Geodesics in Minimal Immersions of $\boldsymbol{S}^{\mathbf{3}}$ into \boldsymbol{S}^{24}

Yosio MUTŌ

(Communicated by K. Ogiue)

In the present paper we consider geodesics which are obtained as images of great circles of $S^{3}(1)$ induced by an isometric minimal immersion $f: S^{3}(1) \rightarrow S^{24}(r), r^{2}=1 / 8$, namely, geodesics of $f\left(S^{3}(1)\right)$. $\quad S^{24}(r)$ being regarded as a hypersphere of \boldsymbol{R}^{25}, we can consider such geodesics as curves in \boldsymbol{R}^{25} with curvatures k_{1}, k_{2}, k_{3}. It is found that these are constants which depend on the choice of the geodesic except the case where f is a standard minimal immersion [8]. Equations satisfied by k_{1}, k_{2}, k_{3} and the necessary and sufficient condition for an isometric minimal immersion to have a geodesic which is a circle are obtained.

Though we concentrate our topic upon the case $S^{3}(1) \rightarrow S^{24}(1)$, in the beginning part of the paper some properties of minimal immersions of spheres into spheres in general are recollected with some additional results.

§ 1. Introduction.

Isometric minimal immersions of spheres into spheres were studied by M. do Carmo and N. Wallach [1]. They established a theorem which is fundamental to the study of such immersions. In [1] we can see that such immersions can be regarded as $f: S^{m}(1) \rightarrow S^{n-1}(r)$ where n and r depend on m and a natural number s which is the order of the spherical harmonics on $S^{m}(1)$ inducing f, thus

$$
\begin{aligned}
& n=n(m, s)=\frac{(2 s+m-1)(s+m-2)!}{s!(m-1)!} \\
& r^{2}=(r(m, s))^{2}=\frac{m}{s(s+m-1)}
\end{aligned}
$$

In the present paper the set of such isometric minimal immersions is denoted by $\operatorname{IMI}(m, s)$. From an immersion $f \in \operatorname{IMI}(m, s)$ we get a set of immersions by the action of the group of isometries of $S^{n-1}(r)$. This set is called the equivalence class of f and is denoted by eq (f). The vector space $W(m, s)$ of Do Carmo and Wallach is the space spanned by such equivalence classes. To any such eq (f) there corresponds just one point of $W(m, s)$ but this point lies in a compact convex body $L(m, s)$ in

[^0]$W(m, s)$. If we take a point in the interior of $L(m, s)$, we get an equivalence class eq (f) where f is a full immersion into $S^{n-1}(r)$, but, if we take a point of $\partial L(m, s)$, we get an equivalence class eq (f) where f sends $S^{m}(1)$ into a sphere of dimension less than $n-1$. We consider only cases $m \geqq 3, s \geqq 4$ since every $f \in \operatorname{IMI}(m, s)$ is a standard minimal immersion if $m<3$ or $s<4$.

We can regard $W(m, s)$ as a linear space of some tensors [2], [4]. Any point C of $W(m, s)$ is a harmonic bi-symmetric tensor of bi-degree (s, s), namely C is a tensor of degree $2 s$ satisfying the following conditions (i), (ii), (iii). In addition C satisfies the condition (iv).
(i) $C\left(v_{1}, \cdots, v_{s} ; v_{s+1}, \cdots, v_{2 s}\right)$ is symmetric both in v_{1}, \cdots, v_{s} and in $v_{s+1}, \cdots, v_{2 s}$,
(ii) $C(v, \cdots, v ; w, \cdots, w)=C(w, \cdots, w ; v, \cdots, v)$,
(iii) $\sum_{t=1}^{m+1} C\left(e_{i}, e_{i}, v, \cdots, v ; w, \cdots, w\right)=0$,
(iv) $C(w, w, v, \cdots, v ; v, \cdots, v)=0$.

Here $v_{1}, \cdots, v_{28}, v, w$ are arbitrary vectors of R^{m+1} in which $S^{m}(1)$ is embedded as the unit sphere and $\left\{e_{1}, \cdots, e_{m+1}\right\}$ is an orthonormal basis of \boldsymbol{R}^{m+1}.

Remark. We use the following indices and adopt the summation convention if possible.

$$
A, B, C, \cdots=1, \cdots, n ; \quad h, i, j, \cdots=1, \cdots, m+1
$$

If $f \in \operatorname{IMI}(m, s)$, the point C of $W(m, s)$ corresponding to eq (f) is given by

$$
\begin{equation*}
C=\sum_{A} F^{A} \otimes F^{A}-\sum_{A} H^{A} \otimes H^{A} \tag{1.1}
\end{equation*}
$$

