Approximately Inner *-Derivations of Irrational Rotation C^* -Algebras

Kazunori KODAKA

Keio University
(Communicated by Y. Ito)

Abstract. Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^* -algebra. For any $k \in \mathbb{N} \cup \{\infty\}$ let A_{θ}^k be the dense *-subalgebra of k-times continuously differentiable elements in A_{θ} with respect to the canonical action of the two dimensional torus and let $A_{\theta}^0 = A_{\theta}$. In the present paper we will show that there is an approximately inner *-derivation of A_{θ}^{∞} to A_{θ}^{∞} which is not inner if and only if θ is a non-generic irrational number.

§ 1. Preliminaries.

Let θ be an irrational number and A_{θ} be the corresponding irrational rotation C^* -algebra. Let u and v be unitary elements in A_{θ} with $uv = e^{2\pi i \theta}vu$ which generate A_{θ} . Let τ be the unique tracial state on A_{θ} and (π_{τ}, H_{τ}) be the cyclic representation associated with τ . We identify A_{θ} with $\pi_{\tau}(A_{\theta})$. Furthermore A_{θ} can be identified with a dense subspace of H_{τ} with the L^2 -norm topology. Then $\{u^m v^n\}_{m,n\in Z}$ is an orthonormal basis of H_{τ} . Let $t \in \mathbb{R} \to \beta_t^{(j)}$ (j=1,2) be the one-parameter groups of automorphisms of A_{θ} defined by

$$\beta_t^{(1)}(u) = e^{2\pi i t} u$$
, $\beta_t^{(1)}(v) = v$

and

$$eta_t^{\scriptscriptstyle(2)}(u)\!=\!u$$
 , $eta_t^{\scriptscriptstyle(2)}(v)\!=\!e^{2\pi it}v$

for any $t \in \mathbb{R}$. Let δ_1 and δ_2 be the generators of $\beta^{(1)}$ and $\beta^{(2)}$. Then by easy computation

$$\delta_1(u) = 2\pi i u$$
, $\delta_1(v) = 0$

and

Received September 14, 1989 Revised December 1, 1989

$$\delta_{\scriptscriptstyle 2}(u) = 0$$
 , $\delta_{\scriptscriptstyle 2}(v) = 2\pi i v$.

Since we identify A_{θ} with $\pi_{\tau}(A_{\theta})$ and τ is unique, there are one-parameter groups of unitary operators $w_{t}^{(j)}$ (j=1, 2) on H_{τ} such that

$$\beta_t^{(j)}(x)1 = w_t^{(j)}x$$

for any $x \in A_{\theta}$, $t \in R$ and j=1, 2. Let h_j be the anti-selfadjoint generators of $w^{(j)}$ for j=1, 2. Then

$$h_i u = \delta_i(u)$$
, $h_i v = \delta_i(v)$

and $D(\delta_j) \subset D(h_j)$ for j=1, 2 where $D(\delta_j)$ and $D(h_j)$ (j=1, 2) denote their domains. Furthermore for any $k \in N \cup \{\infty\}$ let A_{θ}^k be the dense *-subalgebra of k-times continuously differentiable elements in A_{θ} with respect to the canonical action and let $A_{\theta}^0 = A_{\theta}$.

LEMMA 1. With the above notations

$$h_1(D(\delta_1)) \perp \sum_{n \in \mathbb{Z}} \oplus Cv^n$$

and

$$h_2(D(\delta_2)) \perp \sum_{n \in \mathbb{Z}} \oplus Cu^n$$
.

PROOF. Let $x \in D(\delta_1)$. Then for any $n \in \mathbb{Z}$

$$(h_1x|v^n) = \tau(v^{-n}\delta_1(x)) = \tau(\delta_1(v^{-n}x)) = 0$$

since τ is unique where $(\cdot|\cdot)$ is the inner product on H_{τ} . Hence

$$h_1(D(\delta_1)) \perp \sum_{n \in \mathbb{Z}} \oplus Cv^n$$
.

Similarly we obtain that

$$h_2(D(\delta_2)) \perp \sum_{n \in \mathbb{Z}} \oplus Cu^n$$
. Q.E.D.

