Construction of Vector Bundles and Reflexive Sheaves

Hidetoshi MAEDA

Waseda University
(Communicated by S. Suzuki)

§ 0. Introduction.

Let X be a smooth algebraic variety defined over a (not necessarily algebraically closed) field k. Let E be a vector bundle on X of rank $r-1(r \geqq 2)$. Given a vector bundle F of rank r on X and an injection $\sigma: E \rightarrow F$, we can consider the closed subscheme $D(\sigma)=\{x \in X \mid \operatorname{rank} \sigma(x)<$ $r-1\}$ of X. In $\S 1$, we discuss the relation between vector bundles and these closed subschemes associated with them. Our result is summarized as follows:

Theorem (1.7). Fix a vector bundle E as above and a line bundle L on X, and set $M=\operatorname{det} E$. Let \mathscr{F} be the set of pairs $\left(F, \sigma_{F}\right)$, where F is a vector bundle on X of rank r with $\operatorname{det} F=L$, and $\sigma_{F}: E \rightarrow F$ is an injection with $D\left(\sigma_{F}\right)$ of pure codimension 2. Let \mathscr{G} be the set of pairs $\left(Y, \tau_{Y}\right)$, where Y is a Cohen-Macaulay closed subscheme of X of pure codimension 2, and $\tau_{Y}: E^{\vee} \rightarrow \omega_{Y}\left(-K_{X}+M-L\right)$ is a surjection. Then there exists a map $f: \mathscr{F} \rightarrow \mathscr{G}$ which is surjective in case $h^{2}(E(M-L))=0$. (See (1.5), (1.6) and (1.7) for the precise statements.)

This theorem includes a result of Vogelaar [V] as a special case in which the following conditions are satisfied:
(1) X is a projective variety over an algebraically closed field,
(2) $E=\mathcal{O}_{X}^{\oplus r-1}$,
(3) Y is a locally complete intersection.

So our result is a generalization of that of Vogelaar's. We note that the above theorem also provides a way for constructing vector bundles. As an application, in $\S 2$, we will construct an indecomposable vector bundle of rank 3 on P^{3} which can never be obtained by Vogelaar's method.

In §3, we describe a method for constructing reflexive sheaves from

[^0]line bundles and closed subschemes of codimension 2. The precise statement of our result is as follows:

Theorem (3.2). Let X be a locally factorial Gorenstein projective variety of dimension $n \geqq 3$ defined over a (not necessarily algebraically closed) field k and L a line bundle on X. Let Y be a closed subscheme of X of codimension 2 and \mathscr{I}_{Y} the ideal defining Y. Assume that for any ideal $\mathscr{I}_{Y^{\prime}} \supsetneqq \mathscr{I}_{Y}, h^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right)>h^{n-1}\left(\mathscr{I}_{Y^{\prime}}\left(K_{X}+L\right)\right.$. Then $H^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right)$ induces the exact sequence

$$
0 \longrightarrow H^{n-1}\left(\mathscr{\mathscr { S }}_{Y}\left(K_{X}+L\right)\right) \otimes \wp_{X} \longrightarrow F \longrightarrow \mathscr{\mathscr { I }}_{Y}(L) \longrightarrow 0
$$

with F reflexive.
From this theorem we can show the following: Let X be a smooth projective variety of dimension $n \geqq 3$ over an algebrácally closed field. Given a line bundle L on X with $h^{2}\left(\mathcal{O}_{x}(-L)\right)=0$, and a codimension two closed subvariety Y of X with $h^{n-2}\left(\mathcal{O}_{Y}\left(K_{X}+L\right)\right)>0$, we can construct a reflexive sheaf F on X with $c_{1}(F)=L$ and $c_{2}(F)=Y$. (See (3.3).)