where any one of F^{A} and $H^{4}(A=1, \cdots, n)$ is a symmetric harmonic tensor of degree s in R^{m+1}. The role of such tensors is as follows. Let $\left\{\widetilde{e}_{1}, \cdots, \widetilde{e}_{n}\right\}$ be an orthonormal basis of R^{n} where $S^{n-1}(r)$ is embedded as a hypersphere of radius r, and let u be the position vector of the point of $S^{m}(1)$ in R^{m+1}. Then $F^{A}(u, \cdots, u) \widetilde{e}_{A}=i \circ f(u)$ where i is the embedding of $S^{n-1}(r)$ into \boldsymbol{R}^{n}. On the other hand, if $h \in \operatorname{IMI}(m, s)$ is a standard minimal immersion, then $H^{4}(u, \cdots, u) \widetilde{e}_{A}=i \circ h(u)$. Thus $C \in W(m, s)$ can be written in the form (1.1) if and only if $C \in L(m, s)$ [1], [2]. Such a tensor C is called the associate of f (or eq (f)) or is said to be associated with f (or eq(f)).
$\S \S 2,3$ are written as preliminaries. We define $C_{q, r}$ and $u_{q, r}$ and state the property of the unit bi-symmetric tensor U in $\S 2$ where some results are given which are not stated in [2]. In §3 we define vector fields
$V_{p}: \boldsymbol{R} \rightarrow \boldsymbol{R}^{n}$ and functions $V_{q, r}: \boldsymbol{R} \rightarrow \boldsymbol{R}$ on a geodesic which is obtained as $f(u)$ where $u: \boldsymbol{R} \rightarrow \boldsymbol{R}^{m+1}$ denotes a great circle of $S^{m}(1)$. The relation of $V_{q, r}$ to $C_{q, r}$ and $u_{q, r}$ obtained there is the pivot in our calculation. $\S 4$ is devoted to cases $f \in \operatorname{IMI}(3,4)$. There we have only constant curvatures k_{1}, k_{2}, k_{3} which depend on the geodesic considered. If $k_{2} \neq 0$, then $k_{3} \neq 0$ and

$$
\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}+\left(k_{3}\right)^{2}=20, \quad\left(k_{1}\right)^{2}\left(k_{3}\right)^{2}=64
$$

If $k_{2}=0$, then the geodesic is a circle on a 2 -plane of the ambient \boldsymbol{R}^{25}. However, such geodesics exist only in some isometric minimal immersions and the point C associated with such an immersion belongs to $\partial L(3,4)$. In $\S 5$ we study the value of $C_{4,0}(v, w)$ which $C \in L(3,4)$ can take when $\{v, w\}$ is a set of orthonormal vectors. It is found that the range is [$-1 / 15,1 / 10]$.

§ 2. Property of the unit bi-symmetric tensor U.

The set of harmonic bi-symmetric tensor of bi-degree (s, s), namely, the set of tensors satisfying the conditions (i), (ii), (iii) of $\S 1$, is denoted by $B(m, s)$. Let $B \in B(m, s)$. If we define a function $b: \boldsymbol{R}^{m+1} \times \boldsymbol{R}^{m+1} \rightarrow \boldsymbol{R}$ by

$$
b(v, w)=B(v, \cdots, v ; w, \cdots, w)
$$

then b determines just one $B \in B(m, s)$, namely, if B_{1} and B_{2} belong to $B(m, s)$ and satisfy

$$
B_{1}(v, \cdots, v ; w, \cdots, w)=B_{2}(v, \cdots, v ; w, \cdots, w)
$$

then $B_{1}=B_{2}$.
The tensor $U \in B(m, s)$ that satisfies

$$
\begin{align*}
& U(v, \cdots, v ; w, \cdots, w) \tag{2.1}\\
& \quad=\sum_{p=0}^{\sigma} u_{p}\langle v, w\rangle^{s-2 p}\langle v, v\rangle^{p}\langle w, w\rangle^{p}, \quad u_{0}=1
\end{align*}
$$

identically for vectors v, w of \boldsymbol{R}^{m+1} is called the unit tensor or the unit element of $B(m, s)$. Here $\sigma=[s / 2]$ is the largest natural number satisfying $2 \sigma \leqq s$.
U may be defined by

$$
\begin{align*}
U\left(v_{1}, \cdots, v_{s} ; w_{1},\right. & \left.\cdots, w_{s}\right) \tag{2.2}\\
=\mathscr{S}_{v} \mathscr{S}_{w} \sum_{p=0}^{o} & u_{p}\left\langle v_{1}, v_{2}\right\rangle \cdots\left\langle v_{2 p-1}, v_{2 p}\right\rangle \\
& \left\langle w_{1}, w_{2}\right\rangle \cdots\left\langle w_{2 p-1}, w_{2 p}\right\rangle \\
& \left\langle v_{2 p+1}, w_{2 p+1}\right\rangle \cdots\left\langle v_{s}, w_{s}\right\rangle
\end{align*}
$$

where $\mathscr{S}_{v}\left(\right.$ resp. $\left.\mathscr{S}_{w}\right)$ means symmetrization with respect to v_{1}, \cdots, v_{s} (resp. w_{1}, \cdots, w_{s}) [2].

