# On the Existence and Smoothness of Invariant Manifolds of Semilinear Evolution Equations

#### Tatsuo ITOH

University of Tokyo
(Communicated by S. T. Kuroda)

## § 1. Introduction.

Let us consider semilinear evolution equations in a Hilbert space X

(E) 
$$du/dt = Lu + Nu , \qquad t > 0 .$$

Here L is the generator of an analytic semigroup and N is a nonlinear operator defined near 0. We suppose that the spectrum  $\sigma(L)$  of L is divided into two parts  $\sigma_1(L)$  and  $\sigma_2(L)$  in such a way that

$$(\alpha_2 \equiv) \sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < \inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma \ (\equiv \alpha_1)$$
 .

If N is identically zero, the eigenspace  $X_i$ , i=1, 2, corresponding to  $\sigma_i(L)$  is invariant in the following sense: If an initial value x is contained in  $X_i$  then the solution u(t, x) of (E) with the initial value x is also contained in  $X_i$  for t>0.

In this paper we are interested in the persistency of the invariance and smoothness of the manifolds  $X_i$  under small perturbation N. Let N(x) be a  $C^k$ -mapping,  $1 \le k < \infty$ , with N(0) = 0. We first ask if there exists an invariant manifold  $M_i$  "near  $X_i$ ", provided that  $||D_xN||$  is small enough.  $(D_xN)$  denotes the Fréchet derivative of N(x) with respect to x.) If it does, we next ask if invariant manifolds are  $C^k$ .

The following facts have been known. See, e.g., [1-11, 14-17, 19-22].

- (i) If  $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma \geq 0$ , then an invariant  $C^k$ -manifold  $M_1$  "near  $X_1$ " exists. It is called a center-unstable manifold. In particular, if  $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma > 0$  (resp.  $\operatorname{Re} \sigma = 0$  for  $\sigma \in \sigma_1(L)$ ), then the manifold is called an unstable (resp. a center) manifold.
- (ii) If  $\sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < 0$ , then an invariant  $C^k$ -manifold "near  $X_2$ " exists.

Received February 8, 1990

It is called a stable manifold.

In this paper we shall prove that an invariant  $C^1$ -manifold  $M_i$  "near  $X_i$ " exists if  $||D_xN||$  is small enough. The problem of smoothness of  $M_i$  is more delicate. It depends on the structure of the spectrum of L. We state a result on the smoothness of  $M_1$ . A similar result holds on the smoothness of  $M_2$ .

THEOREM. Let the above hypotheses hold. Suppose that there exists an integer r with  $\alpha_2 < r\alpha_1$ ,  $1 \le r \le k$ . Then a  $C^r$ -invariant manifold exists if  $||D_xN||$  is small enough.

This result is optimal in the following sense. If  $\alpha_2 = k\alpha_1$  (<0), then there is an example such that there does not exist any  $C^*$ -invariant manifold  $M_1$  "near  $X_1$ ". Such an example is given in section 2.

In section 2 we state our hypotheses and results. The proofs of Theorems 1, 2, and 3 are based on results of Hirsch, Pugh, and Shub [12]. In section 3 we state them in an adequate form to our use. In section 4 we prove our results by applying them to a time s-mapping  $u(s, \cdot)$ .

#### § 2. Main results.

Throughout the present paper we postulate the following two hypotheses concerning L and N.

HYPOTHESIS 1. (i) L generates an analytic semigroup  $\{e^{tL}\}_{t>0}$  in X. (ii) The spectrum  $\sigma(L)$  of L is divided into two parts:

$$\sigma(L)\!=\!\sigma_{\scriptscriptstyle 1}\!(L)\cup\sigma_{\scriptscriptstyle 2}\!(L)$$
 ,  $(lpha_{\scriptscriptstyle 2}\!\equiv)\sup_{\sigma\,\in\,\sigma_{\scriptscriptstyle 2}(L)}\mathop{\mathrm{Re}} \sigma\!<\!\inf_{\sigma\,\in\,\sigma_{\scriptscriptstyle 1}(L)}\mathop{\mathrm{Re}} \sigma\,(\,\equiv\,\!lpha_{\scriptscriptstyle 1})$  .

