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Abstract. Let $\theta$ be an irrational number and $A_{\theta}$ be the corresponding irrational rotation
C’-algebra. For any $k\in N\cup\{\infty\}$ let $A_{\theta}^{k}$ be the dense $*$-subalgebra of k-times continuously
differentiable elements in $A_{\theta}$ with respect to the canonical action of the two dimensional
torus and let $A_{\theta}^{0}=A_{\theta}$ . In the present paper we will show that there is an approximately
$inner*$-derivation of $A_{\theta}^{\infty}$ to $A_{\theta}^{\infty}$ which is not inner if and only if $\theta$ i8 a non-generic irrational
number.

\S 1. Preliminaries.

Let $\theta$ be an irrational number and $A_{\theta}$ be the corresponding irrational
rotation $C^{*}$-algebra. Let $u$ and $v$ be unitary elements in $A_{\theta}$ with $uv=$
$e^{l\pi\theta}vu$ which generate $A_{\theta}$ . Let $\tau$ be the unique tracial state on $A_{\theta}$ and
$(\pi_{\tau}, H_{\tau})$ be the cyclic representation associated with $\tau$ . We identify $A_{\theta}$

with $\pi_{\tau}(A_{\theta})$ . Furthermore $A_{\theta}$ can be identified with a dense subspace of
H. with the $L^{2}$-norm topology. Then $\{u^{m}v^{n}\}_{m,n\in Z}$ is an orthonormal basis
of $H_{\tau}$ . Let $t\in R\rightarrow\beta_{t}^{(j)}(j=1,2)$ be the one-parameter groups of automor-
phisms of $A_{\theta}$ defined by

$\beta_{t}^{(1)}(u)=e^{2\pi it}u$ , $\beta_{t}^{(1)}(v)=v$

and

$\beta_{t}^{(2)}(u)=u$ , $\beta_{t}^{(2)}(v)=e^{2\pi it}v$

for any $teR$ . Let $\delta_{1}$ and $\delta_{2}$ be the generators of $\beta^{(1)}$ and $\beta^{(2)}$ Then by
easy computation

$\delta_{1}(u)=2\pi iu$ , $\delta_{1}(v)=0$

and
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$\delta_{2}(u)=0$ , $\delta_{2}(v)=2\pi iv$ .
Since we identify $A_{\theta}$ with $\pi_{f}(A_{\theta})$ and $\tau$ is unique, there are one-parameter
groups of unitary operators $w_{l}^{(j)}(j=1,2)$ on $H_{-}$ such that

$\beta_{t}^{tj)}(x)1=w_{t}^{(j)}x$

for any $x\in A_{\theta},$ $teR$ and $j=1,2$ . Let $h_{\dot{f}}$ be the anti-selfadjoint generators
of $w^{tj)}$ for $j=1,2$ . Then

$h_{j}u=\delta_{j}(u)$ , $h_{j}v=\delta_{\dot{f}}(v)$

and $D(\delta_{j})\subset D(h_{j})$ for $j=1,2$ where $D(\delta_{j})$ and $D(h_{\dot{f}})(j=1,2)$ denote their
$domain8$ . Furthermore for any $keN\cup\{\infty\}$ let $A_{\theta}^{k}$ be the dense $*$-subalgebra
of k-time8 continuously differentiable elements in $A_{\theta}$ with respect to the
canonical action and let $A_{\theta}^{0}=A_{\theta}$ .

LEMMA 1. With the above notations

$h_{1}(D(\delta_{1}))\perp\sum_{n\in l}\oplus Cv^{n}$

and
$h_{2}(D(\delta_{2}))\perp\sum_{\mathfrak{n}\in l}\oplus Cu^{n}$

PROOF. Let $xeD(\delta_{1})$ . Then for any $neZ$

$(h_{1}x|v^{n})=\tau(v^{-n}\delta_{1}(x))=\tau(\delta_{1}(v^{-n}x))=0$

$ 8ince\tau$ is unique where $(\cdot|\cdot)$ is the inner product on $H_{r}$ . Hence

$h_{1}(D(\delta_{1}))\perp\sum_{n\in Z}\oplus Cv^{n}$ .
Similarly we obtain that

$h_{2}(D(\delta_{2}))\perp\sum_{neZ}\oplus Cu^{n}$ . Q.E.D.