As U is harmonic, we have, for $p=1, \cdots, \sigma$,

$$
\begin{equation*}
(s-2 p+2)(s-2 p+1) u_{p-1}+2 p(2 s+m-2 p-1) u_{p}=0 \tag{2.3}
\end{equation*}
$$

This and $u_{0}=1$ determine u_{1}, \cdots, u_{a}. As we have defined a and c^{\prime} by

$$
\begin{equation*}
a=\sum_{p=0}^{\sigma} u_{p}, \quad a c^{\prime}=r^{2} \tag{2.4}
\end{equation*}
$$

in [2], the relation between U and the tensors H^{A} of a standard minimal immersion is

$$
\begin{equation*}
c^{\prime} U=\sum_{\Lambda} H^{A} \otimes H^{A} \tag{2.5}
\end{equation*}
$$

If $m=3$ and $s=4$, we have

$$
\begin{equation*}
a=\frac{5}{16}, \quad c^{\prime}=\frac{2}{5} \tag{2.6}
\end{equation*}
$$

Let v and w be vectors of \boldsymbol{R}^{m+1}. As in [5] we define $B_{p, q}(v, w)$ by

$$
\begin{equation*}
B_{p, q}(v, w)=B(v, \cdots, v, w, \cdots, w ; v, \cdots, v, w, \cdots, w) \tag{2.7}
\end{equation*}
$$

where in the right hand side w appears p times before the semicolon and q times after the semicolon. As an application (2.7) defines $U_{p, q}(v, w)$ and $C_{p, q}(v, w) . \quad C_{p, q}(v, w)$ vanishes if $p+q \leqq 3$ or $p+q \geqq 2 s-3$ [2], [4].

Lemma 2.1. Let B be any element of $B(m, s)$ and let $B_{p, q}(v, w)$ be defined by (2.7). Then replacing v by $v+x w$ and w by $w+y v$ where x, $\boldsymbol{y} \in \boldsymbol{R}$ we get

$$
\begin{align*}
B_{p, q}(v & +x w, w+y v) \tag{2.8}\\
= & B_{p, q}(v, w) \\
& +\left((s-p) B_{p+1, q}(v, w)+(s-q) B_{p, q+1}(v, w)\right) x \\
& +\left(p B_{p-1, q}(v, w)+q B_{p, q-1}(v, w)\right) y \\
& +[*]
\end{align*}
$$

where [*] is a polynomial in x and y containing only terms of degree higher than one.

From (2.1) or (2.2) we can see that, if the set $\{v, w\}$ is orthonormal, then $U_{p, q}(v, w)$ does not depend on the choice of the orthonormal set, so
that we can write $U_{p, q}(v, w)=u_{p, q}$. Clearly $u_{p, q}$ vanishes if $p+q$ is odd and we have

$$
\begin{equation*}
u_{p, q}=u_{q, p}=u_{s-p, s-q}=u_{s-q, s-p} \tag{2.9}
\end{equation*}
$$

Taking an orthonormal set $\{a, b\}$ of vectors in \boldsymbol{R}^{m+1}, we can express a great circle of $S^{m}(1)$ in the form $u: R \rightarrow R^{m+1}$ where

$$
\begin{equation*}
u(t)=a \cos t+b \sin t \tag{2.10}
\end{equation*}
$$

Thus we have

$$
u^{\prime}(t)=-a \sin t+b \cos t, \quad u^{\prime \prime}(t)=-u(t), \quad\|u(t)\|=\left\|u^{\prime}(t)\right\|=1
$$

If we take any element B of $B(m, s)$, we have $B_{p, q}\left(u(t), u^{\prime}(t)\right)$ by (2.7) and, as an application of (2.8), we get the following lemma.

Lemma 2.2. Let $B \in B(m, s)$ and $u(t)$ be given by (2.10). Then we have

$$
\begin{align*}
& \frac{d B_{p, q}\left(u(t), u^{\prime}(t)\right)}{d t} \tag{2.11}\\
&=(s-p) B_{p+1, q}\left(u, u^{\prime}\right)+(s-q) B_{p, q+1}\left(u, u^{\prime}\right) \\
&-p B_{p-1, q}\left(u, u^{\prime}\right)-q B_{p, q-1}\left(u, u^{\prime}\right)
\end{align*}
$$

where $u(t)$ and $u^{\prime}(t)$ are abbreviated to u and u^{\prime}.
This result can be applied to U and $C \in W(m, s) . \quad\left\{u(t), u^{\prime}(t)\right\}$ being orthonormal, we have $U_{p, q}\left(u(t), u^{\prime}(t)\right)=u_{p, q}$. Hence we get, in view of (2.11),

$$
\begin{equation*}
(s-p) u_{p+1, q}+(s-q) u_{p, q+1}=p u_{p-1, q}+q u_{p, q-1} \tag{2.12}
\end{equation*}
$$

When we want to find the value of $u_{p, q}$, we can use (2.12) in addition to (2.2).

