On the Existence and Smoothness of Invariant Manifolds of Semilinear Evolution Equations #### Tatsuo ITOH University of Tokyo (Communicated by S. T. Kuroda) ## § 1. Introduction. Let us consider semilinear evolution equations in a Hilbert space X (E) $$du/dt = Lu + Nu , \qquad t > 0 .$$ Here L is the generator of an analytic semigroup and N is a nonlinear operator defined near 0. We suppose that the spectrum $\sigma(L)$ of L is divided into two parts $\sigma_1(L)$ and $\sigma_2(L)$ in such a way that $$(\alpha_2 \equiv) \sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < \inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma \ (\equiv \alpha_1)$$. If N is identically zero, the eigenspace X_i , i=1, 2, corresponding to $\sigma_i(L)$ is invariant in the following sense: If an initial value x is contained in X_i then the solution u(t, x) of (E) with the initial value x is also contained in X_i for t>0. In this paper we are interested in the persistency of the invariance and smoothness of the manifolds X_i under small perturbation N. Let N(x) be a C^k -mapping, $1 \le k < \infty$, with N(0) = 0. We first ask if there exists an invariant manifold M_i "near X_i ", provided that $||D_xN||$ is small enough. (D_xN) denotes the Fréchet derivative of N(x) with respect to x.) If it does, we next ask if invariant manifolds are C^k . The following facts have been known. See, e.g., [1-11, 14-17, 19-22]. - (i) If $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma \geq 0$, then an invariant C^k -manifold M_1 "near X_1 " exists. It is called a center-unstable manifold. In particular, if $\inf_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma > 0$ (resp. $\operatorname{Re} \sigma = 0$ for $\sigma \in \sigma_1(L)$), then the manifold is called an unstable (resp. a center) manifold. - (ii) If $\sup_{\sigma \in \sigma_2(L)} \operatorname{Re} \sigma < 0$, then an invariant C^k -manifold "near X_2 " exists. Received February 8, 1990 It is called a stable manifold. In this paper we shall prove that an invariant C^1 -manifold M_i "near X_i " exists if $||D_xN||$ is small enough. The problem of smoothness of M_i is more delicate. It depends on the structure of the spectrum of L. We state a result on the smoothness of M_1 . A similar result holds on the smoothness of M_2 . THEOREM. Let the above hypotheses hold. Suppose that there exists an integer r with $\alpha_2 < r\alpha_1$, $1 \le r \le k$. Then a C^r -invariant manifold exists if $||D_xN||$ is small enough. This result is optimal in the following sense. If $\alpha_2 = k\alpha_1$ (<0), then there is an example such that there does not exist any C^* -invariant manifold M_1 "near X_1 ". Such an example is given in section 2. In section 2 we state our hypotheses and results. The proofs of Theorems 1, 2, and 3 are based on results of Hirsch, Pugh, and Shub [12]. In section 3 we state them in an adequate form to our use. In section 4 we prove our results by applying them to a time s-mapping $u(s, \cdot)$. #### § 2. Main results. Throughout the present paper we postulate the following two hypotheses concerning L and N. HYPOTHESIS 1. (i) L generates an analytic semigroup $\{e^{tL}\}_{t>0}$ in X. (ii) The spectrum $\sigma(L)$ of L is divided into two parts: $$\sigma(L)\!