DEFINITION. For any $x \in A_{\theta}$ there is a sequence $\{c_{m,n}\} \in l^2(\mathbf{Z}^2)$ such that

$$x = \sum_{m,n \in Z} c_{m,n} u^m v^n$$

where the summation is considered under the L^2 -norm topology. We say that $\{c_{m,n}\}$ are the Fourier coefficients of x.

LEMMA 2. Let $k \in \mathbb{N}$. Let $x \in A_n^k$ and $\{c_{m,n}\}$ be its Fourier coefficients. Then

$$|m|^k|c_{m,n}| o 0$$
 , $|n|^k|c_{m,n}| o 0$

as |m|, $|n| \rightarrow \infty$.

PROOF. Since $x \in A_{\theta}^k$, $x \in D(\delta_1^k)$. Thus $x \in D(h_1^k)$. Let $\{d_{m,n}\}$ be the Fourier coefficients of $h_1^k x$. Then

$$h_1^k x = \sum d_{m,n} u^m v^n$$

where $\{d_{m,n}\} \in l^2(\mathbb{Z}^2)$ and the summation is considered under the L^2 -norm topology. By Lemma 1, $d_{0,n}=0$ for any $n \in \mathbb{Z}$. Let

$$y\!=\!\sum\limits_{m,n\in\mathbf{Z},m
eq 0}\!\left(rac{1}{2\pi im}
ight)^{\!k}\!d_{m,n}u^mv^n$$
 ,

where the summation is considered under the L^2 -norm topology. Then by the closedness of h_1 , $y \in D(h_1^k)$ and

$$h_1^k y = \sum_{m,n \in \mathbb{Z}, m \neq 0} d_{m,n} u^m v^n$$
.

Thus $h_1^k x = h_1^k y$. Hence there is a $z \in \sum_{n=z}^{\oplus} Cv^n$ such that x = y + z. Therefore since

$$c_{m,n} = \left(\frac{1}{2\pi im}\right)^k d_{m,n}$$
 if $m \neq 0$,

$$|m|^k|c_{m,n}| \to 0$$

as |m|, $|n| \rightarrow \infty$. Similarly

$$|n|^k|c_{m,n}|\to 0$$

as
$$|m|$$
, $|n| \to \infty$.

Q.E.D.

COROLLARY 3. Let $x \in A_{\theta}^{\infty}$ and $\{c_{m,n}\}$ be its Fourier coefficients. Then for any $k, l \in \mathbb{N}$

$$|m|^k|n|^l|c_{m,n}|\to 0$$

as |m|, $|n| \rightarrow \infty$.

PROOF. By Lemma 2 we can easily obtain the conclusion. Q.E.D.

§2. Inner *-derivations of A_{σ}^{k+1} to A_{σ}^{k} .

Now we recall the definitions of a generic irrational number and an approximately inner *-derivation.

DEFINITION. Let θ be an irrational number. We say that it is generic if there are C>0 and r>1 such that

$$|e^{2\pi i n\theta} - 1| \ge \frac{C}{n^r}$$

for any positive integer n. That is, θ is generic if it is not a Liouville number.

DEFINITION. Let δ be a *-derivation on a dense *-subalgebra B of C^* -algebra A. We say it is approximately inner if there is a net $\{b_{\nu}\}$ of anti-selfadjoint elements in A such that

$$\delta(x) = \lim_{\nu \to \infty} (b_{\nu}x - xb_{\nu})$$

for any $x \in B$. If B is countably generated as an algebra, then such a net, if it exists, may be taken to be a sequence.

PROPOSITION 4. Let θ be a generic irrational number. If C>0 and r>1 satisfy that

$$|e^{2\pi i n\theta} - 1| \ge \frac{C}{n^r}$$

for any positive integer n, then for any positive integer k with k>r+2 each approximately inner *-derivation $\delta\colon A^{k+1}_{\sigma}\to A^k_{\sigma}$ is inner.