Basically we use the standard notation from algebraic geometry. The dualizing sheaf of a Cohen-Macaulay scheme X of pure dimension is denoted by ω_{X}. We denote by K_{X} the canonical bundle of a Gorenstein variety X. The words "vector bundles" and "locally free sheaves" are used interchangeably. The tensor products of line bundles are denoted additively. Thus, for example, if E is a coherent sheaf and if L and M are two line bundles, $E(L+M)$ means $E \otimes \mathscr{L} \otimes \mathscr{M}$, where \mathscr{L} and \mathscr{M} are invertible sheaves corresponding to L and M, respectively.
\S 1. The connection between vector bundles and closed subschemes of pure codimension 2.
(1.1) Throughout this section, X will stand for a smooth algebraic variety defined over a (not necessarily algebraically closed) field k. A vector bundle on X will mean a locally free sheaf on X of finite rank. Our aim is to explain the connection between vector bundles on X and closed subschemes of X of pure codimension 2. This generalizes the well-known connection by Vogelaar. This also provides a method for constructing vector bundles.
(1.2) Let E and F be two vector bundles on X of $\operatorname{rank} r-1$ and r $(r \geqq 2)$, respectively. Given an injection $\sigma: E \rightarrow F$, set $Z:=\{x \in X \mid$ rank $\sigma(x)<r-1\}$. If Z has pure codimension 2 , then the cokernel G of σ is
a torsion free sheaf of rank 1. Therefore there exists a line bundle N on X of which G is a subsheaf, such that $\operatorname{codim}_{X}(\operatorname{Supp} N / G) \geqq 2$. This implies that $\mathscr{I}:=G(-N)$ is a sheaf of ideals in \mathcal{O}_{x}. The closed subscheme of X defined by \mathscr{J} is called the dependency locus of σ, and is denoted by $D(\sigma)$. Then $D(\sigma)=Z$ as sets. Note $N=\operatorname{det} F-\operatorname{det} E$. Before showing the relation between vector bundles and closed subschemes of pure codimension 2, we quote two algebraic results as needed.
(1.3) Lemma. Let A be a regular local ring of dimension s and B a quotient of A of dimension $s-t$. Then B is Cohen-Macaulay if and only if $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q>t$.

For a proof, we refer to [AK], Corollary 3.5.22.
(1.4) Lemma. Let A be a Cohen-Macaulay local ring of dimension s and B a quotient of A of dimension $s-t$. Then $\operatorname{Ext}_{A}^{q}(B, A)=0$ for all $q<t$.

For a proof, we refer to [AK], Lemma 4.5.1.
(1.5) Let L be a line bundle on X and E a vector bundle on X of rank $r-1(r \geqq 2)$ with $\operatorname{det} E=M$. In the rest of this section we are always in the following situation:
\mathscr{F} : the set of pairs $\left(F, \sigma_{F}\right)$, where F is a vector bundle on X of rank r with $\operatorname{det} F=L$, and $\sigma_{F}: E \rightarrow F$ is an injection whose dependency locus $D\left(\sigma_{F}\right)$ has pure codimension 2,
\mathscr{G} : the set of pairs $\left(Y, \tau_{Y}\right)$, where Y is a Cohen-Macaulay closed subscheme of X of pure codimension 2, and $\tau_{Y}: E^{\vee} \rightarrow \omega_{Y}\left(-K_{X}+M-L\right)$ is a surjection.
(1.6) Given $\left(F, \sigma_{F}\right) \in \mathscr{F}$, put $Y:=D\left(\sigma_{F}\right)$. Then we obtain from (1.2) an exact sequence

$$
\begin{equation*}
0 \longrightarrow E \xrightarrow{\sigma_{F}} F \longrightarrow \mathscr{F}_{Y}(L-M) \longrightarrow 0 \tag{1.6.1}
\end{equation*}
$$

