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J. H. Conway introduced the potential function of a link in [3], and
its invariance was verified by R. Hartley in [6]. Therefore we are not
interested in its detailed definition in this note. We will try to give a
recursive calculation of the potential functions of multi-variables. In
fact we will succeed in giving it for the case of three variables as in
Main Theorem. In other words, we will get a machine which makes any
link into several links by a finite sequence of replacements appearing in
Conway’s three Identities for the case of three variables.

When we look back upon the past, we become aware that the ex-
istence of machines, which make any link into trivial knots by a finite
sequence of replacements appearing in Conway’s First Identity, has recently
produced new polynomial invariants of links: the Jones polynomial and
the skein polynomial [2, 4, 7, 8, 12, 14]. If we will get a machine for
the case of multi-variables, it is possible to get a new (component-wise)
link invariant.

For an ordered and oriented link in $S^{8},$ $L=K_{1}\cup\cdots\cup K_{\mu}$ , we suppose
that every component $K_{i}$ is labeled by $t_{j(i)}$ . The potential function $\nabla_{L}=$

$\nabla_{L}(t_{1}, \cdots)$ has the following characterization [3], [6].
(I) (First Identity) For three links $L_{+},$ $L_{-}$ and $L_{0}$ which differ only

in one place as shown in Fig. 1, the potential function satisfies
$\nabla_{L+}=\nabla_{L-}+(t_{i}-t_{i}^{-1})\nabla_{L_{0}}$ .

(II) (Second Identity) For three links $L_{++},$ $L_{--}$ and $L_{00}$ which differ
only in one place as shown in Fig. 2 (a) or alternatively (b), the potential
function satisfies
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$\nabla_{\iota_{++}}+\nabla_{L--}=(t_{i}t_{\dot{f}}+t^{-1}t_{j}^{-1})\nabla_{L_{00}}$

in the first case, and

$\nabla_{\iota_{+i}}+\nabla_{L--}=(t_{t}t_{j}^{-1}+t_{i}^{-1}t_{j})\nabla_{L_{00}}$

in the second case.

$ e_{1}\iota_{l}\backslash /\nearrow$ $\iota_{1}\epsilon_{l}\backslash \nearrow\searrow$ $ e_{I}e_{l}\rightarrow\rightarrow$

$L_{*}$
$L_{-}$ $L0$

FIGURE 1

$ e_{1}\rightarrow$

$ tj\rightarrow$

$L_{++}$ $L_{--}$ $L_{00}$

(a)

$L_{++}$ $L_{--}$ $L_{00}$

(b)

FIGURE 2

(III) (Third Identity) For four links $L_{1},$ $L_{2},$ $L_{3}$ and $L_{4}$ which differ
only in one place as shown in Fig. 3, the potential function satisfies

$\nabla_{L_{1}}+\nabla_{L_{2}}=\nabla_{L_{3}}+\nabla_{L_{4}}$ .

$\frac{1}{/\backslash })_{-}$ $\frac{\backslash /}{1}1^{-}$

$L_{1}$ $L_{2}$

$-(\frac{1}{/\backslash }$ $-r\frac{\backslash /}{1}$

$L_{3}$ $L_{4}$

FIGURE 3

(IV) For a trivial knot $K$ with a label $t$ ,

$\nabla_{K}=1/(t-t^{-1})$ .
(V) For a simple positive clasp (2-component Hopf-link) $L$ with labels
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$t_{1}$ and $t_{2}$ as shown in Fig. 4 (a),

$\nabla_{L}=1$ .
(The conditions (II), (V) and (VI) imply that $\nabla_{L}=-1$ for a negative clasp
as in Fig. 4 $(b))$ .

$tl$

(a) (b)

FIGURE 4

(VI) For a split link $L$ ,

$\nabla_{L}=0$ .
(VII) For a connected sum of simple positive $cla8ps,$ $L$ , with labels

$t_{J},$ $t_{2}$ and $t_{3}$ as shown in Fig. 5,

$\nabla_{L}=t_{2}-t_{2}^{-1}$ .

FIGURE 5

(VIII) For a 3-component Hopf-link $L$ with labels $t_{1},$ $t_{2}$ and $t_{3}$ as
shown in Fig. 6,

$\nabla_{L}=-t_{1}t_{2}t_{3}+t_{1}^{-1}t_{2}^{-1}t_{3}^{-1}$

$\mathfrak{t}_{2}$

$t_{3}$

FIGURE 6
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From now, we try to get a machine which change8 a given link into
one of several links appearing in (IV), (V), (VI), (VII) and (VIII) by a
finite sequence of three replacements appearing in (I), (II) and (III).

