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§1. Introduction.

Every real flow without fixed points on a compact metric space
induces a first return map on the union of sets in a certain family of
local cross-sections, which was first introduced by H. Whitney [9] and
after that improved by R. Bowen and P. Walters [2]. Our purpose is
to investigate relationships between a real flow and its first return map
with respect to the pseudo orbit tracing property. '

H.B. Keynes and M. Sears [6] characterized already expansivity of
a real flow by making use of a family of local cross-sections and a
bijective first return map.

We denote by (X, R) a real flow (abbrev. flow) without fixed points
on a compact metric space X. Let d denote a metric for X and the
action of te R on x€ X is written at. We write

SI={xt; tel and x € S}
for an interval I and SC X, and
e, =inf{t>0; axt=x for some x e X}.

Then ¢, is a positive number since the flow (X, R) has no fixed points
and X is compact. .

For positive numbers 6 and a, a pair of doubly infinite sequences
(Z)e o, {t)—w) is a (B, a)-chain for (X, R) if t,=za and d(xt,, @) <o
for all 1€ Z, and a pair of infinite sequences ({x.)}iZ., {t:}0) is a half
6, a)-chain for (X, R) if t,=a and d(xt, x,.,)<o for 1=0. A (4, a)-
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chain for (X, R) is called the (9, a)-pseudo orbit. 7, denotes a partial
sum of an infinite sequence {t,}, i.e.

n—1

S t, if n=0
Ta= 0_1

-t if n<0,

where 7,=3;'t,=0. For a (4, a)-chain ({z}, {t,}) we write
xo*tzxn(t_z-n) if Tn§t<tn+1 .

A (6, a)-chain ({7 _w, {t)iz-.) 18 sald to be e-traced (¢>0) by a point
x € X if there is a strictly increasing homeomorphism k: R— R such that
h(0)=0, h(R)=R and d(zh(t), z,xt)<e for all te€ R. That a half (9, a)-
chain ({x,},, {t.})i=,) is e-traced by a point x€ X is defined similarly by
restricting the time ¢ to ¢=0.

(X, R) has POTP with respect to time a if for any >0 there is
0>0 such that every infinite (4, a)-chain for (X, R) is s-traced by some
point of X. (X, R) is said to have POTP if (X, R) has POTP with
respect to time 1.

A subset ScX is called a local cross-section of time {>0 for a flow
(X, R) if S is closed and SNz[—C, {]={x} for all x€ S, where {<e¢,.

If S is a local cross-section of time {, the action maps Sx[—{, (]
homeomorphically onto S[—¢, {]. By the interior S* of S we mean the
set SNint(S[—¢, £]). Note that S*(—e¢, ¢) is open in X for any £>0.

Throughout this paper our arguments are based on the following
proposition.

ProOPOSITION 1 ([6], Lemma 2.4). There is 0<{<eg, satisfying that
for each a>>0 we can find a finite family ¥ ={S, S,, -+, S.} of pairwise
disjoint local cross-sections of time { and diameter at most o« and a
Jfamily of local cross-sections 7 ={T,, T,,---, T,} with T,CcS¥ (+=1,2,---,k)
such that

X=T%0, al]=T*[—a, 0]1=S7[0, a]=S*[—a, 0]
where Tt= U, T, and S*= UL, S,.
Hereafter let { and 0<a<{/3 be as in the Proposition 1 and put
B=s8up{6>0 ; (0,)NSt*=0 for x€S*}.
Obviously 0<B=a. Let 0>0 be a number such that 50<¢ and 20<g.
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For xe T+ (x€S*) let t€ R be the smallest positive time such that
gt € T+. Obviously S=<t=a and a map @(x)=uxt (@(x)=at) is well defined.
It is easily checked that ¢: T+ —T* is bijective and @: S*—T* is sur-
jective.

For S,e.&” set D:=S[—p, p] and define a projective map P;: D!— S,
by Pi(x)=xt, where [t|<p. Then P; is continuous and surjective. We
write

Di=D, and P:=P,

if there is no confusion.
The following remark is easily checked.

REMARK 2. There is an 0<a< B/2 such that for «x, y € S, if d(z, y)=a
and xte T; (|t|=3a) for some T}, then yt e D’.