If $m=3$ and $s=4$, we get

$$
\begin{array}{lll}
u_{0,0}=\frac{5}{16}, & u_{2,0}=-\frac{5}{48}, & u_{1,1}=\frac{5}{32} \\
u_{4,0}=\frac{1}{16}, & u_{1,3}=-\frac{3}{32}, & u_{2,2}=\frac{19}{144} \\
u_{4,2}=u_{2,0}, & u_{3,3}=u_{1,1}, & u_{4,4}=u_{0,0}
\end{array}
$$

\S 3. Vector fields V_{p} and functions $V_{q, r}$ on a geodesic.
When an orthonormal set $\{a, b\}$ of vectors of $\boldsymbol{R}^{\boldsymbol{m + 1}}$ is given, we get a great circle of $S^{m}(1)$ such that

$$
\begin{equation*}
u(t)=a \cos t+b \sin t \tag{3.1}
\end{equation*}
$$

The image $f(u(t))$ by $f \in \operatorname{IMI}(m, s)$ describes a geodesic of $f\left(S^{m}(1)\right)$. Conversely any geodesic of $f\left(S^{m}(1)\right)$ can be expressed by $f(u(t))$ where $u(t)$ is given by (3.1) with $\{a, b\}$ depending on the choice of the geodesic. Thus a geodesic of $f\left(S^{m}(1)\right)$ parametrized by its arc length can be expressed by

$$
X^{A}(t)=F^{4}(u(t), \cdots, u(t))
$$

in \boldsymbol{R}^{n} where F^{A} are harmonic tensors explained in $\S 1$.
Let us define functions $F_{p}^{4}(t)$ by

$$
\begin{equation*}
F_{p}^{s}(t)=F^{A}\left(u(t), \cdots, u(t), u^{\prime}(t), \cdots, u^{\prime}(t)\right) \tag{3.2}
\end{equation*}
$$

where in the right hand side $u(t)$ appears $s-p$ times and $u^{\prime}(t)$ appears p times. Then we get

$$
\begin{equation*}
\frac{d F_{p}^{4}(t)}{d t}=(s-p) F_{p+1}^{\prime}(t)-p F_{p-1}^{\cdot 1}(t) \tag{3.3}
\end{equation*}
$$

by virtue of $u^{\prime \prime}=-u$. Besides, we have

$$
\begin{equation*}
F_{p}(t+\pi / 2)=(-1)^{p} F_{s-p}^{s}(t) \tag{3.4}
\end{equation*}
$$

Let us now define V_{p} by

$$
\begin{equation*}
V_{p}(t)=F_{p}^{\prime \cdot}(t) \widetilde{e}_{A} \tag{3.5}
\end{equation*}
$$

Then from (3.3) and (3.4) we get

$$
\begin{align*}
& \frac{d V_{p}}{d t}=(s-p) V_{p+1}-p V_{p-1} \tag{3.6}\\
& V_{p}(t+\pi / 2)=(-1)^{p} V_{s-p}(t) \tag{3.7}
\end{align*}
$$

Differentiating $X(t)=V_{0}(t)$ repeatedly with respect to t, we get, by virtue of (3.6),

$$
\begin{align*}
& X(t)=V_{0}(t) \tag{3.8}\\
& \frac{d X(t)}{d t}=s V_{1}(t)
\end{align*}
$$

$$
\begin{aligned}
& \frac{d^{2} X(t)}{d t^{2}}=-s V_{0}(t)+s(s-1) V_{2}(t) \\
& \frac{d^{3} X(t)}{d t^{3}}=\left(-3 s^{2}+2 s\right) V_{1}(t)+s(s-1)(s-2) V_{3}(t),
\end{aligned}
$$

which may be written

$$
\begin{align*}
& \frac{d^{2 p} X(t)}{d t^{2 p}}=\sum_{q=0}^{p} a_{p, q} V_{2 q}(t), \tag{3.9}\\
& \frac{d^{2 p+1} X(t)}{d t^{2 p+1}}=\sum_{q=0}^{p} b_{p, q} V_{2 q+1}(t) .
\end{align*}
$$

$V_{q, r}(t)$ is defined by

$$
\begin{equation*}
V_{q, r}(t)=\left\langle V_{q}(t), V_{r}(t)\right\rangle=\sum_{A} F_{p}^{\prime}(t) F_{r}^{A}(t) . \tag{3.10}
\end{equation*}
$$

We have

$$
\begin{equation*}
V_{q, r}(t+\pi / 2)=(-1)^{q+r} V_{s-q, s-r}(t) . \tag{3.11}
\end{equation*}
$$

From (1.1), (2.5) and $U_{q, r}\left(u(t), u^{\prime}(t)\right)=u_{q, r}$ we get

$$
\begin{equation*}
V_{q, r}(t)=C_{q, r}\left(u(t), u^{\prime}(t)\right)+c^{\prime} u_{q, r} \tag{3.12}
\end{equation*}
$$