DEFINITION. For any $xeA_{\theta}$ there is a $8equence\{c_{n,n}\}el^{2}(Z^{2})$ such
that

$x=\sum_{n,n\in l}c_{n,n}u^{n}v^{n}$

where the summation is considered under the $L^{2}$-norm topology. We say
that $\{c_{n,n}\}$ are the Fourier coeffcients of $x$ .

LEMMA 2. Let $ke$ N. Let $x\in A^{k}(/and$ $\{c_{n.n}\}$ be its Fourier coefficients.
Then
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$|m|^{k}|c_{n,n}|\rightarrow 0$ ,
$|n|^{k}|c_{m,n}|\rightarrow 0$

as $|m|,$ $|n|\rightarrow\infty$ .
PROOF. Since $xeA_{\theta}^{k},$ $x\in D(\delta_{1}^{k})$ .

Fourier coefficients of $h_{1}^{k}x$ . Then
Thus $x\in D(h_{1}^{k})$ . Let $\{d_{n,n}\}$ be the

$h_{1}^{k}x=\sum d_{n,n}u^{m}v^{n}$

where $\{d_{m,n}\}\in l^{2}(Z^{2})$ and the summation is con8idered under the $L^{2}$-norm
topology. By Lemma 1, $d_{0,n}=0$ for any $neZ$. Let

$y=\sum_{n,neZ,m\neq 0}(\frac{1}{2\pi im})^{k}d_{m,n}u^{n}v^{n}$ ,

where the summation is considered under the $L^{2}$-norm topology. Then
by the closedness of $h_{1},$ $yeD(h_{1}^{k})$ and

$h_{1}^{k}y=\sum_{m.nel,n\neq 0}d_{n.n}u^{n}v^{n}$ .
Thus $h_{1}^{k}x=h_{1}^{k}y$ . Hence there is a $z\in\sum_{nez}^{\oplus}Cv^{n}$ such that $x=y+z$ . There-
fore since

$c_{n,n}=(\frac{1}{2\pi im})^{k}d_{n,n}$ if $m\neq 0$ ,

$|m|^{k}|c_{m,n}|\rightarrow 0$

as $|m|,$ $|n|\rightarrow\infty$ . Similarly

$|n|^{k}|c_{n,n}|\rightarrow 0$

as $|m|,$ $|n|\rightarrow\infty$ . Q.E.D.

COROLLARY 3. Let $x\in A_{\theta}^{\infty}$ and $\{c_{n,n}\}$ be its Fourier coefficients. Then
for any $k,$ $l\in N$

$|m|^{k}|n|^{l}|c_{m,n}|\rightarrow 0$

as $|m|,$ $|n|\rightarrow\infty$ .
PROOF. By Lemma 2 we can easily obtain the conclusion. Q.E.D.

\S 2. Inner $*$-derivations of $A_{\theta}^{k+1}$ to $A_{b}^{k}$ .
Now we recall the definitions of a generic irrational numbel and an

approximately inner $*$-derivation.
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DEFINITION. Let $\theta$ be an irrational number. We say that $it$ is
generic if thele are $C>0$ and $\gamma>1$ such that

$|e^{2\pi in\theta}-1|\geqq\frac{C}{n^{r}}$

for any positive integer $n$ . That is, $\theta$ is generic if it is not a Liouville
number.

DEFINITION. Let $\delta$ be a $*$-derivation on a dense $*$-subalgebra $B$ of
$C^{*}$-algebra $A$ . We say it is approximately inner if there is a net $\{b_{\nu}\}$

of anti-selfadjoint elements in $A$ such that

$\delta(x)=\lim_{\nu\rightarrow\infty}(b.x-xb_{\nu})$

fol any $xeB$ . If $B$ i8 countably genelated as an algebra, then 8uch a
net, if it exists, may be taken to be a sequence.