Using this fact, we can set up a shadowing orbit of y relative to a
@ (P)-orbit of xe T+ as follows. If y is sufficiently close to «, the orbit
of y will cross S; at a time near the time when the orbit of x crosses
T;,. For zeT, and ye S, with d(z, y)<a, we can define a point y, so
that y,=P,(yt), where t is the smallest positive time such that o(x)=uwxt
(P(x)=xt). Inductively if d(e'(x), y)=a (d(@(x), y)<a), then we can de-
fine a point ¥,,, so that y,.,=P.(yt), where ¢t is the smallest positive
time such that o'*(x)=¢ (@)t (F'*(x)=F'(®)t). Thus we obtain a time
delayed orbit of y along a piece of the orbit of =. We can also construct
the shadowing orbit of y as above for the orbit of x of negative powers
of .

For simplicity we write T, S instead of T, S, respectively. For
ze T and 7>0 the 7-stable set of x is defined by |

Wiz =1{yeS ; d(@'(®), y)<7 for all :=0}
and the 7-unstable set of x is defined by
Wrx)={yeS ; d(@'(x), y)<7 for all :=0}.

The first return map @ is said to have a canonical coordinate if for
any 7>0 there exists 6>0 such that if d(z, y)<é (¢, yeT"), then
Wix) N Wi(y)= . Given 6>0, a doubly infinite sequence {x}2_.CT™" is
called d-pseudo orbit of @ if d(p(x), .+,) <6 for all 1€ Z. Similarly an
infinite sequence {x,}2,=S* is called 9-pseudo orbit of @ if d(P(x;), i) <0
for all i=0. If a sequence {x}cT* (S*) is a o-pseudo orbit of ¢ (@),
we write
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p(x)=xt, and &(x,)=2x,t,

respectively. A J-pseudo orbit {x,} of @ is said to be e-traced by a point
y €St if y satisfies the following:
(1) d(y, x)<e,
(2) y,=P,(y._,t,_,) and y_,=P,(y_,;,(—t_,)) are inductively defined for
1=1 and they satisfy d(y,, x,)<e for all 1€ Z, where y,=y.
A j-pseudo orbit {x;}z, of @ is called to be e-traced by a point y e St if
y satisfies the following:
(1) d(y, z)<e,
(2) y,=P.,(y,_,t,_,) is defined 1nduct1vely and satisfies d(y,, x,)<e for
1=2, where y,=y.
@ (@) is said to have POTP if for any ¢>0 there exists >0 such that
every o¢-pseudo orbit of ¢ ($) is e-traced by some point of S*.
The following are our results.

THEOREM A. If (X, R) has POTP, then the bijective first return
map @ obeys POTP.

COROLLARY B. If (X, R) has POTP, then the bijective first return
map @ has a canonical coordinate.

THEOREM C. (X, R) has POTP if and only if so does &: S*™— T+.

§2. Proofs of Theorem A and Corollary B.

Let 0<{<g, and 0<a<{/3 be as in §1. Choose 0<a<B/2 as in
Remark 2 and 0>0 as in §1 (50<{ and 20<B). Let & and .7 be
families of local cross-sections as in Proposition 1. Before starting the
proof of Theorem A, we prepare Claims 1 and 2 that suffice for our
needs.

CLAIM 1. For 7>0 and 0<pu<{ there are positive numbers ¢, ¢, ¢,
and &, such that

(A1) &<7m and 2¢,<e,

(A2) of d(u, v)<e, for u, veS (€.5), then d(u, vt)>¢, for u=<|t|<E,

(A3) if d(u, v)<2, for ueT and wveS, then dipw), v,)<e,
d@w), v)<e), dlp™(w), v_))<e, where Te 7 and Se.&F
(TcS™),

(A4) if d(u, v)=e, for u, veS (€.5), then d(u, vt)>e¢, for [t|Sy,

(AS) if d(z, y)<e, for x, y € X, then d(xt, yt)<e, for |t|Sa.
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CLAIM 2. For any e, >0 there are positive numbers 0<6<t, &,
&, & and & such that for any x, y€ X

(Bl) d(z, xt)<e/4 for any |t|=4,

(B2) if d(x, y)<es, then d(xt, ys)<e/4 for t, s€ R with |t|=a and
It—s| <8,

(B3) if d(x, y)<e, and xte T; ({t|<a) for some T;, then yte D’ and
P,(yt)=y(t+s) with |s|<6/4,

(B4) if d(=, y)<e:, then d(@t', y(t+t))>e, for 0/2<|tI=C and |t'|Za,

(B5) if d(x, y)<es, them d(xt, yt)<e,/2 for [t|=a.