PROOF. We will prove the above proposition in the same way as in [2, Remark 4.3]. Since u and v are in A_{θ}^{k+1} , $\delta(u)$ and $\delta(v)$ are in A_{θ}^{k} . Let

$$\delta(u) = \sum_{m,n \in \mathbb{Z}} c_{m,n} u^m v^n$$
,

$$\delta(v) = \sum_{m,n \in \mathbb{Z}} d_{m,n} u^m v^n$$
,

where the summations are considered under the L^2 -norm topology. Since δ is approximately inner, $\tau(u^*\delta(u))=0$. Thus $c_{1,0}=0$. Similarly $d_{0,1}=0$. And since $\delta(uv)=e^{2\pi i\theta}\delta(uv)$,

$$(1-e^{-2\pi i m\theta})c_{m+1,n}+(1-e^{-2\pi i n\theta})d_{m,n+1}=0$$
 (1)

for any m, $n \in \mathbb{Z}$. Furthermore by Lemma 2 there are $K_c > 0$ and $K_d > 0$ such that

$$|c_{m,n}| \leq \frac{K_c}{|n|^k}$$
 for $m \in \mathbb{Z}$, $n \in \mathbb{Z} - \{0\}$,

$$|d_{m,n}| \leq \frac{K_d}{|m|^k}$$
 for $m \in \mathbb{Z} - \{0\}$, $n \in \mathbb{Z}$.

The derivation δ is formally implemented by an operator

$$h = \sum_{m,n} a_{m,n} u^m v^n$$

where the coefficients $\{a_{m,n}\}$ are determined by the requirements

$$c_{m+1,n} = (e^{-2\pi i n \theta} - 1) a_{m,n}$$
, (2)

$$d_{m,n+1} = (1 - e^{-2\pi i m \theta}) a_{m,n} . \tag{3}$$

If $m \neq 0$ and $n \neq 0$, we define

$$a_{m,n} = \frac{c_{m+1,n}}{e^{-2\pi i n\theta} - 1}.$$

Then by the equation (1), we see that the equation (3) holds. Thus

$$a_{m,n} = \frac{d_{m,n+1}}{1 - e^{-2\pi i m \theta}}$$
.

Hence

$$|a_{m,n}|^2 = \frac{|c_{m+1,n}| |d_{m,n+1}|}{|e^{-2\pi i n \theta} - 1| |1 - e^{-2\pi i m \theta}|}$$

$$\leq \frac{K_c K_d}{C^2} \frac{1}{|m|^{k-r} |n|^{k-r}}.$$

If $m \neq 0$ and n = 0, we define

$$a_{m,0} = \frac{d_{m,1}}{1 - e^{-2\pi i m \theta}}$$
.

Then by the equation (1), we see that $c_{m+1,0}=0$. Thus the equation (2) holds and

$$|a_{m,0}| = \left| \frac{d_{m,1}}{1 - e^{-2\pi i m \theta}} \right|$$

$$\leq \frac{K_d}{C} \frac{1}{|m|^{k-r}}.$$

If m=0 and $n\neq 0$, we define

$$a_{0,n} = \frac{c_{1,n}}{e^{-2\pi i n\theta} - 1}$$
.

Then by the equation (1), we see that $d_{0,n+1}=0$. Thus the equation (3) holds and

$$|a_{0,n}| = \left| \frac{c_{m+1,n}}{e^{-2\pi i n \theta} - 1} \right|$$

$$\leq \frac{K_o}{C} \frac{1}{|n|^{k-r}}.$$

If m=n=0, we define $a_{0,0}=0$. Then since $c_{1,0}=d_{0,1}=0$, the equations (2) and (3) hold. Therefore we obtain that $\{a_{m,n}\} \in l^1(\mathbb{Z}^2)$. Hence $h \in A_{\theta}$. Furthermore since

$$\delta(u)^*u + u^*\delta(u) = 0$$
, $\delta(v)^*v + v^*\delta(v) = 0$,

we can easily see that h is anti-selfadjoint.

Q.E.D.

§ 3. An approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} which is not inner.

First we will give a definition.