PROPOSITION 4. Let $\theta$ be a generic irrational number. If $C>0$ and
$r>1$ satisfy that

$|e^{2\pi in\theta}-1|\geqq\frac{C}{n^{r}}$

for any positive integer $n$ , then for any positive integer $k$ with $k>\gamma+2$

each approximately inner $*$-derivation $\delta:A^{k+1}\rightarrow A_{J}^{k}$ is inner.

PROOF. We will prove the above proposition in the same way as in
[2, Remalk 4.3]. Since $u$ and $v$ are in $A_{\theta}^{k+1},$ $\delta(u)$ and $\delta(v)$ are in $A_{\theta}^{k}$ . Let

$\delta(u)=\sum_{m,n\in Z}c_{n.n}u^{n}v^{n}$ ,

$\delta(v)=\sum_{m,n\in Z}d_{n,n}u^{n}v^{n}$ ,

where the summation8 are considered under the $L^{2}$-norm topology. Since
$\delta$ is approximately inner, $\tau(u^{*}\delta(u))=0$ . Thus $c_{1,0}=0$ . Similarly $d_{0,1}=0$ .
And since $\delta(uv)=e^{2\pi i\theta}\delta(uv)$ ,

$(1-e^{-2\pi in\theta})c_{n+1,n}+(1-e^{-2\pi in\theta})d_{n,n+1}=0$ (1)

for any $m,$ $neZ$. Furthermore by Lemma 2 there are $K_{\iota}>0$ and $K_{a}>0$

such that

$|c_{n,n}|\leqq-\underline{K}_{\iota}$ for
$|n|^{k}$

$m\in Z,$ $n\in Z-\{0\}$ ,
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$|d_{m,n}|\leqq\frac{K_{d}}{|m|^{k}}$ for $m\in Z-\{0\},$ $n\in Z$ .

The derivation $\delta$ is formally implemented by an operator

$h=\sum_{m,n}a_{m,n}u^{m}v^{n}$

where the coefficients $\{a_{m,n}\}$ are determined by the requirements

$c_{m+1,n}=(e^{-2\pi in\theta}-1)a_{m,n}$ , (2)

$d_{m,n+1}=(1-e^{-2\pi im\theta})a_{m,n}$ . (8)

If $m\neq 0$ and $n\neq 0$ , we define

$a_{m.n}=\frac{c_{m+}}{e^{-2\pi ln}}\theta 1.\frac{n}{-1}$ .

Then by the equation (1), we see that the equation (3) holds. Thus

$a_{m,n}=\frac{d_{m,n+}}{1-e^{-2\pi}}1i\overline{m\theta}$

Hence

$|a_{n,n}|^{2}=\frac{|c_{m+1,n}||d_{m,n+1}|}{|e^{-2\pi in\theta}-1||1-e^{-2\pi in\theta}|}$

$\leqq\frac{K_{c}K_{d}}{C^{2}}\frac{1}{|m|^{k-r}|n|^{k-r}}$ .
If $m\neq 0$ and $n=0$ , we define

$a_{m,0_{2\overline{\pi im\theta}}^{=\frac{d_{m}}{1-e^{-}}}}1$

Then by the equation (1), we see that $c_{m+1,0}=0$ . Thus the equation (2)
holds and

$|a_{m.0}|=|\frac{d_{m,1}}{1-e^{-2\pi lm\theta}}|$

$\leqq\frac{K_{d}}{C}\frac{1}{|m|^{k-r}}$ .
If $m=0$ and $n\neq 0$ , we define

$a_{0,n}=\frac{c_{1,n}}{e^{-2\pi in\theta}-1}$ .
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Then by the equation (1), we see that $d_{0,n+1}=0$ . Thus the equation (3)

holds and

$|a_{0}..|=|\frac{c_{n+}}{e^{-2\pi n}}\theta 1,\frac{n}{-1}|$

$\leqq\frac{K_{0}}{C}\frac{1}{|n|^{k-r}}$ .
If $m=n=0$ , we define $a_{0,0}=0$ . Then since $c_{1,0}=d_{0,1}=0$ , the equations (2)

and (3) hold. Therefore we obtain that {a..n} $el^{1}(Z^{2})$ . Hence $heA_{\theta}$ .
Furthermore since

$\delta(u)^{*}u+u^{*}\delta(u)=0$ ,
$\delta(v)^{*}v+v^{*}\delta(v)=0$ ,

we can ea8i1y see that $h$ is anti-selfadjoint. Q.E.D.