By Hypothesis 1 (i) there exists a constant  $\alpha$  with  $\sup_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma < \alpha$ . In the following we fix such a number  $\alpha$ . Let  $\beta$  be such that  $0 \le \beta < 1$ . We denote by  $X_{\beta}$  the Banach space consisting of all elements in the domain of  $(-L+\alpha)^{\beta}$ . The norm of  $X_{\beta}$  is the graph norm of  $(-L+\alpha)^{\beta}$ , which we denote by  $\|\cdot\|$ .

HYPOTHESIS 2. The nonlinear operator N is a  $C^k$ -mapping of some neighborhood U of 0 in  $X_{\beta}$  into X such that N(0) = 0.

Let  $P_{\iota}$ , i=1, 2, be the projection associated with  $\sigma_{\iota}(L)$ . The restriction  $P_{\iota}|X_{\beta}$  of  $P_{\iota}$  to  $X_{\beta}$  is also the projection of  $X_{\beta}$  onto  $P_{\iota}X_{\beta}$ . Then  $X_{\beta}$  is decomposed into the direct sum:  $X_{\beta} = P_{\iota}X_{\beta} \bigoplus P_{\iota}X_{\beta}$ . For simplicity we write  $X_{\iota}$  for  $P_{\iota}X_{\beta}$ .

We give a definition of local invariance. Let  $M \subset U$  ( $\subset X_{\beta}$ ). We say that a set M is locally invariant if the following holds: Let  $x \in M$ . Then there exists a t>0 such that  $u(s, x) \in M$ ,  $0 < s \le t$ .

Our problem can be formulated as follows.

PROBLEM. Let  $\sup_{x \in U} ||D_x N(x)||$  be small enough. Does there exist a  $C^k$ -mapping  $w_i$ , i=1, 2, defined in a neighborhood  $V_i$  of 0 in  $X_i$  into  $X_{3-i}$  which satisfies

- (i)  $w_i(0) = 0$ ,  $\sup_{x \in V_i} ||D_x w_i(x)||$  is small,
- (ii) the graph of  $w_i$  is locally invariant.

Our main results are given by the following theorems.

THEOREM 1. Assume that Hypotheses 1 and 2 are satisfied. Then there exist an open neighborhood  $V_i$ , i=1, 2, of 0 in  $X_i$  and a  $C^1$ -mapping  $w_i$  of  $V_i$  into  $X_{3-i}$  with the properties (i) and (ii) in Problem.

Theorem 2 (Smoothness of  $w_1$ ). Assume that Hypotheses 1 and 2 are satisfied. Let r be the largest integer which satisfies  $\alpha_2 < r\alpha_1$ ,  $1 \le r \le k$ . Then if  $||D_xN(0)||$  is small enough, then there exist an open neighborhood  $V_1$  of 0 in  $X_1$  and a  $C^r$ -mapping  $w_1$  of  $V_1$  into  $X_2$  which satisfy (i) and (ii) in Problem.

THEOREM 3 (Smoothness of  $w_2$ ). Assume that Hypotheses 1 and 2 are satisfied. Let r be the largest integer which satisfies  $r\alpha_2 < \alpha_1$ ,  $1 \le r \le k$ . Then if  $||D_xN(0)||$  is small enough, then there exist an open neighborhood  $V_2$  of 0 in  $X_2$  and a  $C^r$ -mapping  $w_2$  of  $V_2$  into  $V_2$  which satisfy (i) and (ii) in Problem.

REMARK. The smoothness of a mapping  $w_i$ , i=1, 2, is optimal in the following sense. Suppose that  $\alpha_2 = k\alpha_1$  (resp.  $k\alpha_2 = \alpha_1$ ). Then there is an example such that even if N is a  $C^{\infty}$ -mapping, there does not exist any  $C^k$ -mapping of a neighborhood of 0 in  $X_1$  into  $X_2$  (resp.  $X_2$  into  $X_1$ ). In the rest of this section we give such an example.