On the other hand, taking the long exact sequence of $\mathscr{E} \times \boldsymbol{x}$ induced by the short exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathscr{I}_{Y}(L-M) \longrightarrow \mathscr{O}_{X}(L-M) \longrightarrow \mathscr{O}_{Y}(L-M) \longrightarrow 0 \tag{1.6.2}
\end{equation*}
$$

and using (1.4), we have

$$
\begin{aligned}
& \mathscr{H}_{m 2}\left(\mathscr{S}_{Y}(L-M), \mathscr{O}_{X}\right) \cong \mathscr{O}_{X}(M-L), \\
& \mathscr{E}_{u^{\prime}}\left(\mathscr{\mathscr { S }}_{Y}(L-M), \mathscr{O}_{X}\right) \cong \mathscr{E}_{x} t^{2}\left(\mathscr{O}_{Y}(L-M), \mathscr{O}_{X}\right)=\omega_{Y}\left(-K_{X}+M-L\right),
\end{aligned}
$$

where $\omega_{Y}=\mathscr{E}_{X r}^{2}\left(\mathcal{O}_{Y}, K_{X}\right)$. Thus the exact sequence of $\mathscr{E}_{a x t}$ applied to (1.6.1) gives

$$
0 \longrightarrow \mathcal{O}_{X}(M-L) \longrightarrow F^{\vee} \longrightarrow E^{\vee} \longrightarrow \omega_{Y}\left(-K_{X}+M-L\right) \longrightarrow 0 .
$$

We denote by τ_{Y} the last surjection and set $f\left(F, \sigma_{F}\right)=\left(Y, \tau_{Y}\right)$.
(1.7) TheOrem. (A) The correspondence $f:\left(F, \sigma_{F}\right) \mapsto\left(Y, \tau_{Y}\right)$ is a map from \mathscr{F} into \mathscr{G}.
(B) Assume $h^{2}(E(M-L))=0$. Then f is surjective. Furthermore, if $h^{1}(E(M-L))=0$, then f is bijective.

Proof. (A) It is sufficient to prove that Y is Cohen-Macaulay. The long exact sequences of \mathscr{E}_{x} derived from (1.6.1) and (1.6.2) yield $\mathscr{E}_{\text {at }}{ }^{q}\left(\mathcal{O}_{Y}(L-M), \mathscr{O}_{X}\right)=0$ for all $q>2$. Our desired result thus follows from (1.3).
(B) We take $\left(Y, \tau_{Y}\right) \in \mathscr{G}$ and investigate $\operatorname{Ext}^{1}\left(\mathscr{I}_{Y}(L-M), E\right)$. Combining the spectral sequence

$$
E_{2}^{p q}=H^{p}\left(\mathscr{E}_{x . c}^{q}\left(\mathscr{I}_{Y}(L-M), E\right)\right) \Longrightarrow E^{p+q}=\operatorname{Ext}^{p+q}\left(\mathscr{I}_{Y}(L-M), E\right)
$$

relating local and global Ext with the discussion in (1.6), we have the exact sequence

$$
\begin{aligned}
& 0 E_{2}^{10}=H^{1}\left(\mathscr{H}_{m}\left(\mathscr{I}_{Y}(L-M), E\right)\right) \cong H^{1}(E(M-L)) \\
& \longrightarrow E^{1}=\operatorname{Ext}^{1}\left(\mathscr{I}_{Y}(L-M), E\right) \\
& \longrightarrow E_{2}^{01}=H^{0}\left(\mathscr{E}_{x} t^{1}\left(\mathscr{S}_{Y}(L-M), E\right)\right) \cong H^{0}\left(\omega_{Y}\left(-K_{X}+M-L\right) \otimes E\right) \\
& \longrightarrow E_{2}^{20}=H^{2}\left(\mathscr{K}_{\text {mon }}\left(\mathscr{I}_{Y}(L-M), E\right)\right) \cong H^{2}(E(M-L)) .
\end{aligned}
$$