\S 3. An approximately inner $*$-derivation of $A_{\theta}^{k+1}$ to $A_{\theta}^{k}$ which is
not inner.

First we will give a definition.

DEFINITION. Let $\theta$ be an irrational number and $r$ be a positive
number with $r\geqq 1$ . We say that $\theta$ is approximable by rational numbers
to order $r$ if there is a $K(\theta)>0$ , depending only on $\theta$ , such that

$|_{q}\theta-- p-|<\frac{K(\theta)}{q^{r}}$

is satisfied fol infinitely many pairs of integers $p,$ $q$ with $q>0$ .
By ea8y computation $\theta$ is approximable by rational numbers to order

$r\geqq 1$ if and only if there is a $C(\theta)>0$ , depending only on $\theta$ , such that

$|e^{2\pi in\theta}-1|<_{\overline{n}^{r-1}}^{C(\underline{\theta})}---$

is satisfied for infinitely many po8itive integers $n$ .
By Besicovitch [1] or Falconer [5, Theorem 8.16] we can see that for

any $r\geqq 1$ there is an irrational number $\theta$ which is approximable by

rational numbers to order $r$ .
Let $\theta$ be approximable by rational numbers to order $r\geqq 3$ . Let $k$ be

a positive integer with $k\leqq r$ . Then there is a strictly increasing sequence
$\{n_{\dot{f}}\}_{j=1}^{\infty}$ of positive integers such that
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$|e^{2\pi tn_{l^{\theta}}}-1|<\frac{C}{n}(\underline{\theta})_{-}k-1j$

for any $jeN$. Let $\{a_{n}\}_{neZ}$ be the sequence defined by

$a_{n}=\left\{\begin{array}{ll}\frac{1}{j}\frac{1}{n_{\dot{f}}^{k-1}}\frac{1-e^{2\pi in_{\dot{f}}\theta}}{|1-e^{2\pi ln_{j^{\theta}}}|} & if n=n_{j}\\\frac{1}{j}\frac{1}{n_{\dot{f}}^{k-1}}\frac{1-e^{-2\pi in_{j}\theta}}{|1-e^{-2nin_{\dot{J}}\theta}|} & if n=-n_{\dot{f}}\end{array}\right.$

$0$ elsewhere.

LEMMA 5. Let $\theta,$ $k,$ $\{n_{j}\}$ and $\{a_{n}\}$ be as above. If $k\geqq 2$ , we can
define a real valued function $g\in C^{k-2}(T)$ by

$g(t)=\sum_{neZ}a_{n}e^{2\pi int}$

where we identify $C(T)$ with the algebra of all continuous functions on
$R$ with period 1. Then it follows that $\int_{0}^{1}g(t)dt=0$ and there is no con-
tinuous function $h:R\rightarrow R$ with period 1 satisfying that

$g(t)=h(t)-h(t+\theta)$

for any $teR$ .
PROOF. We note that for any $j\in N$

$|a_{n_{j}}|=\frac{1}{jn_{j}^{k-1}}\leqq\frac{1}{j^{k}}$ .
Since $k\geqq 2,$ $\{a_{n}\}\in l^{1}(Z)$ . Hence $geC(T)$ . By the definition of $|g$

$\int_{0}^{1}g(t)=a_{0}=0$

and $g(t)eR$ for any $t\in R$ . For any positive integel $N$ let

$g_{N}(t)=\sum_{n=-N}^{N}a_{n}e^{2\pi int}$ .

Then for any positive integer $l\leqq k-2$

$\frac{d^{l}}{dt^{l}}g_{N}(t)=\sum_{n=-N}^{N}(2\pi in)^{l}a_{n}e^{2\pi int}$

And
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$|(2\pi in_{\dot{f}})^{l}a_{n_{j}}|=\frac{(2\pi)^{l}}{j}\frac{1}{n_{\dot{f}}^{k-l-1}}$

$\leqq(2\pi)^{l}\frac{1}{j^{k-l}}$

$\leqq(2\pi)^{1}\frac{1}{j^{2}}$ .