(1) When the number of labels is just one, L. H. Kauffman $[10, 11]$ ,
J. Hoste [8] and W. B. R. Lickorish and K. C. Millet [12] showed the ex-
istence of machines which change a given link into a trivial knot (or a
split link with the same label) by a finite 8equence of replacements
appearing in (I). (However, some of them had another purpose to get
the Jones polynomial or the skein polynomial.) We remarked that a
several component link with the same label can be deformed into knots
by the replacements in (I) from $L_{0}$ to $L_{+}$ and $L_{-}$ as shown in Fig. 7.

$\iota O_{L_{0}}O^{t}$

(2) When the number of labels i8 ju8t two, we can deform a given
link into 2-component links one of whose components is trivial through
the above machine. We regard the trivial component as an axis and the
other component as a string winding around the axis as shown in Fig. 8,
where we watch the link in the direction of the axis.

$t_{1}$

FIGURE 8

1st Step. On each string, we choose the3 farthest point from the
axis to be a base point. We start from the farthest base point and go
along the string by its orientation. $A\triangleright\epsilon^{\prime}very$ time we meet the crossing
of the strings, if necessary, we.operate the replacement in (I) from $L_{\pm}$
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$\approx\sim$

$\overline{-}\sim$

$\overline{-}\sim$

$\overline{-}\sim$
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to $L_{\mp}$ to change the strings monotonely descending. On the other hand,
the replacement from $L_{\pm}$ to $L_{0}$ decreases the number of crossings of the
strings. On this branch, we return to the beginning of the 1st Step.
When we retum to the base point, we start again from the farthest base
point among the remaining. We perform such operations successively,
and we obtain (component-wise splitting) strings whose each component
has one maximal point and one minimal point in the direction of the
axis at every end of branches of replacements as in Fig. 9.

2nd Step. The link composed of the axis and the strings is a con-
nected sum of torus links of type $(2, 2k)$ . For each factor $(2, 2k)$-torus
knot, we operate the replacement in (II) from $L_{\pm\pm}$ to $L_{\mp\tau}$ and $L_{00}$ and
obtain a $(2, 2k\mp 2)$-torus link and a $(2, 2k\mp 4)$-torus link (see Fig. 10).

$e_{1}$

FIGURE 10
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By induction on $|k|$ , we obtain a connected sum of simple po8itive clasps
and a 2-component trivial links.

3rd Step. For split components, we operate the replacements in (I)
from $L_{0}$ to $L_{+}$ and $L_{-}$ as in Fig. 7. For two simple positive clasps, we
operate the replacements in (I) and (II) as in Fig. 11. By induction on
the number of components, we obtain a simple positive clasp or a 2-
component trivial link at every end of branches of replacements. Hence,
we get a machine which changes a given link with two labels to links
appearing in (V) and (VI) by a finite sequence of replacements appearing
in (I) and (II).

(3) When the number of labels is just three, we can deform a
given link into 3-component links two of whose components are a simple
positive clasp or a 2-component trivial link through the above machine.
We regard the two components as parallel axes (which may or may not be
linking in the deep bottom) and the other component as a string winding
around the axes similally as in the above (2). (See Fig. 12, where we
watch the link in the direction of the axes.)

FIGURE 12

1st Step. By the same method as in the above (2); 1st Step, we
obtain (component-wise splitting) strings whose each component has one
maximal point and one minimal point in the direction of the axes at
every end of branches of replacements.

2nd Step. Now, the link composed of the axes and the strings is a
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sum of 3-braids of 8pecial type, each one of which can be presented by
$\sigma_{\iota}^{\delta_{1}}\sigma_{2}^{\iota_{f}}\sigma_{1}^{\delta_{3}}\sigma_{2}^{\delta}\cdots\sigma_{1}^{\delta_{2p-1}}\sigma_{2}^{\delta_{2p}}$ using generators of the 3-braid-group a8 shown
in Fig. 13, where all integers $\delta_{i}’ s$ are even.

FIGURE 13

When $|\delta|>2$ , we operate the replacements in (II) from $L_{\pm\pm}$ to $L_{\neq\mp}$ and
$L_{00}$ similarly as in Fig. 10 and obtain $|\delta|\leqq 2$ at every end of branches
of replacements.