Consider the system of equations

$$dx/dt = -x$$
,  $dy/dt = -ky + x^k$ .

Straightforward computation shows that the solution (x, y) with initial value  $(x_0, y_0)$ ,  $x_0 \neq 0$ , satisfies

$$y = (y_0/x_0^k)x^k - x^k \log(x/x_0)$$
.

If we set

$$C = y_0/x_0^k + \log|x_0|$$

then (x, y) satisfies

$$y = -x^k \log |x| + Cx^k.$$

If  $x_0=0$ , then the solution satisfies x=0. Therefore we conclude that the invariant curve x=0 corresponds to the graph of  $w_2$  and that the other invariant curves are not  $C^k$  at x=0.

## §3. Results of Hirsch, Pugh, and Shub.

In this section we recall results of Hirsch, Pugh, and shub [12, Theorem 5.1]. We state them in a modified form which are adequate to our use.

Let E be a Banach space divided into the direct sum:  $E = E_1 \oplus E_2$ . Let T be a bounded linear operator on E. We denote by  $P_i$ , i=1, 2, the projection of E onto  $E_i$ , i=1, 2. We suppose that the following conditions hold.

Hypothesis T. (i)  $TE_i \subset E_i$ , i=1, 2.

- (ii) The restriction  $T_1$  of  $P_1T$  to  $E_1$  has a bounded inverse.
- (iii) The following inequality holds:

$$||T_1^{-1}|| ||T_2|| < 1.$$

where  $T_2$  denotes the restriction of  $P_2T$  to  $E_2$ .

The results of Hirsch, Pugh, and Shub are stated in the following theorems.

THEOREM 4. Assume that Hypothesis T holds. Then there exist  $\varepsilon_1 > 0$  and two constants  $\rho_i$ , i=1, 2, with  $\rho_2 < \rho_1$  such that the following statements hold. Suppose that a  $C^1$ -mapping  $f: E \to E$  which satisfies f(0)=0,  $||D_x f - T|| (=\varepsilon) < \varepsilon_1$ , then there exist two maps  $\xi_f: E_1 \to E_2$  and  $\xi_{f^{-1}}: E_2 \to E_1$  with the following properties:

- (i)  $\sup_{x \in E_1} \|D_x \xi_f(x)\|$  and  $\sup_{x \in E_2} \|D_x \xi_{f^{-1}}(x)\|$  tends to 0 as  $\varepsilon \to 0$ .
- (ii) If  $x \in W_1 \equiv \operatorname{graph} \xi_f = \{x = (y, z) : z = \xi_f(y), y \in E_1\}$ , then there exists a unique sequence  $\{x_{-n}\}$  in  $W_1$ ,  $n \in \mathbb{N}$ , which satisfies  $f^n(x_{-n}) = x$ , and

$$||x_{-n}|| \leq \rho_1^{-n} ||x||.$$

Conversely if there exists a sequence  $\{x_{-n}\}$  which satisfies  $f^n(x_{-n}) = x$ , and  $||x_{-n}|| \rho_1^n$  is bounded, then  $x \in W_1$ .

(iii) If  $x \in W_2 \equiv \text{graph } \xi_{f^{-1}} = \{x = (y, z) : y = \xi_{f^{-1}}(z), z \in E_2\}$ , then for  $n \ge 0$ 

$$||f^{n}(x)|| \leq \rho_{2}^{n} ||x||.$$

Conversely if  $||f^n(x)||/\rho_2^n$  is bounded, then  $x \in W_2$ .

On further smoothness of  $\xi_f$  and  $\xi_{f^{-1}}$  the following theorems hold.

