i+1})<\delta$ fol $0\leqq i<m_{n}-1$ and $ d(\tilde{\varphi}(w_{n}^{m_{n}-1}), w_{n+1}^{0})<\delta$ . Hence
$\{w_{n}^{l};0\leqq i<m_{n}, n\geqq 0\}$ is a $\delta$-pseudo orbit of $\tilde{\varphi}$ .

Since $\tilde{\varphi}$ has POTP, thele is a point $zeS^{+}$ which $(\eta/N)$-traces the
$\delta$-pseudo olbit, and hence

$d(w_{n}^{l}, z_{m_{0}+\cdots+m_{n-1}+i})<\eta/N$

for $0\leqq i<m_{n}(n\geqq 0)$ , whele $m_{-1}=0$ and $z_{1}=z$ . Let $u_{n}^{i}\in R(0\leqq i<m_{n}, n\geqq 0)$
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be the smallest positive time such that $\tilde{\varphi}(w_{n})=w_{n}^{i+1}=w_{n}^{i}u_{n}^{i}$ . Obviously
$\beta\leqq u_{n}^{:}\leqq\alpha$ .

Let $v_{n}^{i}eR$ satisfies $z_{n_{0}+\cdots+’ n_{n-1}+i}\cdot v_{n}^{i}=z_{n_{0}+\cdots+n_{n-1}+i+1}$ and $|u_{n}-v_{n}^{i}|\leqq\rho$ . Put
$v_{0}=\sum_{i=1}^{*0^{-1}}v_{0}^{i}$ and $v_{n}=\sum_{i=^{l}0}^{*-1}v_{n}^{i}(n\geqq 1)$ . Then we have

$ z_{*0^{+\cdots+}n-1^{+n}n}=z_{n_{0}+\cdots+n_{n-1}}\cdot v_{n}’*\cdot$

fol $n\geqq 0$ . Since $ 2\alpha\leqq t_{n}\leqq 4\alpha$ , we have $\alpha\leqq p_{n}\leqq t_{n}\leqq 4\alpha$ and from (7),
$\beta\cdot m_{n}<q_{n}+p_{n}<6\alpha$ . Hence $ m_{n}\leqq 6\alpha/\beta$ The diffelence between the time
$v_{n}$ and the time $q_{n}+p_{n}$ is estimated as follows:

$|v_{n}-(q_{n}+p_{n})|\leqq\sum_{i=0}^{n_{n}-\iota}|u_{n}^{i}-v_{n}^{i}|\leqq 6\alpha\xi/\beta$ $(n\geqq 0)$ , (8)

$|v_{0}+u_{0}^{0}-(q_{0}+p_{0})|\leqq\sum_{i=1}^{n_{0}-1}|u_{0}^{i}-v_{0}|\leqq 6\alpha\xi/\beta$ (9)

To obtain Theolem $C$ , it is only to plove that the point $z(q_{0}-u_{0}^{0})$

$\eta$-traces the half $(\delta, 2\alpha)$-chain $(\{x\}_{i=0}^{\infty}, \{t_{i}\}_{i=0}^{\infty})$ . To do this we constluct a
piecewise linear strictly inclea8ing homeomorphism $h$ of $R$ with $h(O)=0$

and $h(R)=R$ . Define a lineal function $h_{0}:[0, t_{0}]\rightarrow R$ such that

$h_{0}(t)=\{(v_{0}+u_{0}^{0}-q_{0}+q_{1})/t_{0}\}\cdot t$ .
Then we have by (9)

$v_{0}+u_{0}^{0}-q_{0}+q_{1}\geqq p_{0}-6\alpha\xi/\beta+q_{1}$

$\geqq\alpha-\xi_{1}/2-\alpha/4>\alpha/2$ ,

$|h_{0}(t)-t|=|(v_{0}+u_{0}^{0}-q_{0}+q_{1})/t_{0}-1|\cdot t$

$\leqq|v_{0}+u_{0}^{0}-q_{0}+q_{1}-p_{0}-\zeta_{0}|$

$\leqq|v_{0}+u_{0}^{0}-(q_{0}+p_{0})|+|q_{1}-\zeta_{0}|$

$\leqq 6\alpha\xi/\beta+\xi_{2}$

$\leqq\xi_{1}/2+\xi_{1}/2=\xi_{1}$ . (10)

On the other hand,

$d(z’ h_{0}(t), x_{0}t)=d(z(q_{0}-u_{0}^{0}+h_{0}(t), y_{0}(q_{0}+t))$

$\leqq d(z(q_{0}-u_{0}^{0}+h_{0}(t)), z(q_{0}-u_{0}^{0}+t))$

$+d(z(q_{0}-u_{0}^{0}+t), y_{0}(q_{0}+t))$ .
By (10) and (C1) we have

$d(z(q_{0}-u_{0}^{0}+h_{0}(t)), z(q_{0}-u_{0}^{0}+t))<\eta/2$ $(t\in[0, t_{0}))$ .
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Since
$d(y_{0}u_{\Phi}^{0}z)=d(w_{0}^{1}, z_{1})<\eta/N$

and

$|q_{0}-u_{0}^{0}+t|\leqq|q_{0}|+|u_{0}^{0}|+|t|\leqq q_{0}+u_{0}^{0}+t_{0}$

$\leqq\alpha+\alpha+4\alpha=6\alpha$ ,

we have by (C3)