3rd Step. If $\delta=0$ , we can ignore $\delta_{i}$ , i.e,
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. . . $\sigma_{j}^{\delta_{i-1}}\sigma_{k}^{0}\sigma_{j}^{\delta_{i+1}}\cdots=\cdots\sigma_{j}^{\delta_{i-1}+\delta_{i+1}}\cdots$

and return to the beginning of the 2nd Step. Therefore, we can as8ume
that each string is presented by

$\sigma_{1}^{2\epsilon_{1}}\sigma_{2}^{2e_{2}}\sigma_{1}^{2\epsilon_{3}}\sigma_{2}^{2\text{{\it \’{e}}}}4\ldots\sigma_{k}^{2\epsilon_{q}}$ or $\sigma_{2}^{2\epsilon_{1}}\sigma_{1}^{2\epsilon_{2}}\sigma_{2}^{2\epsilon_{\Gamma}}\sigma_{1}^{2\epsilon_{4}}\cdots\sigma_{k}^{2\epsilon_{q}}$

($k=1$ or 2; $q\leqq 2p;\epsilon_{i}=\pm 1$).

4th Step. When $q\geqq 4$ , if necessary, we operate the replacement8 in
(II) from $L_{\pm\pm}$ to $L_{\mp\mp}$ and $L_{00}$ and obtain a sequence:

$\sigma_{1}^{-2}\sigma_{2}^{-z}\sigma_{1}^{2}\sigma_{2}^{2}\cdots\sigma_{k}^{2\epsilon_{r}}$ or $\sigma_{2}^{-2}\sigma_{1}^{-2}\sigma_{2}^{2}\sigma_{1}^{2}\cdots\sigma_{k}^{2\epsilon_{r}}$

($k=1$ or 2; $r\leqq q;\epsilon_{i}=\pm 1$). (Of course, for each branch on which $\epsilon_{i}$ become8
$0$ , we return to the beginning of the 2nd Step.)

5th Step. For $\sigma_{1}^{-2}\sigma_{2}^{-2}\sigma_{1}^{2}\sigma_{2}^{2}\cdots\sigma_{k}^{2\epsilon_{r}}$ , we operate the replacements in
(II) and (III) as shown in Fig. 14. Though the axes may link, we get a
shorter sequence. We return to the beginning of the 2nd Step. Similarly
for $\sigma_{2}^{-2}\sigma_{1}^{-2}\sigma_{2}^{2}\sigma_{1}^{2}\cdots\sigma_{k}^{2\epsilon_{r}}$ , we perform such operations.

$\cong$

$\tilde{\epsilon}$

$\vee$ ’

FIGURE 14
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6th Step. By induction on $r$ , we get a sequence

$\emptyset$ , $\sigma_{j}^{2\epsilon_{1}}$ , $\sigma_{\dot{g}}^{2e_{1}}\sigma_{k}^{2\epsilon_{2}}$ , or $\sigma_{j}^{2e}\downarrow\sigma_{k}^{2e_{2}}\sigma_{j}^{2\epsilon_{J}}$ $(\{j, k\}=\{1,2\};\epsilon_{i}=\pm 1)$

at every end of replacements. If necessary, we operate the replacements
in (II) from L.

$-$
to $L_{\mp\mp}$ and $L_{00}$ and we obtain a sequence

$\emptyset$ , $\sigma_{1}^{-2}$ , $\sigma_{2}^{-z}$ , $\sigma_{1}^{-2}\sigma_{2}^{-z}$ , $\sigma_{2}^{2}\sigma_{1}^{2}$ , $\sigma_{1}^{-2}\sigma_{2}^{-2}\sigma_{1}^{2}$ , or $\sigma_{2}^{2}\sigma_{1}^{-2}\sigma_{2}^{-2}$ .
They are isotopic to a splitting trivial component, a simple positive (or
negative) clasp, and a loop winding around the axes once positively (or
negatively), respectively, as shown in Figs. 15-18. Of course, for negative
one we operate the replacements in (II) from $L_{--}$ to $L_{++}$ and $L_{00}$ and
obtain a positive one or a splitting trivial component.