If $q+r \leqq 3$ or $q+r \geqq 2 s-3$, then we have

$$
V_{q, r}(t)=c^{\prime} u_{q, r}
$$

because of $C_{q, r}(v, w)=0[4]$.
§4. Geodesics in isometric minimal immersions $S^{3}(1) \rightarrow S^{24}(r)$.
The Frenet formula of a geodesic in this case, considered as a curve in R^{25}, is written as follows,

$$
\begin{aligned}
& \frac{d X}{d t}=i_{1} \\
& \frac{d i_{1}}{d t}=k_{1} i_{2} \\
& \frac{d i_{2}}{d t}=-k_{1} i_{1}+k_{2} i_{3} \\
& \frac{d i_{3}}{d t}=-k_{2} i_{2}+k_{3} i_{4}
\end{aligned}
$$

$$
\frac{d i_{4}}{d t}=-k_{3} i_{3}
$$

where $\left\{i_{1}, i_{2}, i_{3}, i_{4}\right\}$ is an orthonormal set of vectors in R^{25} depending on t. This formula stops as above since we have

$$
\begin{aligned}
& \frac{d X}{d t}=4 V_{1} \\
& \frac{d^{2} X}{d t^{2}}=-4 V_{0}+12 V_{2} \\
& \frac{d^{3} X}{d t^{3}}=-40 V_{1}+24 V_{3} \\
& \frac{d^{4} X}{d t^{4}}=40 V_{0}-192 V_{2}+24 V_{4}, \\
& \frac{d^{5} X}{d t^{5}}=544 V_{1}-480 V_{8}
\end{aligned}
$$

Eliminating V_{1} and V_{3} we get

$$
\begin{equation*}
\frac{d^{5} X}{d t^{5}}+20 \frac{d^{3} X}{d t^{3}}+64 \frac{d X}{d t}=0 \tag{4.1}
\end{equation*}
$$

First we have

$$
\begin{aligned}
& i_{1}=4 V_{1} \\
& k_{1} i_{2}=-4 V_{0}+12 V_{2}
\end{aligned}
$$

hence

$$
\left(k_{1}\right)^{2}=16 V_{0,0}-96 V_{2,0}+144 V_{2,2} .
$$

Now, in view of (3.12) we have

$$
V_{0,0}=c^{\prime} u_{0,0}, \quad V_{2,0}=c^{\prime} u_{2,0}, \quad V_{2,2}=c^{\prime} u_{2,2}+C_{2,2}\left(u, u^{\prime}\right)
$$

where $C_{p, q}\left(u(t), u^{\prime}(t)\right)$ is abbreviated to $C_{p, q}\left(u, u^{\prime}\right)$. As $s=4, C_{q, r}$ vanishes if $q+r \neq 4$ and this results in $d C_{q, r}\left(u, u^{\prime}\right) / d t=0$ since we have (2.11). Thus k_{1} is a constant.

As we get $C_{4,0}=-4 C_{3,1}=6 C_{2,2}$ from $C_{3,0}=C_{2,1}=0$, we can put

$$
V_{2,2}=c^{\prime} u_{2,2}+\frac{1}{6} C_{4,0}\left(u, u^{\prime}\right)
$$

As we have $c^{\prime}=2 / 5$, we get

$$
\begin{aligned}
& V_{0,0}=\frac{1}{8}, \quad V_{2,0}=-\frac{1}{24}, \\
& V_{2,2}=\frac{19}{360}+\frac{1}{6} C_{4,0}\left(u, u^{\prime}\right),
\end{aligned}
$$

hence

$$
\begin{equation*}
\left(k_{1}\right)^{2}=\frac{68}{5}+24 C_{4,0}\left(u, u^{\prime}\right) . \tag{4.2}
\end{equation*}
$$

As any geodesic is a curve on $S^{24}(r), r^{2}=1 / 8, k_{1}$ must satisfy $\left(k_{1}\right)^{2} \geqq 8$. As k_{1} is a constant, we get from $d\left(k_{1} i_{2}\right) / d t=-40 V_{1}+24 V_{3}$

$$
\begin{equation*}
-\left(k_{1}\right)^{2} i_{1}+k_{1} k_{2} i_{3}=-40 V_{1}+24 V_{3}, \tag{4.3}
\end{equation*}
$$

hence

$$
\left(k_{1}\right)^{2}\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}\right)=1600 V_{1,1}-1920 V_{3,1}+576 V_{3,3} .
$$

As we have

$$
\begin{aligned}
& V_{1,1}=c^{\prime} u_{1,1}=\frac{1}{16}, \quad V_{3,3}=c^{\prime} u_{3,3}=c^{\prime} u_{1,1}=\frac{1}{16}, \\
& V_{3,1}=c^{\prime} u_{3,1}+C_{3,1}\left(u, u^{\prime}\right)=-\frac{3}{80}+\left(-\frac{1}{4}\right) C_{4,0}\left(u, u^{\prime}\right),
\end{aligned}
$$

we get

$$
\begin{equation*}
\left(k_{1}\right)^{2}\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}\right)=208+480 C_{4,0}\left(u, u^{\prime}\right) \tag{4.4}
\end{equation*}
$$

which proves that k_{2} is also a constant. From this and (4.2) we get

$$
\begin{equation*}
\left(k_{1}\right)^{2}\left(k_{2}\right)^{2}=8 \cdot\left(\frac{36}{25}\right)\left(1-10 C_{4,0}\left(u, u^{\prime}\right)\right)\left(2+5 C_{4,0}\left(u, u^{\prime}\right)\right) . \tag{4.5}
\end{equation*}
$$