Hence $\{(d^{l}/dt^{l})g_{N}\}$ is a Cauchy sequence under the norm topology in $C(T)$ .
Thelefore $geC^{k-2}(T)$ .

Now we suppose that there is a continuous function $h:R\rightarrow R$ with
period 1 sati8fying that

$g(t)=h(t)-h(t+\theta)$

for any $teR$ . Then the Fourier series of $h$ should be as follows:

$\sum_{n=-\infty}^{\infty}\frac{a}{1-e}e+c$

where $c$ is a constant number. Since $h$ is continuous,

$\sum_{n=-\infty}^{\infty}\frac{a_{n}}{1-e^{2\pi in\theta}}$

is Ces\‘aro summable. However

$\sum_{n=-\infty}^{\infty}\frac{a_{n}}{1-e^{2\pi in\theta}}=2\sum_{\dot{g}=1}^{\infty}\frac{1}{j}\frac{1}{n_{j}^{k-1}}\frac{1}{|1-e^{2\pi in_{\dot{f}}\theta}|}$ .

By the definition of $\{n_{j}\}$

$\frac{1}{n_{\dot{f}}^{k-1}}\frac{1}{|1-e^{2\pi n_{j^{\theta}}}|}>\frac{1}{n_{\dot{f}}^{k-1}}\frac{n}{C}(\overline{\theta)}jk-1=\frac{1}{C(\theta)}$ .

Since $\sum_{j=1}^{\infty}1/j$ is not Ces\‘aro $8ummable$ , neither is $\sum_{n=-\infty}^{\infty}a_{n}/(1-e^{2\pi in\theta})$ .
Therefore we obtain a contradiction. Q.E.D.

REMARK. Let $g$ be a8 in Lemma 5. Let $\alpha$ be the automorphism of
$A_{\theta}$ defined by

$\alpha(u)=e^{2\kappa ig(v)}u$ ,
$\alpha(v)=v$ .

Then by [7] we can obtain the following facts:
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(1) $\alpha_{*}=id$ on $K_{1}(A_{\theta})$ ,

(2) $\tilde{\tau}_{*}(K_{0}(A_{\theta^{\times}\alpha}Z))=Z+Z\theta$ ,

(3) $\Gamma(\alpha)=T$ ,

where $\tilde{\tau}_{*}$ is the homomorphism of $K_{0}(A_{\theta}\times_{\alpha}Z)$ to $R$ induced by $\tau$ and
$\Gamma(\alpha)$ is the Connes spectlum of $\alpha$ .

Now we will introduce a new notation. For any $s,$ $t\in R$ let $\alpha_{(\cdot,t)}$ be
the automorphism of $A_{\theta}$ defined by

$\alpha_{(\epsilon,t)}(u)=e^{2\pi i}u$ , $\alpha_{(\epsilon,l)}(v)=e^{2\pi it}v$ .
Then by easy computation $\alpha_{(\epsilon,t)}(A_{/}^{k})=A^{k}$ for any $ keN\cup t\infty$ }.

PROPOSITION 6. Let $k$ be an integer with $k\geqq 0$ . Let $\theta$ be approxi-
mable by rational numbers to order $k+3$ . Then there is an approximately
inner $*$-derivation of $A_{\theta}^{k+1}$ to $A^{k}$, whic $h$ is not inner.