1 $[\downarrow\supset t_{2}\mathfrak{t}_{3}$

$\cong$

$\iota_{1^{1}}$ $t_{2,\downarrow}O^{t_{3}}$

FIGURE 15

$q^{1}\downarrow I^{\iota_{2}}]^{t_{3}}t_{1}$

$\sim--$

$o_{\downarrow\downarrow}ee_{2}|_{t_{3}}^{1}$ $ t_{1,\downarrow}\Gamma_{\downarrow}[|_{\supset]}^{2}tt_{3}\cong$
$|^{1}to^{t_{3}}t\downarrow|^{2}$

FIGURS 16

$t_{1}$ $t_{2}$

$\cong$

$\cong$

$e_{I^{1}}o_{\downarrow}^{\mathfrak{t}_{3}}t|^{2}$ $\fallingdotseq_{[\downarrow}^{\rightarrow 1^{2}}]^{\mathfrak{t}_{3}}e\epsilon_{1}\downarrow|_{-}^{1}\subset\cong O^{t_{3}}\downarrow I^{2}t\mathfrak{t}|^{1}$

FIGURE 18
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7th Step. Therefore, we get a link of the type as shown in Fig. 19
at every end of branches of replacements.

$1$

8 $|$ or $|$ $|0$

$|0_{\circ r}^{1}||$ $|0$

$|$ $|0$

FIGURE 19

For linking of the axes, we operate the replacements in (II) from $L_{\pm\pm}$

to $L_{\mp\mp}$ and $L_{00}$ , and obtain a linking $0$ or +1 (cf. Fig. 10). For positive
clasps, we perform the replacements like as the 3rd Step in (2) and we
obtain only one clasp or only one splitting trivial component (cf. Fig. 11).

For splitting trivial components, we operate the replacements in (I) from
$L_{0}$ to $L_{+}$ and $L_{-}$ , and obtain one splitting trivial component (cf. Fig. 7).

For loops winding around the axes positively, we perform the replace-
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ments like as in the following 8th Step. For a splitting trivial component,
a simple positive clasp, $and/or$ a loop winding around the axes $po8itively$ ,
we perform the replacements like as in the following 9th Step. By in-
duction on the number of components, we obtain only one string which
is a splitting trivial component, a simple positive clasp, or a loop winding
around the axes positively at every end of branches of replacements.
Then, we get a 3-component trivial link, a split-sum of trivial knot and
a simple positive clasp, a connected sum of simple positive clasps, or a
3-component Hopf-link which is appearing in (VI), (VII), or (VIII).

8th Step. For two loops winding around the axes positively, we
operate the replacements in (I) from $L_{0}$ to $L_{+}$ and $L_{-}a8$ in Fig. 20.

FIGURE 20

Therefore, we get a 3-braid presented by $\sigma_{2}^{2}\sigma_{1}^{2}\sigma_{2}^{2}\sigma_{1}^{2}$ or $\sigma_{1}^{-2}\sigma_{2}^{-2}\sigma_{1}^{-2}\sigma_{2}^{-2}$

without consideration on the orientation of the string. We perform the
replacements like as in the 2nd Step-6th Step and we get a splitting
trivial component, a simple positive clasp, or a loop winding around the
axes positively at every end of branches of replacements. By induction
on the number of loops winding around the axes positively, we obtain
at most one loop winding around the axes positively, several splitting
components and several simple positive clasps at every end of branches
of replacements. We return to the 7th Step.

9th Step. For two simple positive clasps of distinct types, we oper-
ate the replacements in (I) and (II) as shown in Fig. 21 and decrease the
number of strings.
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$\overline{-}\sim$

FIGURE 21

$\underline{\simeq}$

FIGURE 22
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For one simple positive clasp and one loop winding around the axes
positively, we operate the replacement8 in (I) and (II) as shown in
Fig. 22 and decrease the number of strings. We return to the 7th
Step.

From the above, we get a machine which changes a given link
with three labels into links appearing in (VI), (VII) or (VIII) by a finite
sequence of replacements appearing in (I), (II) and (III). We say it in
other words as follows.

THEOREM. There exists a recursive calculation for the potential func-
tion of three variables.

Our recursive calculation for the potential function of two variables
requires two kinds of replacements, and that of three variables requires
three kinds of replacements. Then, that of $\mu$ valiables requires $\mu$ kinds
of replacements, is it true? The author thinks that three kind of re-
placements are enough to calculate the potential function recursively.
But he does not know the proof yet.

REMARK. This is a part of the previous note [13]. Since it had
gaps in proof at the other part and the results are independent, the
author divides it into pieces.
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