PROOF OF THEOREM A. Take 7 and g such that 0<»<a and
0<pu<l—a—p. Fix 0<e<min{e, &, &} and 0<z<min{g, 8}.

Sinee (X, R) has POTP and 5>0, (X, R) has POTP with respect to
time B by Proposition 1.4 [7]. Let 0<¢&'<min{e/4, &, &/2}. Then there
exists 0<6<¢’' such that any (5, 8)-chain of (X, R) is ¢'-traced by some
point of X. It is enough to see that ¢ is our asking number for

>0.
7 Let {x})_.CT* be any j-pseudo orbit of the first return map o.
Let {t,)=_. be a sequence such that o(z,)=wxt, for each i€ Z. For a
(6, B)-chain ({Z.}i—«, {t:}iz--) there exists z€ X which ¢'-traces the (9, B)-
chain. Therefore there exists a strictly increasing homeomorphism % of
R such that 2(0)=0, h(R)=R and

d(zh(t), x,xt) <e' for all teR.

Since x,€ T (T e .Z7) and d(z, x,) =d(zh(0), x,) <e&’'<e,, We have P,(z)=2zl€ S
and |[|<6/4 by (B3). Put z,=zl and take & € R with h(&)=I. Then we
claim that &, does not satisfy |A(&,)—¢&/=6/2.

If |h(g&)—&|=0/2, then there is t'€ R such that |h(t")—t'|=6/2 and
t'| =&, and

It <60/2+|h(g,)| <0/2+60/4<0<t<B=a .
For the case t'=0, since d(z, x,) <& <e;, by (B4) we have
d(zh(t"), xxt") =d(z(t’'+6/2), zt") >e, ,

which contradicts d(zh(t), z,*t')<e'<e,. From the fact that d(z, x,) <¢’
and d(x, @(x_,)<d, it follows that

d(z, x_,(—7_))=d(z, p(x_,))
<d(z, x,)+d(x, P(x_,))
<& +0<2e<e; .
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Hence that t'<0 can not happen. This follows from the fact that
d(zh(t), m*t)=d(2(t' £6/2), _,(t'—7_))>e.
Since |h(&,) —&|<60/2, we have

&<h(&)+6/2=1+6/2<0/4+0/2<6 ,
Eo>h(§o)—0/2> —0 ’

and so —0<&,<4.

Now we are in the position to prove that the point z,=zle S g/2-
traces the (0, B)-chain ({w.}ii_., {t.}i2-x). Put g(t)=h(t+¢&)—h(E,) for any
teR. Then g is a strictly increasing homeomorphism of R such that
9(0)=0, g(R)=R. Thus

d(2g (1), 2>t +4))=d(2(+9(B), To*(t+&0)
= d(zh(t + 50), Zo*(t+ &)
<e&'<el4 . (1)

For 7,=t<7,,, (¢€Z), it is enough to prove the following to obtain the
conclusion.

d(z,9(t), x(t—7,)) <e/2 .
Indeed, if 7,<t+&,<7,.,, Wwe have by (Bl) and (1)

d(z,9(), z(t—17)))
Sd(2,9(), x*(t+&))) +d(x,*(t+ &), x(t—17,))
<eld+d(x,(t+&—7.), z(t—7)))
<e/d+e/d=¢g/2,

and if 7., =t+& <7y, then

d(2,9(), z.(t—7.))
S d(2,9(0), Tox(t+ &) +d(@*(E+&)), 2t —7,))
<e/d+d@ (E+E&—Tir), TlTipy—T)E—Ti1y)) -

Since d(x,,, (7o, —7)) =d(®i1y, P(,))<d<€', we have by (B2)
(@ (E+E0—Tir1)y TlTit—T)(E— Ti1)) <&/4,
and hence

d(2,9(0), z,(t—7,))<e/2 .
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For the case that 7, ,<t+g,<r, the analogous argument ensures
that

d(z9Q@), z,(t—7))<e/2  for 7,5t<7y, (1€Z).