The morphism τ_{Y} can be interpreted as giving an element $\tau \in H^{0}\left(\omega_{Y}\right.$ $\left.\left(-K_{X}+M-L\right) \otimes E\right)$. Assume $h^{2}(E(M-L))=0$. Then we can lift τ to an element $\xi \in \operatorname{Ext}^{1}\left(\mathscr{I}_{Y}(L-M), E\right)$, so it determines an extension

$$
\begin{equation*}
0 \longrightarrow E \longrightarrow F \longrightarrow \mathscr{I}_{Y}(L-M) \longrightarrow 0 . \tag{1.7.1}
\end{equation*}
$$

We denote by σ_{F} the first injection. Applying (1.3) to the long exact sequence of $\mathscr{E}_{x t}$ derived from $0 \rightarrow \mathscr{\mathscr { I }}_{Y}(L-M) \rightarrow \mathcal{O}_{X}(L-M) \rightarrow \mathscr{O}_{Y}(L-M) \rightarrow 0$ gives $\mathscr{E}_{x t^{q}}\left(\mathscr{S}_{Y}(L-M), \mathscr{O}_{X}\right)=0$ for all $q \geqq 2$. We combine this with (1.7.1) to find $\mathscr{E}_{. c}{ }^{q}\left(F, \mathcal{O}_{X}\right)=0$ for all $q \geqq 2$. Applying the functor $\mathscr{H}_{1, \ldots}\left(\cdot, \mathcal{O}_{x}\right)$ to the sequence (1.7.1) yields an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{O}_{x}(M-L) \longrightarrow F^{\vee} \longrightarrow E^{\vee} \longrightarrow \omega_{Y}\left(-K_{X}+M-L\right) \\
& \longrightarrow \mathscr{C}_{. c t}\left(F, \mathscr{O}_{x}\right) \longrightarrow 0,
\end{aligned}
$$

in which the connecting morphism $E^{\vee} \rightarrow \omega_{Y}\left(-K_{X}+M-L\right)$ is τ_{Y}. Since
τ_{Y} is surjective, $\mathscr{E}_{\mathscr{A}} \mathcal{t}^{1}\left(F, \mathscr{O}_{X}\right)=0$. Thus $\left(F, \sigma_{F}\right) \in \mathscr{F}$ and $f\left(F, \sigma_{F}\right)=\left(Y, \tau_{Y}\right)$, which implies that f is surjective. Furthermore, if $h^{1}(E(M-L))=0$, then f is clearly bijective.
Q.E.D.

§ 2. Example.

(2.1) In this section, we will construct an indecomposable vector bundle of rank 3 on P^{3}. We note here that this bundle cannot be obtained by Vogelaar's method. In fact, we use a curve in P^{3} which is not a locally complete intersection.
(2.2) Throughout this section, the ground field k is assumed to be algebraically closed. Let C be a complete algebraic curve with $h^{1}\left(\mathscr{O}_{c}\right)=g$ and \mathscr{F} a torsion free sheaf of rank 1 on C. Put

$$
\begin{aligned}
& \operatorname{deg} \mathscr{F}:=\chi(\mathscr{F})-\chi\left(\mathscr{O}_{C}\right), \\
& \Delta(\mathscr{F}):=1+\operatorname{deg} \mathscr{F}-h^{0}(\mathscr{F})=g-h^{1}(\mathscr{F}) .
\end{aligned}
$$

Then we have the following result due to Fujita.
Proposition (Fujita). If $\operatorname{deg} \mathscr{F} \geqq 2 \Delta(\mathscr{F}) \geqq 0$, then \mathscr{F} is generated by its global sections.