Differentiating (4.3) with respect to t, we get, as k_{1} and k_{2} are constants,

$$
\begin{aligned}
& -\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}\right) k_{1} i_{2}+k_{1} k_{2} k_{3} i_{4} \\
& =40 V_{0}-192 V_{2}+24 V_{4} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \left(k_{1}\right)^{2}\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}\right)^{2}+\left(k_{1} k_{2} k_{3}\right)^{2} \\
& \quad=1600 V_{0,0}-15360 V_{2,0}+36864 V_{2,2}+1920 V_{4,0} \\
& \quad-9216 V_{4,2}+576 V_{4,4} .
\end{aligned}
$$

Then, substituting

$$
\begin{aligned}
& V_{4,0}=c^{\prime} u_{4,0}+C_{4,0}\left(u, u^{\prime}\right)=\frac{1}{40}+C_{4,0}\left(u, u^{\prime}\right), \\
& V_{4,2}=c^{\prime} u_{4,2}=-\frac{1}{24}, \quad V_{4,4}=c^{\prime} u_{4,4}=\frac{1}{8}
\end{aligned}
$$

into this formula, we get

$$
\begin{aligned}
& \left(k_{1}\right)^{2}\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}\right)^{2}+\left(k_{1} k_{2} k_{3}\right)^{2} \\
& \quad=\frac{16448}{5}+8064 C_{4,0}\left(u, u^{\prime}\right)
\end{aligned}
$$

and further

$$
\begin{aligned}
&\left(k_{1}\right)^{4}\left(k_{2} k_{3}\right)^{2} \\
&=\left(\frac{16448}{5}+8064 C_{4,0}\left(u, u^{\prime}\right)\right)\left(\frac{68}{5}+24 C_{4,0}\left(u, u^{\prime}\right)\right) \\
&-\left(208+480 C_{4,0}\left(u, u^{\prime}\right)\right)^{2} \\
&= 8^{3} \cdot\binom{36}{25}\left(1-10 C_{4,0}\left(u, u^{\prime}\right)\right)\left(2+5 C_{4,0}\left(u, u^{\prime}\right)\right)
\end{aligned}
$$

by virtue of (4.2) and (4.4). From this result and (4.5) it becomes clear that the curvatures satisfy $\left(k_{1}\right)^{4}\left(k_{2} k_{3}\right)^{2}=8^{2}\left(k_{1} k_{2}\right)^{2}$, hence

$$
\begin{equation*}
\left(k_{c_{1}}\right)^{2}\left(k_{3}\right)^{2}=64 \tag{4.6}
\end{equation*}
$$

if $k_{2} \neq 0$.
From (4.4) and (4.6) we get

$$
\left(k_{1}\right)^{2}\left(\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}+\left(k_{3}\right)^{2}\right)=272+480 C_{4,0}\left(u, u^{\prime}\right) .
$$

This and (4.2) result in

$$
\begin{equation*}
\left(k_{1}\right)^{2}+\left(k_{2}\right)^{2}+\left(k_{3}\right)^{2}=20 \tag{4.7}
\end{equation*}
$$

Thus we have obtained the following theorem.
Theorem 4.1. Let $\Gamma=f(\gamma)$ be a geodesic of $f\left(S^{3}(1)\right.$) where f is an isometric minimal immersion $\in \operatorname{IMI}(3,4)$, and k_{1}, k_{2}, k_{3} be the curvatures of Γ when it is considered as a curve in the ambient R^{25}. Then the curvatures are constants and $k_{1} \geqq 8^{1 / 2}$. If $k_{2} \neq 0$, the curvatures satisfy (4.6) and (4.7).

Remark. This theorem shows that $k_{3}=0$ can occur only if $k_{2}=0$.

If $k_{2}=0$, we get from (4.5)

$$
\begin{equation*}
\left(C_{4,0}\left(u, u^{\prime}\right)+\frac{2}{5}\right)\left(C_{4,0}\left(u, u^{\prime}\right)-\frac{1}{10}\right)=0 . \tag{4.8}
\end{equation*}
$$

If $C_{4,0}\left(u, u^{\prime}\right)=-2 / 5$ occurs, we get $\left(k_{1}\right)^{2}=4$, contrary to $k_{1} \geqq 8^{1 / 2}$. Hence we have

$$
C_{4,0}\left(u, u^{\prime}\right)=\frac{1}{10} .
$$

From $k_{1}=$ constant and $k_{2}=0$ we see that the curve is a circle in a 2-plane of R^{25}. Thus we get the following theorem.