To obtain Theorem A it is enough to see that 2z, »-traces the §-
pseudo orbit {x}i_.. To do this assume that the d-pseudo orbit {x}_.
is not 7-traced by 2z, in the positive direction. Since d(z, x,)<e/2<7,
there is j such that d(z, z,)<% for 0<i<Jj and

d(z:" %)27) ’
where z,=P,(2,_,t,_,). Put z,,,=zu, for u, with |{,—u,/=<p. Since 20<g,
each u, is determined uniquely. For simplicity write
i i-1
l,=>u, and 7,=>.¢,.
n=0
Then we have either
(a) Ig(Tj)—ljl_S_ﬂ ’
or
(b) lgz)—L|>p.

For the both cases (a) and (b) we can derive contradictions as follows.
For the case (a), from (A4) and the fact that d(z,, x;)=7>¢,, we have

5/2 > d(zog(z'j)’ xo*‘l',-)
= d(zj(g(z-j) - l,'), 9-'7,') >&>¢€,

which is a contradiction. For the case (b), we can find 0<k=<j such
that |g(z,)—l./>¢ and |g(z,)—l|=p (0=i<k). If there is 0=<i<k such
that d(z, z)=¢,, then d(zg(z)), z,)>e;>¢ by (A4) (since =z,=zl, and
lg(z)—LIS ). However d(z,9(t,), x.)=d(z,9(zt.), %,*7,;)<e/2, which is im-
possible. Therefore we have

d(z, x,)<e, 0=1<k) . (2)
Combing (2) and (A3), we have
d(z, P(®-1)) <é, . (3)

It is easily checked that (8) is incomsistent with |g(z,)—I,|>p¢. For, if
L—p>9(t) =, — ¢, then
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p<l,—g@)Sh—l ,+p=u,_ +psa+po+p<C.
By (3) and (A2) we have d(z,9(z.), p(%;_))>¢,. Thus

/2> d(2,9(7s), %o*Ty)
=d(2,9(s), Z1)

2d(2,9(zy), P@,s) —A@(®,_), )
>e—0>e—e/2=¢/2,

which is impossible. If g(z,)<l,_,—#, then g(z,)<l,_,—p=<g(r._,) (since
|9(7e-) —li—,|S ) which contradicts the facts that g is strictly increasing
and 7,_,<7,. If g(z,)—1l, >, then there exists 7, ,<t'<r, with g(t)=
l,+# since g(r,_ )=, +pu<l,+p1<g(z,). And so

plp+,—t<pt+T—rn_)sSp+a<l.

From (3) and (A2) it follows that d(z,(¢+7,—t'), o(x,_,))>¢,. Since
P(Ey_r) =%y by =T _1(Ta—Ty—1), We have @(x,_ )¢’ —7.) =%, _,(t'—7,_,). Thus
by (Ab)

/2> d(2,9(t"), 2_,(t' —74-0))
= d(zo(lk + #)’ wk-l.(t' - z'k—x))
=d(z,(t +7,—t) ' —7), P(xy_ ) (' —7.))
=6,.>¢,
thus contradicting. Therefore the point 2z, 7»-traces the j-pseudo orbit
{z}=_. in the positive direction.

It remains only to prove that the point z, 7-traces the J-pseudo orbit
{x}e-. in the negative direction. To do this if this is false, then there
exists j<O0 such that d(z, ) <7 for j<i<0 and d(z,, z,)=%, where z,=
P,(2,,(—t)) for j=1<0. Let u,€ R satisfy z,=z,,.,(—u,) and |[t,—u/=p.
Put l;=—>7'u, and 7,=—237*¢,. If |g(z;)—1/=<p, then

d(zl;, z)=d(z;, ) =0>e,>¢,
and by (A4)
d(z.9 (T,'); xj) >e&>¢,

which contradicts d(z,9(z;), x,*7;)<e/2. Hence |g(z,)—l;/>pn. Since there
is J=k<0 such that |g(z,)—1./>¢ and |g(z)—l|=p¢ (k<i<0), we have as
in (2)

d(z, x,)<e, for k<150,
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from which

d(P(xy), 2ir) =A(P(@L), Lhir) +A(Epiry Zosr)
<0+6€,<2¢, .