For a proof we refer to [F], Proposition 1.6.
(2.3) The dualizing sheaf ω_{C} on C is torsion free of rank 1 and $\operatorname{deg} \omega_{c}=2 \Delta\left(\omega_{c}\right)=2 g-2$. Thus ω_{c} is generated by its global sections for $g \geqq 1$ by (2.2).
(2.4) Let X be a smooth quasi-projective algebraic variety and Y a closed subvariety of X of codimension i. Let $A^{i}(X)$ be the group of cycles of codimension i on X modulo rational equivalence. We also denote by Y the class of Y in $A^{i}(X)$ by abuse of notation. Grothendieck ([G]. p. 151, (16)) proved the

FORMULA. $\quad c_{j}\left(\mathscr{O}_{Y}\right)=0(0<j<i)$,

$$
c_{i}\left(\mathcal{O}_{Y}\right)=(-1)^{i-1}(i-1)!Y
$$

For $i=2, c_{2}\left(\mathscr{O}_{Y}\right)=-Y$.
(2.5) THEOREM. Let X be a 3-dimensional smooth projective variety with $h^{1}\left(\mathcal{O}_{x}\right)=0$ and C a curve in X with $g \geqq 1$. Let t be the number of global sections generating ω_{c}. Then there exists a vector bundle F on
X of rank $t+1$ with $c_{1}(F)=c_{1}(X)$ and $c_{2}(F)=C$.
Proof. Take $L=-K_{X}$ and $E=\mathscr{O}_{X}^{\oplus t}$, and apply (1.7) and (2.4). Q.E.D.
(2.6) We shall apply (2.5) to the simplest case $X=P^{3}:=P$. Let F and C be as in (2.5). Since the Chow ring is isomorphic to $Z[h] / h^{4}$, we may consider the Chern classes $c_{1}(F), c_{2}(F), c_{3}(F)$ as integers. So $c_{1}(F)=4$ and $c_{2}(F)=\operatorname{deg} C:=d$.
(2.7) In order to calculate $c_{3}(F)$, we need the

Riemann-Roch Theorem. Let \mathscr{T} be a coherent sheaf of rank r on P^{3}, with Chern classes c_{1}, c_{2}, c_{3}. Then

$$
\chi(\mathscr{F})=r+\binom{c_{1}+3}{3}-2 c_{2}+\frac{1}{2}\left(c_{3}-c_{1} c_{2}\right)-1 .
$$

For a proof, we refer to [H2], Theorem 2.3.
(2.8) Now we go back to the situation (2.6). The exact sequence $0 \rightarrow \mathcal{O}_{P}^{\oplus t} \rightarrow F \rightarrow \mathscr{I}_{c}(4) \rightarrow 0$ gives rise to $c_{i}(F)=c_{i}\left(\mathscr{I}_{c}(4)\right)$, hence by (2.7)

$$
\chi\left(\mathscr{F}_{c}(4)\right)=\frac{1}{2} c_{3}(F)-4 d+\binom{7}{3} .
$$

On the other hand, by the exact sequence $0 \rightarrow \mathscr{\mathscr { I }}_{c}(4) \rightarrow \mathcal{O}_{P}(4) \rightarrow \mathcal{O}_{c}(4) \rightarrow 0$, we see that

$$
\chi\left(\mathscr{S}_{c}(4)\right)=\chi\left(\mathscr{O}_{P}(4)\right)-\chi\left(\mathscr{O}_{c}(4)\right)=g-1-4 d+\binom{7}{3}
$$

So $c_{3}(F)=2 g-2=\operatorname{deg} \omega_{c}$.
(2.9) In the rest of this section we assume char $k \neq 2,3$. Let s, t be the homogeneous coordinates on P^{1} and w, x, y, z on P^{3}. Consider the rational curve C of degree 6 in P^{3} which is the image of the map $f: P^{\mathbf{1}} \rightarrow$ P^{3} defined by $f(s: t)=(w: x: y: z):=\left(s t^{2}(s+t)^{3}: s^{2} t^{3}(s+t): s^{3} t(s+t)^{2}:(s-t)^{6}\right)$. We set