Theorem 4.2. The necessary and sufficient condition for an isometric minimal immersion $f \in \operatorname{IMI}(3,4)$ to have a geodesic which is a circle in a 2-plane of the ambient \boldsymbol{R}^{25} is that the associated tensor C is such that there exists an orthonormal pair of vectors $\{v, w\}$ in \boldsymbol{R}^{4} satisfying $C_{4,0}(v, w)=1 / 10$. The curvature is given by $k_{1}=4$. If $f \in \operatorname{IMI}(3,4)$ is such that the associated tensor C satisfies $C_{4,0}(v, w)=1 / 10$ for some orthonormal $\{v, w\}$, then the great circle $u(t)=v \cos t+w \sin t$ of $S^{3}(t)$ is sent by f into a 2-plane of \boldsymbol{R}^{25} and the image is a circle of radius 1/4. Besides, C belongs to $\partial L(3,4)$.

Proof. Let us show that $C \in \partial L(3,4)$. (4.5) states that, if C belongs to $L(3,4)$, then

$$
\left(1-10 C_{4,0}(v, w)\right)\left(2+5 C_{4,0}(v, w)\right) \geqq 0
$$

for every orthonormal $\{v, w\}$. Now, let an element $C \in L(3,4)$ be such that, for some orthonormal $\{v, w\}, C_{4,0}(v, w)=1 / 10$. Then taking any $\lambda>1$, we get $\lambda C_{4,0}(v, w)>1 / 10$, hence

$$
\left(1-10 \lambda C_{4,0}(v, w)\right)\left(2+5 \lambda C_{4,0}(v, w)\right)<0
$$

Thus λC does not belong to $L(3,4)$ and this proves $C \in \partial L(3,4)$.
Geodesics which are circles exist [7]. Thus there also exists C such as stated in Theorem 4.2.
§5. Value of $C_{4,0}(v, w)$ which $C \in L(3,4)$ can take when $\{v, w\}$ is a set of orthonormal vectors.

As X is a solution of the differential equation (4.1), there exists a set of vectors $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}$ in R^{25} such that

$$
\begin{aligned}
& X(t)=a_{0}+a_{1} \cos 2 t+b_{1} \sin 2 t+a_{2} \cos 4 t+b_{2} \sin 4 t \\
& \frac{d X}{d t}=-2 a_{1} \sin 2 t+2 b_{1} \cos 2 t-4 a_{2} \sin 4 t+4 b_{2} \cos 4 t \\
& \frac{d^{2} X}{d t^{2}}=-4 a_{1} \cos 2 t-4 b_{1} \sin 2 t-16 a_{2} \cos 4 t-16 b_{2} \sin 4 t \\
& \frac{d^{3} X}{d t^{3}}=8 a_{1} \sin 2 t-8 b_{1} \cos 2 t+64 a_{2} \sin 4 t-64 b_{2} \cos 4 t \\
& \frac{d^{4} X}{d t^{4}}=16 a_{1} \cos 2 t+16 b_{1} \sin 2 t+256 a_{2} \cos 4 t+256 b_{2} \sin 4 t
\end{aligned}
$$

On the other hand, X satisfies

$$
\begin{aligned}
& \langle X, X\rangle=\frac{1}{8}, \quad\left\langle X, \frac{d X}{d t}\right\rangle=0, \quad\left\langle\frac{d X}{d t}, \frac{d X}{d t}\right\rangle=1, \\
& \left\langle X, \frac{d^{2} X}{d t^{2}}\right\rangle=-1, \quad\left\langle X, \frac{d^{3} X}{d t^{3}}\right\rangle=0, \quad\left\langle\frac{d X}{d t}, \frac{d^{2} X}{d t^{2}}\right\rangle=0, \\
& \left\langle\frac{d^{2} X}{d t^{2}}, \frac{d^{2} X}{d t^{2}}\right\rangle=\left(k_{1}\right)^{2}, \quad\left\langle\frac{d^{2} X}{d t^{2}}, \frac{d^{3} X}{d t^{3}}\right\rangle=0 .
\end{aligned}
$$

Thus we can see that $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}$ are mutually orthogonal satisfying

$$
\begin{aligned}
& \left\langle a_{0}, a_{0}\right\rangle=\frac{1}{64}\left(-12+\left(k_{1}\right)^{2}\right), \\
& \left\langle a_{1}, a_{1}\right\rangle=\left\langle b_{1}, b_{1}\right\rangle=\frac{1}{48}\left(16-\left(k_{1}\right)^{2}\right), \\
& \left\langle a_{2}, a_{2}\right\rangle=\left\langle b_{2}, b_{2}\right\rangle=\frac{1}{192}\left(-4+\left(k_{1}\right)^{2}\right) .
\end{aligned}
$$

This result shows that k_{1} is restricted by

$$
\begin{equation*}
12 \leqq\left(k_{1}\right)^{2} \leqq 16 \tag{5.2}
\end{equation*}
$$

Now let us consider all great circles of $S^{3}(1)$. Then, in place of $C_{4,0}\left(u, u^{\prime}\right)$, we can take $C_{4,0}(v, w)$ where $\{v, w\}$ is an arbitrary set of orthonormal vectors. From (4.2) and (5.2) we get the following theorem.