DEFINITION. Let θ be an irrational number and r be a positive number with $r \ge 1$. We say that θ is approximable by rational numbers to order r if there is a $K(\theta) > 0$, depending only on θ , such that

$$\left|\theta - \frac{p}{q}\right| < \frac{K(\theta)}{q^r}$$

is satisfied for infinitely many pairs of integers p, q with q>0.

By easy computation θ is approximable by rational numbers to order $r \ge 1$ if and only if there is a $C(\theta) > 0$, depending only on θ , such that

$$|e^{2\pi i n \theta} - 1| < \frac{C(\theta)}{n^{r-1}}$$

is satisfied for infinitely many positive integers n.

By Besicovitch [1] or Falconer [5, Theorem 8.16] we can see that for any $r \ge 1$ there is an irrational number θ which is approximable by rational numbers to order r.

Let θ be approximable by rational numbers to order $r \ge 3$. Let k be a positive integer with $k \le r$. Then there is a strictly increasing sequence $\{n_i\}_{i=1}^{\infty}$ of positive integers such that

$$|e^{2\pi i n_j heta} - 1| < \frac{C(heta)}{n_j^{k-1}}$$

for any $j \in \mathbb{N}$. Let $\{a_n\}_{n \in \mathbb{Z}}$ be the sequence defined by

$$a_n = egin{cases} rac{1}{j} rac{1}{n_j^{k-1}} rac{1 - e^{2\pi i n_j heta}}{|1 - e^{2\pi i n_j heta}|} & ext{if} & n = n_j \ rac{1}{j} rac{1}{n_j^{k-1}} rac{1 - e^{-2\pi i n_j heta}}{|1 - e^{-2\pi i n_j heta}|} & ext{if} & n = -n_j \ 0 & ext{elsewhere} \;. \end{cases}$$

LEMMA 5. Let θ , k, $\{n_j\}$ and $\{a_n\}$ be as above. If $k \ge 2$, we can define a real valued function $g \in C^{k-2}(T)$ by

$$g(t) = \sum_{n \in \mathbb{Z}} a_n e^{2\pi i n t}$$

where we identify C(T) with the algebra of all continuous functions on R with period 1. Then it follows that $\int_0^1 g(t)dt = 0$ and there is no continuous function $h: R \to R$ with period 1 satisfying that

$$g(t) = h(t) - h(t + \theta)$$

for any $t \in R$.

PROOF. We note that for any $j \in N$

$$|a_{n_j}| = \frac{1}{jn_i^{k-1}} \le \frac{1}{j^k}$$
.

Since $k \ge 2$, $\{a_n\} \in l^1(\mathbf{Z})$. Hence $g \in C(\mathbf{T})$. By the definition of g

$$\int_0^1 g(t) = a_0 = 0$$

and $g(t) \in R$ for any $t \in R$. For any positive integer N let

$$g_N(t) = \sum_{n=-N}^N a_n e^{2\pi i n t}$$
.

Then for any positive integer $l \leq k-2$

$$\frac{d^{l}}{dt^{l}}g_{N}(t) = \sum_{n=-N}^{N} (2\pi i n)^{l} a_{n}e^{2\pi i n t}$$
.

And

$$egin{align} |(2\pi i n_j)^l a_{n_j}| &= rac{(2\pi)^l}{j} rac{1}{n_j^{k-l-1}} \ &\leq (2\pi)^l rac{1}{j^{k-l}} \ &\leq (2\pi)^l rac{1}{j^2} \;. \end{split}$$

Hence $\{(d^i/dt^i)g_N\}$ is a Cauchy sequence under the norm topology in C(T). Therefore $g \in C^{k-2}(T)$.