THEOREM 5 (Smoothness of  $\xi_f$ ). Under the hypotheses of Theorem 4, we further assume that

$$||T_1^{-1}||^k||T_2|| < 1.$$

Then there exists  $0 < \varepsilon_k \le \varepsilon_1$  such that for any  $C^k$ -mapping f which satisfies f(0) = 0 and  $||D_x f - T|| < \varepsilon_k$ , the mapping  $\xi_f$  obtained in Theorem 4 is  $C^k$ .

THEOREM 6 (Smoothness of  $\xi_{f^{-1}}$ ). Under the hypotheses of Theorem 4, we further assume that

$$||T_1^{-1}|| ||T_2||^k < 1.$$

Then there exists  $0 < \varepsilon_k \le \varepsilon_1$  such that for any  $C^k$ -mapping f which satisfies f(0) = 0 and  $||D_x f - T|| < \varepsilon_k$ , the mapping  $\xi_{f^{-1}}$  obtained in Theorem 4 is  $C^k$ .

## § 4. Proofs of Theorems 1, 2, and 3.

Instead of the evolution equation (E), we consider a modified equation

$$(\mathbf{E}_{\epsilon})$$
  $du/dt = Lu + \chi(u/arepsilon)N(u)$  ,

where  $\chi \in C^k(X_{\beta}, \mathbb{R})$  with  $\chi(x)=1$  (||x||<1), =0 (||x||>2). We state the following lemma, which is elementary, but plays a fundamental role in the proofs.

LEMMA. For any  $x \in X_{\beta}$  a solution  $u_{\epsilon}(t, x)$  of  $(E_{\epsilon})$  with initial value x exists on  $[0, \infty)$ . For each t > 0 a mapping  $x \to u_{\epsilon}(t, x)$  is a  $C^k$ -mapping and satisfies

$$(4.1) ||D_x u_{\epsilon}(t, x) - e^{tL}|| \leq K(e^{\delta(\epsilon)Kt} - 1)e^{\alpha t}, t \geq 1$$

where K and  $\delta(\varepsilon)$  are constants independent of t and x such that  $\delta(\varepsilon)$  tends to 0 as  $\varepsilon \to 0$ .

The proof is standard. See, e.g., [11].

PROOF OF THEOREM 1. First we give an outline of the proof of Theorem 1. We set  $T(s) = e^{sL}$ . We write  $f_{\epsilon}(t)x$  for the solution  $u_{\epsilon}(t, x)$ . Then, by Lemma,  $f_{\epsilon}(t)$  is a  $C^k$ -mapping of  $X_{\beta}$  into itself. We first choose

s>0 so large that the condition (3.1) in Hypothesis T holds with T replaced by T(s). We next choose  $\varepsilon$  so small that the inequality

$$||D_x f_{\varepsilon}(s) - T(s)|| < \varepsilon_1$$

holds. Then we apply Theorem 4 with f replaced by  $f_{\epsilon}$ . Thus we shall obtain a  $C^1$ -mapping  $w_{i}$ , the graph of which satisfies (i), (ii), and (iii) of Theorem 4. We set  $W_{i,\epsilon} = \operatorname{graph} w_{i}$ . For the proof of Theorem 1 we have only to establish that  $W_{i,\epsilon}$  is invariant under the semiflow  $f_{\epsilon}(t)$ .

Now we determine s as follows. Choose real numbers  $\beta_1$  and  $\beta_2$  such that  $\alpha_2 < \beta_2 < \beta_1 < \alpha_1$  ( $< \alpha$ ). Then the following inequalities hold.