From (A3) together with (z,.,)_,==z,, we have d(z,, x,)<e¢,, which is in-
consistent with |g(z,) —1,/=#. Therefore the point z, 7-traces the §-pseudo
orbit {x.}2>_. in the negative direction.

PrROOF OF COROLLARY B. Let (X, R) have POTP. Then ¢ has POTP
by Theorem A. For 7>0 there is 0<<§<7/2 such that any dé-pseudo orbit
of @ is n/2-traced by some point of S*.

If d(x, y)<é for =, ye€ T+, then a doubly infinite sequence {-:, @ (y),
o, YY), x, @), ++, P'(x), -} is a d-pseudo orbit of @, and hence it is
7/2-traced by some point z€ S*. Therefore z € W;(x) and d(p~*(y), z_,) <%/2
for i=1. On the other hand, since d(x, ¥)<é and d(x, 2) <7/2, we have

d(y, 2)=<d(y, x)+d(x, 2)<o+n/2<n/2+7/2=7,

from which z€ W}(y). Therefore Wi(x) N W;(y)# @, which implies that
@ has a canonical coordinate.

§3. Proof of Theorem C.

Let 0<¢<¢, and 0<a<{/3 be as in §1. Choose 0<a<pB/2 as in
Remark 2 and p>0 as in §1 (5p0<{ and 20<p3).

First we prove the “only if” part. Take 7 and g such that 0<7<a
and 0<p<{—a—p. For 7 and g as before we can choose positive
numbers ¢, &, €, and ¢, a8 in Claim 1 of §2. For 0<e<minfe, ¢, &} and
0<7<min{y, B} as in Claim 2 of §2 we can choose positive numbers ¢,
s Eop & and &

Sinece (X, R) has POTP and 8>0, (X, R) has POTP with respect to
time g from Proposition 1.4 [7]. For 0<¢& <min{e/4, &, &:/2, &} there ex-
ists 0<6<e such that any (5, B)-chain of (X, R) is ¢'-traced by some
point of X. It is enough to show that / is a number with property
POTP for 7.

Now let {x,):, be a d-pseudo orbit of #. Then a pair ({w}il, {t)is)
is a half (6, B)-chain of (X, R), where &(x,)=wx,t,. Then there is a point
z€ X which ¢'-traces the (5, B8)-chain. Thus there exists a strictly in-
creasing homeomorphism 2 of R such that 2(0)=0, A(R)=R and

d(zh(t), z,xt) <&’ for all teR.
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Since d(z, x,) =d(zh(0), x,) <&’ <e,, there exists >0 such that zleS; and
l—t)<6/4 by (B3) (P(x,)=xt,€T;). Put z=21 and take ¢&>0 with
h(g)=1. Then we have that |h(g)—&,)<6/2 and so

'—0<$0'—'t0<0 . (4)

Indeed, if |h(&,)—&|=6/2, then there is 0<t'<¢, such that |[h(t')—t'|=6/2.
Since h(g)=1<t,+8/4<t,+p/4, we have 0<t'<t,+B. For t,=t'<t,+1,
since

o<t —t,<0/2+h(e)—t,<6/2+0/4<60<8,
we have

d(zh(t"), x,xt")=d(z(t' +0/2), z,(t'—t,))

=d(zt,(t' —t,+0/2), z,(t'—1,)) ,

d(x,, x,t,) <0<e'<&/2.

Since d(zt,, zt,) <e,/2 by (B5), we have by (B4)
g’ >d(zh(t), x,xt') >e, ,
thus contradicting. Since d(z, z,)<e'<e, if 0<t’'<t,, we have by (B4)
e’ >d(zh(t), x,xt)=d(z({t' +0/2), z,t")>e, ,

which is a contradiction. Therefore |k(g,)—&,| <6/2.
Put g(t)=h(t+¢&)—h(,) for any tc R. Then g is a strictly increasing
homeomorphism of R with ¢g(0)=0, g(R)=R, and so

d(z,9(t), 2,*(t+&))=d(2(l+g()), 2.x(T+&0))
=d(2h(t+ &), 2.*(t+&))
<&'<e/4. (5)

Let y,=x,,, and s8,=t,,, for 1=0. Put #,=3_¢, (¢=1), 7,=0. Using (4)
and (5), we can easily check that

d(z,9(t), y.(t—7.) <e/2 for 7.=t<%.,

for each 1=0. Thus 2, ¢/2-traces the half (5, 8)-chain ({y.}iz,, {8}i>,), which
ensures that z, 7-traces the /-pseudo orbit {x}i, of &.