$$
M(s, t):=\left[\begin{array}{ll}
\partial w / \partial s & \partial w / \partial t \\
\partial x / \partial s & \partial x / \partial t \\
\partial y / \partial s & \partial y / \partial t \\
\partial z / \partial s & \partial z / \partial t
\end{array}\right]=\left[\begin{array}{ll}
t^{2}(s+t)^{2}(4 s+t) & s t(s+t)^{2}(2 s+5 t) \\
s t^{3}(3 s+2 t) & s^{2} t^{2}(3 s+4 t) \\
s^{2} t(s+t)(5 s+3 t) & s^{3}(s+t)(s+3 t) \\
6(s-t)^{s} & -6(s-t)^{5}
\end{array}\right]
$$

An easy calculation shows that the rank of $M(s, t)$ is 2 for any $(s: t) \in P^{1}$.

Let p be the point $(0: 0: 0: 1)$. Then $f^{-1}(p)$ consists of three distinct points $(0: 1)$, ($1: 0$), ($1:-1$). Put $V:=P^{1}-\{(0: 1),(1: 0),(1:-1)\}$ and assume $(s: t) \in V$. Since $t \neq 0$, we can set $t=1$, and use s as an affine parameter. Then we have

$$
\begin{aligned}
f(s: 1) & =\left(s(s+1)^{3}: s^{2}(s+1): s^{3}(s+1)^{2}:(s-1)^{6}\right) \\
& =\left(\frac{(s+1)^{2}}{s}: 1: s(s+1): \frac{(s-1)^{e}}{s^{2}(s+1)}\right)
\end{aligned}
$$

From this it is easy to see that f is injective on V. Thus, in sum, C has exactly one singular point p.

Let U be the open set $\{z \neq 0\}$. Then p is the origin in U. We use $M(s, t)$ to see that the tangent directions in U at ($0: 1$), ($1: 0$) and ($1:-1$) are $(1,0,0),(0,0,1)$ and ($0,-1,0$), respectively. Therefore C is not a locally complete intersection and blowing up C at p desingularizes C in one step. Of course the multiplicity of p on C is 3 . Let $\delta_{p}=\operatorname{leng} \operatorname{th}\left(\mathscr{O}_{p} / \mathscr{O}_{p}\right)$, where $\widetilde{\mathcal{O}_{p}}$ is the integral closure of \mathscr{O}_{p}. Then the arithmetic genus g of C is equal to δ_{p}.
(2.10) In order to calculate δ_{p}, we quote the following

Lemma. Let C be a complete algebraic curve with only one singular point p. Assume that blowing up C at p desingularizes C in one step. Let ρ be the multiplicity of p on C. Then $\rho-1 \leqq \delta_{p} \leqq \rho(\rho-1) / 2$. Furthermore $\delta_{p}=\rho(\rho-1) / 2$ if and only if length $\mathfrak{m} / \mathfrak{m}^{2}=2$, where \mathfrak{m} is the maximal ideal of \mathcal{O}_{p}.

For a proof, see for example [K].
(2.11) We now return to our case (2.9). Applying (2.10) yields $g=\delta_{p}=2$, so by (2.3), ω_{c} is generated by two global sections. Combining this with (2.5), (2.6) and (2.8), we obtain a 3 -bundle F on P^{3} with $c_{0}(F)=1, c_{1}(F)=4, c_{2}(F)=6$ and $c_{3}(F)=2$. Since the polynomial $X^{3}+4 X^{2}+$ $6 X+2$ is irreducible by Eisenstein's criterion, F is indecomposable.

§3. Construction of reflexive sheaves.