$$(4.3) ||e^{tL}|| \leq Ke^{\alpha t}, t \geq 0,$$

$$(4.4)$$
  $\|e^{-tL}|X_1\| \leq Ke^{-eta_1 t}$  ,  $t \geq 0$  ,

$$||e^{tL}|X_2|| \leq Ke^{\beta_2 t}, \qquad t \geq 0,$$

where K is a constant independent of t, and  $e^{-tL}|X_1$  is the inverse of  $e^{tL}|X_1:X_1\to X_1$ . Since  $\beta_2<\beta_1$ , we can choose s so large that  $K^2e^{(\beta_2-\beta_1)s}<1$ . Then, by (4.4) and (4.5), we get

$$||e^{sL}|X_2|| ||e^{-sL}|X_1|| \le K^2 e^{(\beta_2-\beta_1) \cdot s} < 1$$

and so the inequality (3.1) holds. By (4.1) we can choose  $\varepsilon > 0$  so small that the inequality (4.2) holds. Thus we can apply Theorem 4 to a time s-mapping T(s). Hence we obtain a mapping  $w_1$  (resp.  $w_2$ ) of  $X_1$  into  $X_2$  (resp.  $X_2$  into  $X_1$ ) which satisfies (i), (ii), and (iii) of Theorem 4.

We first claim that  $W_{2,\epsilon}$  is invariant under  $f_{\epsilon}(t)$ .

Proof of the claim. Let t>0 and let k=[t/s]. Then, by the semigroup property of  $f_{\epsilon}(t)$ , we get

$$f_{\varepsilon}^{n}(s)u_{\varepsilon}(t, x) = u_{\varepsilon}(ns+t, x) = u_{\varepsilon}(t-ks, f_{\varepsilon}^{n+k}(s)x)$$
.

On the other hand, since  $u_{\epsilon}(t, 0) = 0$ , we get by Lemma and (4.3)

$$||u_{\epsilon}(t, x)|| \leq Ke^{(\alpha+\delta(\epsilon)K)t}||x||, \quad t \geq 0.$$

Hence we obtain

$$||f_{\varepsilon}^{n}(s)u_{\varepsilon}(t, x)|| \leq Ke^{(\alpha+\delta(\varepsilon)K)(t-ks)}||f_{\varepsilon}^{n+k}(s)x||$$
$$\leq Ke^{(\alpha+\delta(\varepsilon)K)s}\rho_{2}^{n+k}||x||.$$

Therefore  $||f_{\epsilon}^{n}(s)u_{\epsilon}(t, x)||/\rho_{2}^{n}$  is bounded for  $n \ge 0$ . Thus, by Theorem 4 (iii) we conclude that  $u_{\epsilon}(t, x) \in W_{2,\epsilon}$ , t>0.

We next claim that  $W_{1,\epsilon}$  is invariant under the semiflow  $f_{\epsilon}(t)$ .

*Proof of the claim*. Let  $x \in W_{1,\epsilon}$ . Then by Theorem 4 (ii) there exists a sequence  $\{x_{-n}\}_{n\geq 0}$  which satisfies  $f_{\epsilon}^{n}(s)x_{-n}=x$  and

$$||x_{-n}|| \leq \rho_1^{-n} ||x||.$$

Since  $f_{\epsilon}^{n}(s)f_{\epsilon}(t)x_{-n}=f_{\epsilon}(t)x$ , for the proof of invariance of  $W_{1,\epsilon}$  under  $f_{\epsilon}(t)$ , it suffices to show that  $||f_{\epsilon}(t)x_{-n}||\rho_{1}^{n}$  is bounded. Let k=[t/s]. Then, by Lemma and (4.6) we have

$$\begin{split} ||f_{\varepsilon}(t)x_{-n}||\rho_{1}^{n} &= ||f_{\varepsilon}(t-ks)x_{k-n}||\rho_{1}^{n} \\ &\leq Ke^{\alpha s}||x_{k-n}||\rho_{1}^{n} \leq Ke^{\alpha s}\rho_{1}^{k-n}\rho_{1}^{n}||x|| = Ke^{\alpha s}\rho_{1}^{k}||x|| \ . \end{split}$$

Hence it follows that  $||f_{\epsilon}(t)x_{-n}||\rho_1^n$  is bounded for  $n \ge 0$ . Thus we conclude that  $W_{1,\epsilon}$  is invariant under the semiflow  $f_{\epsilon}(t)$ . Q.E.D.