Now we suppose that there is a continuous function $h: R \rightarrow R$ with period 1 satisfying that

$$g(t) = h(t) - h(t + \theta)$$

for any $t \in \mathbb{R}$. Then the Fourier series of h should be as follows:

$$\sum_{n=-\infty}^{\infty} \frac{a_n}{1-e^{2\pi i n\theta}} e^{2\pi i nt} + c$$

where c is a constant number. Since h is continuous,

$$\sum_{n=-\infty}^{\infty} \frac{a_n}{1-e^{2\pi i n\theta}}$$

is Cesàro summable. However

$$\sum_{n=-\infty}^{\infty} \frac{a_n}{1-e^{2\pi i n \theta}} = 2 \sum_{j=1}^{\infty} \frac{1}{j} \frac{1}{n_j^{k-1}} \frac{1}{|1-e^{2\pi i n_j \theta}|}.$$

By the definition of $\{n_i\}$

$$rac{1}{n_{j}^{k-1}}rac{1}{|1-e^{2\pi i n_{j} heta}|}\!>\!rac{1}{n_{j}^{k-1}}rac{n_{j}^{k-1}}{C(heta)}\!=\!rac{1}{C(heta)}\;.$$

Since $\sum_{j=1}^{\infty} 1/j$ is not Cesàro summable, neither is $\sum_{n=-\infty}^{\infty} a_n/(1-e^{2\pi i n\theta})$. Therefore we obtain a contradiction. Q.E.D.

REMARK. Let g be as in Lemma 5. Let α be the automorphism of A_{θ} defined by

$$\alpha(u) = e^{2\pi i g(v)} u$$
,
 $\alpha(v) = v$.

Then by [7] we can obtain the following facts:

$$\alpha_* = \mathrm{id} \qquad \text{on } K_{\scriptscriptstyle 1}(A_\theta) ,$$

$$ilde{ au}_*(K_0(A_{ heta} imes_{lpha}oldsymbol{Z})) = oldsymbol{Z} + oldsymbol{Z} heta$$
 ,

$$\Gamma(\alpha) = T,$$

where $\tilde{\tau}_*$ is the homomorphism of $K_0(A_\theta \times_{\alpha} \mathbf{Z})$ to \mathbf{R} induced by τ and $\Gamma(\alpha)$ is the Connes spectrum of α .

Now we will introduce a new notation. For any $s, t \in R$ let $\alpha_{(s,t)}$ be the automorphism of A_{θ} defined by

$$\alpha_{(s,t)}(u) = e^{2\pi i s} u$$
, $\alpha_{(s,t)}(v) = e^{2\pi i t} v$.

Then by easy computation $\alpha_{(s,t)}(A_{\theta}^{k}) = A_{\theta}^{k}$ for any $k \in \mathbb{N} \cup \{\infty\}$.

PROPOSITION 6. Let k be an integer with $k \ge 0$. Let θ be approximable by rational numbers to order k+3. Then there is an approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} which is not inner.

PROOF. Let g be as in Lemma 5. Thus $g \in C^{k+1}(T)$. Let α be as in the above remark. Since $g \in C^{k+1}(T)$, $\alpha(A^l) = A^l$ for $l = 0, 1, 2, \dots, k+1$. Hence $\alpha^{-1} \circ \delta_j \circ \alpha$ is a *-derivation of A^{k+1} to A^k for j = 1, 2. By Bratteli, Elliott and Jørgensen [2] there are the unique decompositions

$$lpha^{-1}\!\circ\!\delta_1\!\circ\!lpha\!=\!c_{\scriptscriptstyle 1,1}\!\delta_1\!+\!c_{\scriptscriptstyle 1,2}\!\delta_2\!+\! ilde\delta_1$$
 , $lpha^{-1}\!\circ\!\delta_2\!\circ\!lpha\!=\!c_{\scriptscriptstyle 2,1}\!\delta_1\!+\!c_{\scriptscriptstyle 2,2}\!\delta_2\!+\! ilde\delta_2$,

where $c_{1,1}$, $c_{1,2}$, $c_{2,1}$ and $c_{2,2}$ are in R and $\tilde{\delta}_1$, $\tilde{\delta}_2$ are approximately inner *-derivations of A_{θ}^{k+1} to A_{θ}^{k} . However by the definition of α we obtain the following equations:

$$egin{align} &(lpha^{-1}\!\circ\!\delta_1\!\circ\!lpha)(u)\!=\!2\pi iu\;,\ &(lpha^{-1}\!\circ\!\delta_1\!\circ\!lpha)(v)\!=\!0\;,\ &(lpha^{-1}\!\circ\!\delta_2\!\circ\!lpha)(u)\!=\!2\pi ig'(v)u\;,\ &(lpha^{-1}\!\circ\!\delta_2\!\circ\!lpha)(v)\!=\!2\pi iv \end{gathered}$$

where g' is the derivative of g. By the uniqueness of the decompositions we can see that

$$\alpha^{-1} \circ \delta_1 \circ \alpha = \delta_1$$
.