(3.1) The aim of this section is to describe a way to construct reflexive sheaves from line bundles and closed subschemes of codimension 2.
(3.2) Theorem. Let X be a locally factorial Gorenstein projective variety of dimension $n \geqq 3$ defined over a (not necessarily algebraically
closed) field k and L a line bundle on X. Let Y be a closed subscheme of X of codimension 2 and \mathscr{I}_{Y} the ideal defining Y. Assume that for any ideal $\mathscr{I}_{Y} \neq \mathscr{F}_{Y}, h^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right)>h^{n-1}\left(\mathscr{S}_{Y^{\prime}}\left(K_{X}+L\right)\right)$. Then $H^{n-1}\left(\mathscr{J}_{Y}\left(K_{X}+L\right)\right)$ induces the exact sequence

$$
0 \longrightarrow H^{n-1}\left(\mathscr{F}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{X} \longrightarrow F \longrightarrow \mathscr{\mathscr { I }}_{Y}(L) \longrightarrow 0
$$

with F reflexive.
Proof. By Serre duality we have an isomorphism

$$
\begin{aligned}
& \varphi: \quad \operatorname{Ext}^{1}\left(\mathscr{S}_{Y}(L), H^{n-1}\left(\mathscr{S}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{X}\right) \\
& \xrightarrow{\sim} \operatorname{Hom}\left(H^{n-1}\left(\mathscr{S}_{Y}\left(K_{X}+L\right)\right), H^{n-1}\left(\mathscr{\mathscr { O }}_{Y}\left(K_{X}+L\right)\right)\right) .
\end{aligned}
$$

Let $\varphi(\xi)=$ id. Then ξ defines a global extension

$$
0 \longrightarrow H^{n-1}\left(\mathscr{\mathscr { I }}_{Y}\left(K_{X}+L\right)\right) \otimes \mathscr{O}_{X} \longrightarrow F \longrightarrow \mathscr{\mathscr { I }}_{Y}(L) \longrightarrow 0
$$

over X. We show that F is reflexive. Since F is torsion free, the natural map $\mu: F \rightarrow F^{\vee \vee}$ is injective. We consider the commutative diagram

where ξ^{\prime} is an element of $\operatorname{Ext}^{1}\left(S, H^{n-1}\left(\mathscr{S}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{X}\right)$ given by the second extension. We note that $\nu^{*}: \operatorname{Ext}^{1}\left(S, H^{n-1}\left(\mathscr{J}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{X}\right) \rightarrow$ $\operatorname{Ext}^{1}\left(\mathscr{J}_{Y}(L), H^{n-1}\left(\mathscr{J}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{X}\right)$ satisfies $\nu^{*}\left(\xi^{\prime}\right)=\xi$. We claim that S is torsion free of rank 1. Suppose to the contrary that $S_{\text {Tor }} \neq 0$. Let $\xi^{\prime \prime}=i^{*}\left(\xi^{\prime}\right)$, where $i: S_{\text {Tor }} \rightarrow S$ is the inclusion map. Then we have the commutative diagram

On the other hand, since $\operatorname{Supp}\left(S_{\text {Tor }}\right) \subset Y, \operatorname{Ext}^{1}\left(S_{\text {Tor }}, H^{n-1}\left(\mathscr{S}_{Y}\left(K_{X}+L\right)\right) \otimes \mathcal{O}_{x}\right) \cong$ $H^{n-1}\left(S_{\text {Tor }} \otimes K_{X}\right)^{\vee} \otimes H^{n-1}\left(\mathscr{\mathscr { V }}_{Y}\left(K_{X}+L\right)\right)=0$. Hence $F_{\text {Tor }}^{\vee \vee} \neq 0$, which is a contradiction. Since X is locally factorial and $\operatorname{det} F=\operatorname{det}\left(F^{\vee \vee}\right)$, we can write $S=\mathscr{I}_{Y^{\prime}}(L)$ for some closed subscheme Y^{\prime} of codimension $\geqq 2$. The Serre duality theorem says that

$$
\begin{aligned}
\psi: & \operatorname{Ext}^{1}\left(\mathscr{F}_{Y^{\prime}}(L), H^{n-1}\left(\mathscr{F}_{Y}\left(K_{X}+L\right)\right) \otimes \mathscr{O}_{X}\right) \\
& \simeq \\
\sim & \operatorname{Hom}\left(H^{n-1}\left(\mathscr{\mathscr { F }}_{Y}\left(K_{X}+L\right)\right), H^{n-1}\left(\mathscr{S}_{Y}\left(K_{X}+L\right)\right)\right) .
\end{aligned}
$$