=\!\sigma_{\scriptscriptstyle 1}\!(L)\cup\sigma_{\scriptscriptstyle 2}\!(L)$$, $(lpha_{\scriptscriptstyle 2}\!\equiv)\sup_{\sigma\,\in\,\sigma_{\scriptscriptstyle 2}(L)}\mathop{\mathrm{Re}} \sigma\!<\!\inf_{\sigma\,\in\,\sigma_{\scriptscriptstyle 1}(L)}\mathop{\mathrm{Re}} \sigma\,(\,\equiv\,\!lpha_{\scriptscriptstyle 1})$. By Hypothesis 1 (i) there exists a constant α with $\sup_{\sigma \in \sigma_1(L)} \operatorname{Re} \sigma < \alpha$. In the following we fix such a number α . Let β be such that $0 \le \beta < 1$. We denote by X_{β} the Banach space consisting of all elements in the domain of $(-L+\alpha)^{\beta}$. The norm of X_{β} is the graph norm of $(-L+\alpha)^{\beta}$, which we denote by $\|\cdot\|$. HYPOTHESIS 2. The nonlinear operator N is a C^k -mapping of some neighborhood U of 0 in X_{β} into X such that N(0) = 0. Let P_{ι} , i=1, 2, be the projection associated with $\sigma_{\iota}(L)$. The restriction $P_{\iota}|X_{\beta}$ of P_{ι} to X_{β} is also the projection of X_{β} onto $P_{\iota}X_{\beta}$. Then X_{β} is decomposed into the direct sum: $X_{\beta} = P_{\iota}X_{\beta} \bigoplus P_{\iota}X_{\beta}$. For simplicity we write X_{ι} for $P_{\iota}X_{\beta}$. We give a definition of local invariance. Let $M \subset U$ ($\subset X_{\beta}$). We say that a set M is locally invariant if the following holds: Let $x \in M$. Then there exists a t>0 such that $u(s, x) \in M$, $0 < s \le t$. Our problem can be formulated as follows. PROBLEM. Let $\sup_{x \in U} ||D_x N(x)||$ be small enough. Does there exist a C^k -mapping w_i , i=1, 2, defined in a neighborhood V_i of 0 in X_i into X_{3-i} which satisfies - (i) $w_i(0) = 0$, $\sup_{x \in V_i} ||D_x w_i(x)||$ is small, - (ii) the graph of w_i is locally invariant. Our main results are given by the following theorems. THEOREM 1. Assume that Hypotheses 1 and 2 are satisfied. Then there exist an open neighborhood V_i , i=1, 2, of 0 in X_i and a C^1 -mapping w_i of V_i into X_{3-i} with the properties (i) and (ii) in Problem. Theorem 2 (Smoothness of w_1). Assume that Hypotheses 1 and 2 are satisfied. Let r be the largest integer which satisfies $\alpha_2 < r\alpha_1$, $1 \le r \le k$. Then if $||D_xN(0)||$ is small enough, then there exist an open neighborhood V_1 of 0 in X_1 and a C^r -mapping w_1 of V_1 into X_2 which satisfy (i) and (ii) in Problem. THEOREM 3 (Smoothness of w_2). Assume that Hypotheses 1 and 2 are satisfied. Let r be the largest integer which satisfies $r\alpha_2 < \alpha_1$, $1 \le r \le k$. Then if $||D_xN(0)||$ is small enough, then there exist an open neighborhood V_2 of 0 in X_2 and a C^r -mapping w_2 of V_2 into V_2 which satisfy (i) and (ii) in Problem. REMARK. The smoothness of a mapping w_i , i=1, 2, is optimal in the