It remains to prove “if” part. Let & be as in Proposition 1 of §1.
For a local cross section S,e.&” set D,=8S,[—¢, ¢] (0<£<{) and define a
projective map P{: Df{—S, by P{(x)=u«t, where xt€ S, and |t|=¢.

For >0 we can find 0<g <p such that
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(C1) d(x, xt)<n/2 for x€ X and |t|=¢,.

Let >0 be as in Remark 2 and take N>0 such that 0<n/N<a and

(C2) if d(x, y)<n/N (%, ye X) and xte T; (|t|<6a) for some T; then

yt € D{, where £=¢,8/(12a),

(C8) if d(x, y)<7m/N (x, y € X), then d(xt, yt)<7/2 for some [t|=6a.
Since & has POTP, let 0<6<7/N be a number with the property of
POTP of & for »/N. Choose 0<¢,<¢,/2 and 0<e<d/2 such that

(C4) d(=, xt)<d/2 for x€ X and |t|=é,,

(C5) if d(x, y)<e (wxe T and y € X), then y e D,

Let 0<¢’<min{a, 6} be a number such that

(C6) if d(x, y)<d' (¢, y € X), then d(xt, yt)<e for [t|=a.

Let a pair ({x.), {t.}i>,) be a half (¢’, 2a)-chain of (X, R). To prove
that the half (¢, 2a)-chain is 7-traced by some point of X, assume that
2a<t,<4a for any =0 (cf. Proposition 1.3 [7]) and put p,=max{{; 0=t=t,
and z,t € T*}. Then y,==x,p,€ T (T €. 77) and obviously p,=a since ¢,=2a.
Let {,=t,—p, (note that 0<{,<a). Since d(z,t,, z,,,)<dé’ for n=0, by
(C6)

d(y;r w'n-H( - Cn)) = d(xntn( - Cn)y xn—l—l( - Cn)) <e,

and by (C5), =,,,(—(,)€D,. Thus we can find g¢,,,€R such that
Lnii(—Quiy) = Po(,,(—C)) €S and [(,—q,+,|=&. For simplicity write
Yni1=%ns(—4,y,) for n=0. By (C4) we have

AWYns Ynt1) <EWYny Tpii(— L)) + A1 (— L)y Taii(—Qns))
<e+d/2<0o (n=0) . (6)

We construct an infinite sequence {y.}7,<S* such that y,=z,(—gq, €S*
0=q=a).

Note that |¢,—C,_,|<¢& (n=1). From facts that 0=<¢,<a (n=0) and
g, <a/4 we have

—a/4<q,<5al4 . (7)
Let w:,, . » be points of %.[0, ¢,+p.]NT* such that @H(wi)=wi"
(:=0,1, - 1), where wl=y,€S* and wr=y,€T*. Then by (6)

we have d(go(w,,), wi) <6 for 0=51<m,—1 and d(@(wr»""), wh,)<d. Hence
{wi; 0=1<m,, n=0} is a d-pseudo orbit of &.

Since @& has POTP, there is a point z€S* which (7/N)-traces the
o-pseudo orbit, and hence

d(wy, zm0+'-'+mn_1+i)<7)/N
for 0<i<m, (n=0), where m_,=0 and z,=2. Let u.e R (0=t<m, n=0)
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be the smallest positive time such that @(wi)=wi"'=wiui. Obviously
B=uiZa.