Let $\eta=\psi\left(\xi^{\prime}\right)$. Then, by the functoriality of Serre duality, we obtain the commutative diagram

where f is the natural map induced by $\nu \otimes K_{X}$. So $h^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right) \leqq$ $h^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right.$. Combining this with the hypothesis gives $\mathscr{I}_{Y}=\mathscr{F}_{Y^{\prime}}$. Therefore μ is an isomorphism and F is reflexive.
Q.E.D.
(3.3) Corollary. Let X be a smooth projective variety of dimension $n \geqq 3$ defined over an algebraically closed field k and L a line bundle on X such that $h^{2}\left(\mathcal{O}_{x}(-L)\right)=0$. Let Y be a closed subvariety of X of codimension 2. Assume $h^{n-2}\left(\mathcal{O}_{Y}\left(K_{X}+L\right)\right)>0$. Then there exists a reflexive sheaf F of rank r on X with $c_{1}(F)=L$ and $c_{2}(F)=Y$, where $r=$ $h^{n-1}\left(\mathscr{P}_{Y}\left(K_{X}+L\right)\right)+1$.

Proof. Given any ideal $\mathscr{\mathscr { J }}_{Y^{\prime}} \supsetneq \mathscr{\mathscr { I }}_{Y}$, we have the commutative diagram

Since $h^{n-1}\left(\mathcal{O}_{Y}\left(K_{X}+L\right)\right)=h^{n-1}\left(\mathscr{O}_{Y^{\prime}}\left(K_{X}+L\right)\right)=h^{n-2}\left(\mathscr{O}_{Y^{\prime}}\left(K_{X}+L\right)\right)=0$,

$$
h^{n-1}\left(\mathscr{I}_{Y}\left(K_{X}+L\right)\right)>h^{n-1}\left(\mathcal{O}_{X}\left(K_{X}+L\right)\right)=h^{n-1}\left(\mathscr{S}_{Y^{\prime}}\left(K_{X}+L\right)\right) ;
$$

the assertion now follows from (3.2).
Q.E.D.

Acknowledgement. I would like to express my sincere thanks to Professors H. Kaji and M. Tomari: Kaji communicated a curve in (2.9) to me; Tomari told me Kirby's result [K]. I would also like to express my hearty thanks to the referee for his or her valuable comments.

References

[AK] A. Altman and S. Kleiman, Introduction to Grothendieck duality theory, Lecture Notes in Math., 146 (1970), Springer.
[F] T. Fujita, Defining equations for certain types of polarized varieties, Complex Analysis
and Algebraic Geometry (Baily and Shioda eds.), pp. 165-173, Iwanami, Tokyo, 1977.
[G] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France, 86 (1958), 137-154.
[H1] R. Hartshorne, Stable vector bundles of rank 2 on P3, Math. Ann., 238 (1978), 229-280.
[H2] R. Hartshorne, Stable reflexive sheaves, Math. Ann., 254 (1980), 121-176.
[K] D. Kirby, The reduction number of a one-dimensional local ring, J. London Math. Soc., 10 (1975), 471-481.
[OSS] C. Okonek, M. Schneider and H. Spindler, Vector bundles on complex projective spaces, Progress in Math., 3 (1980), Birkhäuser.
[V] J. A. Vogelaar, Constructing vector bundles from codimension-two subvarieties, Thesis, Leiden 1978.

Present Address:

Department of Mathematics, School of Education, Waseda University Nishi-Waseda, Shinjuku-ku, Tokyo 169, Japan

[^0]: Received July 3, 1989