PROOFS OF THEOREMS 2 AND 3. We have only to show that (3.6) and (3.7) hold, respectively, with T replaced by  $e^{sL}$ . We show that (3.6) holds. Suppose that  $\alpha_2 < r\alpha_1$ . Then there exists  $\beta_1$  and  $\beta_2$  with  $\beta_2 < r\beta_1$  such that (4.4) and (4.5) hold. Choose s>0 so large that  $K^2e^{(-\beta_1r+\beta_2)s}<1$ . Then we obtain

$$||e^{-sL}|X_1||^r||e^{sL}|X_2|| \leq K^2 e^{(-\beta_1 r + \beta_2)s} < 1$$
 .

The proof of (3.7) is similar. Thus the proofs of Theorems 2 and 3 are complete.

#### References

- [1] J. CARR, Applications of Center Manifold Theory, Appl. Math. Sci., Springer-Verlag (1981).
- [2] N. CHAFEE, The bifurcation of one or more closed orbits from an equilibrium point of an autonomous of differential system, J. Differential Equations, 4 (1968), 661-679.
- [3] N. CHAFEE, A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl., 35 (1971), 312-348.
- [4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren Math. Wiss., 256 (1982), Springer-Verlag.
- [5] E. A. CODDINGTON and N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill (1955).
- [6] G. F. Dell'Antonio and B. D'Onofrio, Construction of a center-unstable manifold for  $C^1$ -flow and an application to the Navier-Stokes equation, Arch. Rational Mech. Anal., **93** (1986), 185-201.
- [7] N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226.
- [8] N. Fenichel, Asymptotic stability with rate conditions, ibid., 23 (1974), 1109-1137.
- [9] J. K. Hale, Ordinary Differential Equations, 2nd ed., Robert E. Krieger (1980).

- [10] P. HARTMAN, Ordinary Differential Equations, Wiley (1964).
- [11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840 (1981), Springer-Verlag.
- [12] M. W. Hirsch, C. C. Pugh and M. Shub, *Invariant Manifolds*, Lecture Notes in Math., **583** (1977), Springer-Verlag.
- [13] G. Iooss, Bifurcation et Stabilité, Cours de 3ème cycle 1972-1974, Publ. Math. d'Orsay, 31 (1974).
- [14] A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations, 3 (1967), 546-570.
- [15] A. Kelley, Stability of the center-stable manifold, J. Math. Anal. Appl., 18 (1967), 336-344.
- [16] J. S. A. Hepburn and W. M. Wonham, The semistable-center-unstable manifold near a critical element, J. Differential Equations, 103 (1984), 321-331.
- [17] N. D. KAZARINOFF, On orbital stability and center manifolds, Nonlinear Differential Equations (de Mottoni and L. Salvador, Eds.), pp. 195-206, Academic Press (1981).
- [18] O. E. Lanford, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, *Nonlinear Problems in Physical Sciences and Biology* (A. Dold and B. Eckmann, Eds.), pp. 159-192, Lecture Notes in Math., **322** (1973), Springer-Verlag.
- [19] J. E. MARSDEN and M. McCracken, The Hopf Bifurcation and its Applications, Appl. Math. Sci., 19 (1976), Springer-Verlag.
- [20] D. RUELLE and F. TAKENS, On the nature of turbulence, Comm. Math. Phys., 20 (1971), 167-192.
- [21] J. SIJBRAND, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-467.
- [22] A. VANDERBAUWHEDE and S. A. VAN GILS, Center manifolds and contractions on a scale of Banach spaces, J. Functional Analysis, 72 (1987), 209-224.
- [23] S. VAN STRIEN, Center manifolds are not  $C^{\infty}$ , Math. Z., 166 (1979), 143-145.

#### Present Address:

DEPARTMENT OF PUPE AND APPLIED SCIENCES
COLLEGE OF ARTS AND SCIENCES, UNIVERSITY OF TOKYO
KOMABA, MEGURO-KU, TOKYO 153, JAPAN