Let v, € R satisfies 2, i...om,_ 44" Vo= 2Zppiooim,_ +i1 30A [up—vi|=Zp0. Put
vo=2.7"v¢ and v,=3""'vi (n=1). Then we have

Zopgt oty +my, — Lmgteetmuy_y " Un

for n=0. Since 2a=<t,<4a, we have a<p,<t.<4a and from (7),
Bm,<q,+p,<6a. Hence m,<6a/8. The difference between the time
v, and the time ¢q,+p, is estimated as follows:

v~ (@ APIS 3 i vilS6at/s  (n20), (8)
o+ U (0 +POIS 3, lus—vi] S6ag/a - (9)

To obtain Theorem C, it is only to prove that the point z(q,—u)
n-traces the half (¢, 2a)-chain ({z,},, {t.}i=,). To do this we construct a
piecewise linear strictly increasing homeomorphism A of R with A(0)=0
and h(R)=R. Define a linear function h,: [0, {,] > R such that

ho(@) ={(vo+us— o+ a,) /8} - T .
Then we have by (9)

vo+ug—qo+Q1gpo_6a$/B+q1
=a—¢&/2—ali>al2,

|ho() — ] = (v +uS— qo+ q,) [t — 1|+ £
Slvetw—qo+q,— D — &l
= 0o+ us— (o + Do) | + 1, — &0l
=6at/B+¢&;
=&/2+&/2=¢, . (10)

On the other hand,

d(2'hy(2), x,t) = d(2(q,— us+ ho(t), Yo(qo+1))
=d(z(q,— us+ hy(t)), 2(q,—us+t))
+d(2(g,—us+ 1), Yo(@o+1)) -

By (10) and (C1) we have
d(2(q,— us+ hy(1)), 2(q,—uo+1))<7/2 (telo, &) .



PSEUDO ORBIT TRACING PROPERTY 247

Since
d(youg, z) = d(wtl» z1) < 77/ N
and

|go— Ut + | = |go| + [ug| + [t = o+ us+ &,
<at+a+4a=6a, '

we have by (C3)

d(2(go—us+1), Yo(q%+1)<7/2 .
Therefore

d(Z'h(t), 2,t)<7 (telo, ty)) .

Define a function A, on [7,, T.4.] (n=1) by

hn(t) =v{(vn —dq, + qn+1)/tn}(t - z"n.) +:§) (’vk — + Qk+1) + ug ’

where 7z, is as in §2. Since v,—¢,+¢,.,>0 by (8), h, is increasing.
Obviously A.(Tni) =Rpi1(Tns) for n=0. We claim that

d(z’hn(t)! xn(t - rn)) < 77 : for Tn é t < Tnty
Indeed, we have
d(2'h,(t), ©.(t—7,))
= d(z’hn(t)! Z’[:Z;‘.O (V—qp) + o (t —Tat :S;o Qk+1)]>

+ d(z’[zz;‘,: (Ve— Qi) +us+ (t —Ta +:2:; qk+1>], x,(t— 2'1.))

and

RORSHCRTARE (RS WA
= (V= Gn+ Qi) [t} E—Ta) — (E—7,)]
S, — 0+ qny— L]
SV == Du+Dnt Quis— Ll
=1V — Q= Dul + | @nss— &4l
=6as/B+45=4 . 11)

Hence by (11) and (Cl) we have
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d(2h®), 2] & o) +us+(t—r.+ S 0u) [ <i2 (12)
On the other hand,
xn(t - Tn) = xn( - qn)(t —Ta + Qn) = y‘n(t —Ta + qn) ’

zmo+ et mg g = zm0+ . -+m,‘_2'vn—1

n—1
= z(z 'v,,)
k=0
n—1 n—2
= z’(Z (Ve—qu) +us+3, qm) .
k=0 k=0
Since

d(yn! zmo+--'+m”_1)=d(w2’ zm0+---+m,_l)<v/N ’
we have by (C3)

(2] 50—+ u+ (t-7at T ) | matt—z)<n2. (13)
Combining (12) and (13) we have
d(zh.(t), z.(t—7,)) <7 for 7,=5t<7,4 -
Let us put

hn(t) if Tn§t<z-n+l

k(&)= It if t<o0.

Then h is our requirement. We proved that for any fixed >0 there
exists 6'>0 such that any half (3, 2a)-chain ({z.},, {t},) of the flow
(X, R) is n-traced by a point 2’ € X.

Since (X, R) has no fixed points, that (X, R) has POTP is equivalent
to that for any ¢>0 there exist 6>0 and >0 such that any half (9, a)-
chain of (X, R) is e-traced by some point of X. Therefore if the sectional
surjective map @ has POTP, then the flow (X, R) must have POTP. The
proof is completed.
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