PROOF. Let $g$ be as in Lemma 5. Thus $g\in C^{k+1}(T)$ . Let $\alpha$ be as
in the above remark. Since $g\in C^{k+1}(T),$ $\alpha(A^{l})=A_{J}^{l}$ for $l=0,1,2,$ $\cdots,$ $k+1$ .
Hence $\alpha^{-1}\circ\delta_{j}\circ\alpha$ is a $*$-delivation of $A^{k+1}$ to $A_{f}^{k}$ for $j=1,2$ . By Bratteli,
Elliott and Jrgensen [2] there are the unique decompositions

$\alpha^{-1}\circ\delta_{1}\circ\alpha=c_{1,1}\delta_{1}+c_{1,2}\delta_{2}+\tilde{\delta}_{1}$ ,
$\alpha^{-1}\circ\delta_{2}\circ\alpha=c_{2,1}\delta_{1}+c_{2,2}\delta_{2}+\delta_{2}$ ,

where $c_{1,1},$ $c_{1,2},$ $c_{2,1}$ and $c_{2,2}$ are in $R$ and $\delta_{1},$ $\delta_{2}$ are approximately inner
$*$-derivations of $A_{\theta}^{k+1}$ to $A_{\theta}^{k}$ . However by the definition of $\alpha$ we obtain
the following equations:

$(\alpha^{-1}\circ\delta_{1}\circ\alpha)(u)=2\pi iu$ ,
$(\alpha^{-1}\circ\delta_{1}\circ\alpha)(v)=0$ ,
$(\alpha^{-1}\circ\delta_{2}\circ\alpha)(u)=2\pi ig^{\prime}(v)u$ ,
$(\alpha^{-1}\circ\delta_{2}\circ\alpha)(v)=2\pi iv$

where $g^{\prime}$ is the derivative of $g$ . By the uniqueness of the decompo8itions
we can see that

$\alpha^{-1}\circ\delta_{1}\circ\alpha=\delta_{1}$ .
And we obtain the following equations:

$2\pi^{J}ig^{\prime}(v)u=2\pi ic_{2,1}u+\tilde{\delta}_{2}(u)$ ,
$2\pi iv=2\pi ic_{2,2}v+\tilde{\delta}_{2}(v)$ .
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We will show that $5_{2}$ is not inner. We suppose that it is inner. Then
there is a 8elfadjoint element $a$ $eA_{\theta}$ such that

$\tau(a)=0$ ,
$\delta_{2}(x)=i(ax-xa)$

fol any $xeA_{\text{ノ}}^{k+1}$ . Hence we get

au-ua $=2\pi g^{\prime}(v)u-2\pi c_{2.1}u$ ,

i.e.,

a-uau* $=2\pi g^{\prime}(v)-2\pi c_{2,1}$ .
Thus

$\tau(a-uau^{*})=2\pi\tau(g^{\prime}(v))-2\pi c_{2,1}$ .
Since $\tau(uau^{*})=\tau(a)$ and $2\pi\tau(g^{\prime}(v))=0,$ $c_{2,1}=0$ . Moreover

av-va $=2\pi(1-c_{2,2})v$ ,

i.e.,

a-vav* $=2\pi(1-c_{l,2})$ .
Thus

$\tau(a-vav^{*})=2\pi(1-c_{2,2})$ .
Hence we obtain that $c_{2,2}=1$ . Therefore

$a^{-1}\circ\delta_{2}\circ\alpha=\delta_{2}+ad(ia)$

where

$2\pi ig’(v)u=i(au-ua)$ ,
$av-va=0$ .

Since $av=va,$ $a$ $eC^{*}(v)$ where $C^{*}(v)$ is the $C^{*}$-subalgebla of $A_{\theta}$ generated
by $v$ . Hence there is a selfadjoint element $feC(T)$ such that $a=f(v)$ .
And $\int_{0}^{1}f(t)dt=0$ since $\tau(a)=0$ . Let $F$ be the selfadjoint element in $C(T)$

defined by

$F(t)=\int_{0}^{\iota}f(s)ds$

and let $w=e^{iF(v)}$ . Then $w$ i8 a unitaly element in $A_{\theta}$ and
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$w\delta_{2}(w^{*})=e^{iF(v)}\delta_{2}(e^{-tF(v)})$

$=e^{lF(v)}(-iF’(v))e^{-iF(v)}$

$=-if(v)=-ia$

where $F^{\prime}$ is the derivative of $F$. Therefore by easy computation

$Ad(w)\circ\alpha^{-1}\circ\delta_{1}\circ\alpha\circ Ad(w^{*})=\delta_{1}$ ,
$Ad(w)\circ\alpha^{-1}\circ\delta_{2}\circ\alpha\circ Ad(w^{*})=\delta_{2}$ .