following sense. Suppose that $\alpha_2 = k\alpha_1$ (resp. $k\alpha_2 = \alpha_1$). Then there is an example such that even if N is a C^{∞} -mapping, there does not exist any C^k -mapping of a neighborhood of 0 in X_1 into X_2 (resp. X_2 into X_1). In the rest of this section we give such an example. Consider the system of equations $$dx/dt = -x$$, $dy/dt = -ky + x^k$. Straightforward computation shows that the solution (x, y) with initial value (x_0, y_0) , $x_0 \neq 0$, satisfies $$y = (y_0/x_0^k)x^k - x^k \log(x/x_0)$$. If we set $$C = y_0/x_0^k + \log|x_0|$$ then (x, y) satisfies $$y = -x^k \log |x| + Cx^k.$$ If $x_0=0$, then the solution satisfies x=0. Therefore we conclude that the invariant curve x=0 corresponds to the graph of w_2 and that the other invariant curves are not C^k at x=0. ## §3. Results of Hirsch, Pugh, and Shub. In this section we recall results of Hirsch, Pugh, and shub [12, Theorem 5.1]. We state them in a modified form which are adequate to our use. Let E be a Banach space divided into the direct sum: $E = E_1 \oplus E_2$. Let T be a bounded linear operator on E. We denote by P_i , i=1, 2, the projection of E onto E_i , i=1, 2. We suppose that the following conditions hold. Hypothesis T. (i) $TE_i \subset E_i$, i=1, 2. - (ii) The restriction T_1 of P_1T to E_1 has a bounded inverse. - (iii) The following inequality holds: $$||T_1^{-1}|| ||T_2|| < 1.$$ where T_2 denotes the restriction of P_2T to E_2 . The results of Hirsch, Pugh, and Shub are stated in the following theorems. THEOREM 4. Assume that Hypothesis T holds. Then there exist $\varepsilon_1 > 0$ and two constants ρ_i , i=1, 2, with $\rho_2 < \rho_1$ such that the following statements hold. Suppose that a C^1 -mapping $f: E \to E$ which satisfies f(0)=0, $||D_x f - T|| (=\varepsilon) < \varepsilon_1$, then there exist two maps $\xi_f: E_1 \to E_2$ and $\xi_{f^{-1}}: E_2 \to E_1$ with the following properties: - (i) $\sup_{x \in E_1} \|D_x \xi_f(x)\|$ and $\sup_{x \in E_2} \|D_x \xi_{f^{-1}}(x)\|$ tends to 0 as $\varepsilon \to 0$. - (ii) If $x \in W_1 \equiv \operatorname{graph} \xi_f = \{x = (y, z) : z = \xi_f(y), y \in E_1\}$, then there exists a unique sequence $\{x_{-n}\}$ in W_1 , $n \in \mathbb{N}$, which satisfies $f^n(x_{-n}) = x$, and $$||x_{-n}|| \leq \rho_1^{-n} ||x||.$$ Conversely if there exists a sequence $\{x_{-n}\}$ which satisfies $f^n(x_{-n}) = x$, and $||x_{-n}|| \rho_1^n$ is bounded, then $x \in W_1$. (iii) If $x \in W_2 \equiv \text{graph } \xi_{f^{-1}} = \{x = (y, z) : y = \xi_{f^{-1}}(z), z \in E_2\}$, then for $n \ge 0$ $$||f^{n}(x)|| \leq \rho_{2}^{n} ||x||.$$ Conversely if $||f^n(x)||/\rho_2^n$ is bounded, then $x \in W_2$. On further smoothness of ξ_f and $\xi_{f^{-1}}$ the following theorems hold. THEOREM 5 (Smoothness of ξ_f). Under the hypotheses of Theorem 4, we further assume that $$||T_1^{-1}||^k||T_2|| < 1.