$d(z(q_{0}-u_{0}^{0}+t), y_{0}(q_{0}+t))<\eta/2$ .
Thelefole

$ d(z^{\prime}h_{0}(t), x_{0}t)<\eta$ $(te[0, t_{0}))$ .
Define a function $h_{n}$ on $[\tau_{n}, \tau_{n+1}](n\geqq 1)$ by

$h_{n}(t)=\{(v_{n}-q_{n}+q_{n+1})/t_{n}\}(t-\tau_{n})+\sum_{k=0}^{n-1}(v_{k}-q_{k}+q_{k+1})+u_{0}^{0}$ ,

whele $\tau_{n}$ is as in \S 2. Since $v_{n}-q_{n}+q_{n+1}>0$ by (8), $h_{n}$ is incleasing.
Obviou81y $h_{n}(\tau_{n+1})=h_{n+1}(\tau_{n+1})$ fol $n\geqq 0$ . We claim that

$ d(z^{\prime}h_{n}(t), x_{n}(t-\tau_{n}))<\eta$ fol $\tau_{n}\leqq t<\tau_{n+I}$ .
Indeed, we have

$d(z^{\prime}h_{n}(t), x_{n}(t-\tau_{n}))$

$\leqq d(z^{\prime}h_{n}(t),$ $z^{\prime}[\sum_{k=0}^{n-1}(v_{k}-q_{k})+u_{0}^{0}+(t-\tau_{n}+\sum_{k=0}^{n-1}q_{k+1})])$

$+d(z^{\prime}[\sum_{k=0}^{n-1}(v_{k}-q_{k})+u_{0}^{0}+(t-\tau_{n}+\sum_{k=0}^{n-1}q_{k+1})],$ $x_{n}(t-\tau_{n}))$

and

$|h_{n}(t)-\sum_{k=0}^{n-1}(v_{k}-q_{k})-(t-\tau_{n}+\sum_{k=0}^{n-1}q_{k+1})|$

$=|\{(v_{n}-q_{n}+q_{n+1})/t_{n}\}(t-\tau_{n})-(t-\tau_{n})|$

$\leqq|v_{n}-q_{n}+q_{n+1}-t_{n}|$

$\leqq|v_{n}-q_{n}-p_{n}+p_{n}+q_{n+1}-t_{n}|$

$\leqq|v_{n}-q_{n}-p_{n}|+|q_{n+1}-\xi_{n}|$

$\leqq 6\alpha\xi/\beta+\xi_{2}\leqq\xi_{1}$ . (11)

Hence by (11) and (C1) we have
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$d(z’ h_{n}(t),$ $z’[\sum_{k=0}^{n-1}(v_{k}-q_{k})+u_{0}^{0}+(t-\tau_{n}+\sum_{k=0}^{n-1}q_{k+1})])<\eta/2$ . (12)

On the othel hand,

$x_{n}(t-\tau_{n})=x_{n}(-q_{n})(t-\tau_{n}+q_{n})=y_{n}(t-\tau_{n}+q_{n})$ ,

$z_{n_{0}+\cdots+n_{*-1}}=z_{l*0^{+\cdots+\prime*}\cdot-2}v_{n-1}$

$=z(\sum_{k=0}^{n-1}v_{k})$

$=z^{\prime}(\sum_{k=0}^{n-1}(v_{k}-q_{k})+u_{0}^{0}+\sum_{k=0}^{n-2}q_{k+1})$ .
Since

$d(y_{n}, z_{*0+\cdots+n_{*-1}})=d(w_{n}^{0}, z_{n+\cdots+n_{\hslash-1}}0’)<\eta/N$ ,

we have by (C3)

$d(z^{\prime}[\sum_{k=0}^{n-1}(v_{k}-q_{k})+u_{0}^{0}+(t-\tau_{n}+\sum_{h=0}^{n-1}q_{k+1})],$ $x_{n}(t-\tau_{n}))<\eta/2$ . (13)

Combining (12) and (13) we have

$ d(zh_{n}(t), x_{n}(t-\tau_{n}))<\eta$ for $\tau_{n}\leqq t<\tau_{n+1}$ .
Let us put

$h(t)=\left\{\begin{array}{ll}h_{n}(t) & if \tau, \leqq t<\tau_{n+1}\\t & if t\leqq 0.\end{array}\right.$

Then $h$ is oul requirement. We proved that fol any fixed $\eta>0$ thele
exists $\delta^{\prime}>0$ such that any half $(\delta, 2\alpha)$-chain $(\{x\}_{i=0}^{\infty}, \{t\}_{i=0}^{\infty})$ of the flow
(X, $R$) i8 $\eta$-tlaced by a point $z’ eX$.

Since (X, $R$) has no fixed points, that (X, $R$) has POTP is equivalent
to that for any $e>0$ there exist $\delta>0$ and $a>0$ such that any half $(\delta, a)-$

chain of (X, $R$) is e-tlaced by some point of $X$. Therefore if the 8ectional
surjective map $\tilde{\varphi}$ has POTP, then the flow (X, $R$) mu8t have POTP. The
proof is completed.
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