Hence there are $s,$ $teR$ such that

$\alpha\circ Ad(w^{*})=\alpha_{(\epsilon,t)}$ ,

i.e.,
$\alpha=\alpha_{(\epsilon,t)}\circ Ad(w)$ .

By Pimsner [12] we see that

$\tilde{\tau}_{*}(K_{0}(A_{\theta^{\times}\alpha}Z))=Z+Z\theta+Z\epsilon+Zt$ .
On the other hand by the above remark

$\tilde{\tau}_{*}(K_{0}(A_{\theta^{\times}\alpha}Z))=Z+Z\theta$ .
Thus $s,$ $ t\in Z+Z\theta$ . Hence, since $\alpha_{\langle\epsilon,t)}$ is inner, so is $a$ . However by the
above remark $\Gamma(\alpha)=T$. This is a contradiction, Therefore

$\delta_{2}QEDis.not$

inner.

DEFINITION. Let $\theta$ be an irrational number. We define $r(\theta)$ by

$r(\theta)=\sup\{r\geqq 1|r$ is a number to which $\theta$ is
approximable by rational numbers}.

We call it the degree of irrationality for $\theta$ .
By Besicovitch [1] or Falconer [5, Theorem 8.16] we see that there

is an irrational number $\theta$ with $\gamma(\theta)<\infty$ . And if $\gamma(\theta)=\infty,$ $\theta$ is a non-
generic irrational number.

THEOREA 7. Let $\theta$ be an irrational number and $r(\theta)$ be its degree

of irrationality. If $\gamma(\theta)>3$ , then for any integer $k$ with $r(\theta)+1<k$ each
approximately inner $*$-derivation of $A_{\theta}^{k+1}$ to $A_{\theta}^{k}\dot{\tau}s$ inner and for any
integer $k$ with $0\leqq k<r(\theta)-3$ there $\dot{r}s$ an approximately $inner*$-derivation
of $A_{t}^{k+1}$ to $A_{\theta}^{k}$ which is not inner.

PROOF. We suppose that $k$ is an integer with $\gamma(\theta)+1<k$ . Let $\delta$ be
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an approximately inner $*$-derivation of $A_{\theta}^{k+1}$ to $A_{\theta}^{k}$ . Then thele is a leal
number $r$ with $r(\theta)+1<r+1<k$ and $C>0$ satisfying that

$|e^{2\pi ln\theta}-1|\geqq\frac{C}{n^{r-1}}$

for any positive integel $n$ . Hence by Ploposition 4 $\delta$ is inner.
Next we suppose that $k$ is an integel with $0\leqq k<r(\theta)-3$ . Then $\theta$

is apploximable by rational numbers to order $k+3$ . Hence by Propo8ition
6 there is an apploximately inner $*$-derivation of $A_{\theta}^{k+1}$ to $A_{\theta}^{k}$ which is not
innel. Q.E.D.

COROLLARY 8. Let $\theta$ be an irrational number. Then there is an
approximately inner $*$-derivation of $A_{\theta}^{\infty}$ to $A_{\theta}^{\infty}$ which is not inner if and
only if $\theta$ is non-generic.

PROOF. We suppose that $\theta$ is non-generic. By [8] there is an auto-
morphism $\alpha$ of $A_{\theta}$ with $\alpha(A_{\theta}^{\infty})=A_{\theta}^{\infty}$ satisfying that

(1) $a_{*}=id$ on $K_{1}(A_{\theta})$ ,

(2) $\tilde{\tau}_{*}(K_{0}(A_{\theta^{\times}\alpha}Z))=Z+Z\theta$ ,

(3) $\Gamma(\alpha)=T$ .
Then we can prove in the same way as in Ploposition 6 that there i8
an apploximately innel $*$-delivation of $A_{\theta}^{\infty}$ to $A_{\theta}^{\infty}$ . And it is easy by [2,
Remark 4.3] to prove the converse part. Q.E.D.
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