And we obtain the following equations:

$$2\pi i g'(v) u = 2\pi i c_{_{2,1}} u + ilde{\delta}_{_2}(u)$$
 , $2\pi i v = 2\pi i c_{_{2,2}} v + ilde{\delta}_{_2}(v)$.

We will show that $\tilde{\delta}_2$ is not inner. We suppose that it is inner. Then there is a selfadjoint element $a \in A_{\theta}$ such that

$$\tau(a) = 0$$
, $\delta_2(x) = i(ax - xa)$

for any $x \in A_{j}^{k+1}$. Hence we get

$$au - ua = 2\pi g'(v)u - 2\pi c_{2,1}u$$
,

i.e.,

$$a-uau^*=2\pi g'(v)-2\pi c_{2,1}$$
.

Thus

$$\tau(a-uau^*)=2\pi\tau(g'(v))-2\pi c_{2,1}$$
.

Since $\tau(uau^*) = \tau(a)$ and $2\pi\tau(g'(v)) = 0$, $c_{2,1} = 0$. Moreover

$$av-va=2\pi(1-c_{2,2})v$$
,

i.e.,

$$a - vav^* = 2\pi(1 - c_2)$$
.

Thus

$$\tau(a-vav^*)=2\pi(1-c_{2,2})$$
.

Hence we obtain that $c_{2,2}=1$. Therefore

$$\alpha^{-1} \circ \delta_2 \circ \alpha = \delta_2 + ad(ia)$$

where

$$2\pi ig'(v)u=i(au-ua)$$
, $av-va=0$.

Since av = va, $a \in C^*(v)$ where $C^*(v)$ is the C^* -subalgebra of A_θ generated by v. Hence there is a selfadjoint element $f \in C(T)$ such that a = f(v). And $\int_0^1 f(t)dt = 0$ since $\tau(a) = 0$. Let F be the selfadjoint element in C(T) defined by

$$F(t) = \int_0^t f(s) ds$$

and let $w = e^{iF(v)}$. Then w is a unitary element in A_{θ} and

$$egin{aligned} w \delta_2(w^*) &= e^{iF(v)} \delta_2(e^{-iF(v)}) \ &= e^{iF(v)} (-iF'(v)) e^{-iF(v)} \ &= -if(v) = -ia \end{aligned}$$

where F' is the derivative of F. Therefore by easy computation

$$Ad(w)\circlpha^{-1}\circ\delta_1\circlpha\circ Ad(w^*)=\delta_1$$
 , $Ad(w)\circlpha^{-1}\circ\delta_2\circlpha\circ Ad(w^*)=\delta_2$.

Hence there are $s, t \in R$ such that

$$\alpha \circ Ad(w^*) = \alpha_{(s,t)}$$
,

i.e.,

$$\alpha = \alpha_{(s,t)} \circ Ad(w)$$
.

By Pimsner [12] we see that

$$\widetilde{\tau}_{\star}(K_{0}(A_{\theta}\times_{\alpha}\mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\mathbf{s} + \mathbf{Z}t$$
.

On the other hand by the above remark

$$\widetilde{\tau}_*(K_0(A_{\theta} imes_{\alpha} \mathbf{Z})) = \mathbf{Z} + \mathbf{Z}\theta$$
 .

Thus $s, t \in \mathbb{Z} + \mathbb{Z}\theta$. Hence, since $\alpha_{(s,t)}$ is inner, so is α . However by the above remark $\Gamma(\alpha) = T$. This is a contradiction. Therefore $\tilde{\delta}_2$ is not inner. Q.E.D.

DEFINITION. Let θ be an irrational number. We define $r(\theta)$ by

 $r(\theta) = \sup\{r \ge 1 \mid r \text{ is a number to which } \theta \text{ is approximable by rational numbers} \}.$

We call it the degree of irrationality for θ .