$$ Then there exists $0 < \varepsilon_k \le \varepsilon_1$ such that for any C^k -mapping f which satisfies f(0) = 0 and $||D_x f - T|| < \varepsilon_k$, the mapping ξ_f obtained in Theorem 4 is C^k . THEOREM 6 (Smoothness of $\xi_{f^{-1}}$). Under the hypotheses of Theorem 4, we further assume that $$||T_1^{-1}|| ||T_2||^k < 1.$$ Then there exists $0 < \varepsilon_k \le \varepsilon_1$ such that for any C^k -mapping f which satisfies f(0) = 0 and $||D_x f - T|| < \varepsilon_k$, the mapping $\xi_{f^{-1}}$ obtained in Theorem 4 is C^k . ## § 4. Proofs of Theorems 1, 2, and 3. Instead of the evolution equation (E), we consider a modified equation $$(\mathbf{E}_{\epsilon})$$ $du/dt = Lu + \chi(u/arepsilon)N(u)$, where $\chi \in C^k(X_{\beta}, \mathbb{R})$ with $\chi(x)=1$ (||x||<1), =0 (||x||>2). We state the following lemma, which is elementary, but plays a fundamental role in the proofs. LEMMA. For any $x \in X_{\beta}$ a solution $u_{\epsilon}(t, x)$ of (E_{ϵ}) with initial value x exists on $[0, \infty)$. For each t > 0 a mapping $x \to u_{\epsilon}(t, x)$ is a C^k -mapping and satisfies $$(4.1) ||D_x u_{\epsilon}(t, x) - e^{tL}|| \leq K(e^{\delta(\epsilon)Kt} - 1)e^{\alpha t}, t \geq 1$$ where K and $\delta(\varepsilon)$ are constants independent of t and x such that $\delta(\varepsilon)$ tends to 0 as $\varepsilon \to 0$. The proof is standard. See, e.g., [11]. PROOF OF THEOREM 1. First we give an outline of the proof of Theorem 1. We set $T(s) = e^{sL}$. We write $f_{\epsilon}(t)x$ for the solution $u_{\epsilon}(t, x)$. Then, by Lemma, $f_{\epsilon}(t)$ is a C^k -mapping of X_{β} into itself. We first choose s>0 so large that the condition (3.1) in Hypothesis T holds with T replaced by T(s). We next choose ε so small that the inequality $$||D_x f_{\varepsilon}(s) - T(s)|| < \varepsilon_1$$ holds. Then we apply Theorem 4 with f replaced by f_{ϵ} . Thus we shall obtain a C^1 -mapping w_{i} , the graph of which satisfies (i), (ii), and (iii) of Theorem 4. We set $W_{i,\epsilon} = \operatorname{graph} w_{i}$. For the proof of Theorem 1 we have only to establish that $W_{i,\epsilon}$ is invariant under the semiflow $f_{\epsilon}(t)$. Now we determine s as follows. Choose real numbers β_1 and β_2 such that $\alpha_2 < \beta_2 < \beta_1 < \alpha_1$ ($< \alpha$). Then the following inequalities hold. $$(4.3) ||e^{tL}|| \leq Ke^{\alpha t}, t \geq 0,$$ $$(4.4)$$ $\|e^{-tL}|X_1\| \leq Ke^{-eta_1 t}$, $t \geq 0$, $$||e^{tL}|X_2|| \leq Ke^{\beta_2 t}, \qquad t \geq 0,$$ where K is a constant independent of t, and $e^{-tL}|X_1$ is the inverse of $e^{tL}|X_1:X_1\to X_1$. Since $\beta_2<\beta_1$, we can choose s so large that $K^2e^{(\beta_2-\beta_1)s}<1$. Then, by (4.4) and (4.5), we get $$||e^{sL}|X_2|| ||e^{-sL}|X_1|| \le K^2 e^{(\beta_2-\beta_1) \cdot s} < 1$$ and so the inequality (3.1) holds. By (4.1) we can choose $\varepsilon > 0$ so small that the inequality (4.2) holds. Thus we can apply Theorem 4 to a time s-mapping T(s). Hence we obtain a mapping w_1 (resp. w_2) of X_1 into X_2 (resp. X_2 into X_1) which satisfies (i), (ii), and (iii) of Theorem 4. We first claim that $W_{2,\epsilon}$ is invariant under $f_{\epsilon}(t)$. Proof of the claim. Let t>0 and let k=[t/s]. Then, by the semigroup property of $f_{\epsilon}(t)$, we get $$f_{\varepsilon}^{n}(s)u_{\varepsilon}(t, x) = u_{\varepsilon}(ns+t, x) = u_{\varepsilon}(t-ks, f_{\varepsilon}^{n+k}(s)x)$$. On the other hand, since $u_{\epsilon}(t, 0) = 0$, we get by Lemma and (4.3) $$||u_{\epsilon}(t, x)|| \leq Ke^{(\alpha+\delta(\epsilon)K)t}||x||, \quad t \geq 0.