THEOREM 5.1. Let C be a point of $W(3,4)$ in $L(3,4)$ and $\{v, w\}$ be a set of orthonormal vectors of \boldsymbol{R}^{4}. Then $C_{4,0}(v, w)$ satisfies

$$
-\frac{1}{15} \leqq C_{4,0}(v, w) \leqq \frac{1}{10} .
$$

Let us cite an example from §9 of [6]. We take a homogeneous
harmonic polynomial a of degree four in the variables $\xi_{1}, \xi_{2}, \xi_{3}$

$$
\begin{aligned}
a & =a^{\kappa \lambda \mu \nu} \xi_{\kappa} \xi_{\lambda} \xi_{\mu} \xi_{\nu} \\
& =5\left(\xi^{4}+\eta^{4}+\zeta^{4}\right)-3\left(\xi^{2}+\eta^{2}+\zeta^{2}\right)^{2}
\end{aligned}
$$

where $\xi=\xi_{1}, \eta=\xi_{2}, \zeta=\xi_{3}$. Taking as in [3] a set $\left\{J_{1}, J_{2}, J_{3}\right\}$ of linear transformations acting on \boldsymbol{R}^{4} such that

$$
\begin{array}{ll}
J_{2} J_{3}=-J_{3} J_{2}=J_{1}, & J_{3} J_{1}=-J_{1} J_{3}=J_{2}, \\
J_{1} J_{2}=-J_{2} J_{1}=J_{3}, & J_{1} J_{1}=J_{2} J_{2}=J_{3} J_{3}=-1,
\end{array}
$$

we can define an element $C=C_{j}^{(a)}$ of $W(3,4)$ by

$$
\begin{aligned}
& C_{J}^{(a)}(v, v, v, v ; w, w, w, w) \\
& \quad=a^{\kappa \lambda \mu \nu} \xi_{\kappa}(v, w) \xi_{\lambda}(v, w) \xi_{\mu}(v, w) \xi_{\nu}(v, w)
\end{aligned}
$$

where $\xi_{\kappa}(v, w)=\left\langle J_{\kappa} w, v\right\rangle$.
Let $\{v, w\}$ be an arbitrary set of orthonormal vectors. If we put $\alpha=-\left\langle J_{1} w, v\right\rangle, \beta=-\left\langle J_{2} w, v\right\rangle, \gamma=-\left\langle J_{3} w, v\right\rangle$, then we have $\alpha^{2}+\beta^{2}+\gamma^{2}=1$ and $w=\left(\alpha J_{1}+\beta J_{2}+\gamma J_{3}\right) v$. Conversely, if α, β, γ satisfy $\alpha^{2}+\beta^{2}+\gamma^{2}=1$ and v is a unit vector, then v and $w=\left(\alpha J_{1}+\beta J_{2}+\gamma J_{3}\right) v$ make an orthonormal pair. Then $C=C_{j}^{(a)}$ satisfies

$$
C_{4,0}(v, w)=5\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right)-3
$$

On the other hand, according to [6], $(1 / 20) C_{j}^{(a)}$ is a boundary point of $L(3,4)$. This satisfies

$$
\left(\frac{1}{20} C_{J}^{(a)}\right)_{4,0}(v, w)=\frac{1}{4}\left(\alpha^{4}+\beta^{4}+\gamma^{4}\right)-\frac{3}{20} .
$$

If we put $\alpha=1, \beta=\gamma=0$, then we get $1 / 10$. If we put $\alpha=\beta=\gamma=3^{-1 / 2}$, then we get $-1 / 15$.

Let the set of orthonormal pair of vectors of R^{4} be denoted by OP. Then we can state the following corollary.

Corollary 5.2. We have

$$
\left\{C_{4,0}(v, w) \mid C \in L(3,4),\{v, w\} \in \mathrm{OP}\right\}=[-1 / 15,1 / 10]
$$

References

[1] M. Do Carmo and N. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2), 93 (1971), 43-62.
[2] Y. MuTõ, Some properties of isometric minimal immersions of spheres into spheres, Kodai Math. J., 6 (1983), 308-332.
[3] Y. Mutō, The space W_{2} of isometric minimal immersions of the three-dimensional sphere into spheres, Tokyo J. Math., 7 (1984), 337-358.
[4] Y. MuTō, Isometric minimal immersions of spheres into spheres isotropic up to some order, Yokohama Math. J., 32 (1984), 159-180.
[5] Y. Murō, Groups of motions and minimal immersions of spheres into spheres, Kodai Math. J., 9 (1986), 191-205.
[6] Y. Mutō, Some isometric minimal immersions $S^{3} \rightarrow S^{44}(r), r^{2}=1 / 8$, which are not full, Tensor (N. S.), 45 (1987), 130-140.
[7] Y. Mutō, Some special geodesics in an isometric minimal immersions $S^{3}(1) \rightarrow S^{9}(1 / \sqrt{8})$, Tensor (N. S.), 45 (1987), 141-143.
[8] K. Tsukada, Isotropic minimal immersions of spheres into spheres, J. Math. Soc. Japan, 35 (1983), 355-379.

Present Address:
1533-169-304, Kamariya-cho, Kanazawa-ku, Yokohama 236, Japan

[^0]: Received September 18, 1989