By Besicovitch [1] or Falconer [5, Theorem 8.16] we see that there is an irrational number θ with $r(\theta) < \infty$. And if $r(\theta) = \infty$, θ is a nongeneric irrational number.

THEOREM 7. Let θ be an irrational number and $r(\theta)$ be its degree of irrationality. If $r(\theta)>3$, then for any integer k with $r(\theta)+1< k$ each approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} is inner and for any integer k with $0 \le k < r(\theta)-3$ there is an approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} which is not inner.

PROOF. We suppose that k is an integer with $r(\theta)+1 < k$. Let δ be

an approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} . Then there is a real number r with $r(\theta)+1 < r+1 < k$ and C>0 satisfying that

$$|e^{2\pi i n\theta} - 1| \geq \frac{C}{n^{r-1}}$$

for any positive integer n. Hence by Proposition 4 δ is inner.

Next we suppose that k is an integer with $0 \le k < r(\theta) - 3$. Then θ is approximable by rational numbers to order k+3. Hence by Proposition 6 there is an approximately inner *-derivation of A_{θ}^{k+1} to A_{θ}^{k} which is not inner.

Q.E.D.

COROLLARY 8. Let θ be an irrational number. Then there is an approximately inner *-derivation of A_{θ}^{∞} to A_{θ}^{∞} which is not inner if and only if θ is non-generic.

PROOF. We suppose that θ is non-generic. By [8] there is an automorphism α of A_{θ} with $\alpha(A_{\theta}^{\infty}) = A_{\theta}^{\infty}$ satisfying that

(1)
$$\alpha_* = \mathrm{id}$$
 on $K_{\scriptscriptstyle 1}(A_{\scriptscriptstyle heta})$,

$$ilde{ au}_*(K_{\scriptscriptstyle 0}(A_{\scriptscriptstyle heta} imes_{\scriptscriptstyle lpha}oldsymbol{Z}))\!=\!oldsymbol{Z}\!+\!oldsymbol{Z} heta$$
 ,

$$\Gamma(\alpha) = T.$$

Then we can prove in the same way as in Proposition 6 that there is an approximately inner *-derivation of A_{θ}^{∞} to A_{θ}^{∞} . And it is easy by [2, Remark 4.3] to prove the converse part. Q.E.D.

References

- [1] A. S. Besicovitch, Sets of fractional dimensions IV: On rational approximation to real numbers, J. London Math. Soc., 9 (1934), 126-13.1
- [2] O. Bratteli, G. A. Elliott and P. E. T. Jørgensen, Decomposition of unbounded derivations into invariant and approximately inner parts, J. Reine Angew. Math., 346 (1984), 166-193.
- [3] O. Bratteli and D. W. Robinson, Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlag, 1979.
- [4] G. A. Elliott, The diffeomorphism group of the irrational rotation C*-algebra, C. R. Math. Rep. Acad. Sci. Canada, 8 (1986), 329-334.
- [5] K. J. FALCONER, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.
- [6] G. H. HARDY and E. M. WRIGHT, An Introduction to Theory of Numbers, Oxford at the Clarendon Press, 1979.
- [7] K. Kodaka, A diffeomorphism of an irrational rotation C^* -algebra by a non-generic rotation, to appear in J. Operator Theory.
- [8] ——, Diffeomorphisms of irrational rotation C^* -algebras by non-generic rotations II, preprint.

- [9] S. LANG, Introduction to Diophantine Approximations, Addison-Wesley, 1966.
- [10] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, 1987.
- [11] G. K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, 1979.
- [12] M. V. Pimsner, Ranges of traces on K_0 of reduced crossed products by free groups, Lecture Notes in Math., 1132 (1983), 374-408, Springer.
- [13] M. A. RIEFFEL, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [14] H. TAKAI, On a problem of Sakai in unbounded derivations, J. Funct. Anal., 43 (1981), 202-208.

Present Address:

DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE, RYUKYU UNIVERSITY NISHIHARA-CHO, OKINAWA 903-01, JAPAN