$$ Hence we obtain $$||f_{\varepsilon}^{n}(s)u_{\varepsilon}(t, x)|| \leq Ke^{(\alpha+\delta(\varepsilon)K)(t-ks)}||f_{\varepsilon}^{n+k}(s)x||$$ $$\leq Ke^{(\alpha+\delta(\varepsilon)K)s}\rho_{2}^{n+k}||x||.$$ Therefore $||f_{\epsilon}^{n}(s)u_{\epsilon}(t, x)||/\rho_{2}^{n}$ is bounded for $n \ge 0$. Thus, by Theorem 4 (iii) we conclude that $u_{\epsilon}(t, x) \in W_{2,\epsilon}$, t>0. We next claim that $W_{1,\epsilon}$ is invariant under the semiflow $f_{\epsilon}(t)$. *Proof of the claim*. Let $x \in W_{1,\epsilon}$. Then by Theorem 4 (ii) there exists a sequence $\{x_{-n}\}_{n\geq 0}$ which satisfies $f_{\epsilon}^{n}(s)x_{-n}=x$ and $$||x_{-n}|| \leq \rho_1^{-n} ||x||.$$ Since $f_{\epsilon}^{n}(s)f_{\epsilon}(t)x_{-n}=f_{\epsilon}(t)x$, for the proof of invariance of $W_{1,\epsilon}$ under $f_{\epsilon}(t)$, it suffices to show that $||f_{\epsilon}(t)x_{-n}||\rho_{1}^{n}$ is bounded. Let k=[t/s]. Then, by Lemma and (4.6) we have $$\begin{split} ||f_{\varepsilon}(t)x_{-n}||\rho_{1}^{n} &= ||f_{\varepsilon}(t-ks)x_{k-n}||\rho_{1}^{n} \\ &\leq Ke^{\alpha s}||x_{k-n}||\rho_{1}^{n} \leq Ke^{\alpha s}\rho_{1}^{k-n}\rho_{1}^{n}||x|| = Ke^{\alpha s}\rho_{1}^{k}||x|| \ . \end{split}$$ Hence it follows that $||f_{\epsilon}(t)x_{-n}||\rho_1^n$ is bounded for $n \ge 0$. Thus we conclude that $W_{1,\epsilon}$ is invariant under the semiflow $f_{\epsilon}(t)$. Q.E.D. PROOFS OF THEOREMS 2 AND 3. We have only to show that (3.6) and (3.7) hold, respectively, with T replaced by e^{sL} . We show that (3.6) holds. Suppose that $\alpha_2 < r\alpha_1$. Then there exists β_1 and β_2 with $\beta_2 < r\beta_1$ such that (4.4) and (4.5) hold. Choose s>0 so large that $K^2e^{(-\beta_1r+\beta_2)s}<1$. Then we obtain $$||e^{-sL}|X_1||^r||e^{sL}|X_2|| \leq K^2 e^{(-\beta_1 r + \beta_2)s} < 1$$. The proof of (3.7) is similar. Thus the proofs of Theorems 2 and 3 are complete. #### References - [1] J. CARR, Applications of Center Manifold Theory, Appl. Math. Sci., Springer-Verlag (1981). - [2] N. CHAFEE, The bifurcation of one or more closed orbits from an equilibrium point of an autonomous of differential system, J. Differential Equations, 4 (1968), 661-679. - [3] N. CHAFEE, A bifurcation problem for a functional differential equation of finitely retarded type, J. Math. Anal. Appl., 35 (1971), 312-348. - [4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Grundlehren Math. Wiss., 256 (1982), Springer-Verlag. - [5] E. A. CODDINGTON and N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill (1955). - [6] G. F. Dell'Antonio and B. D'Onofrio, Construction of a center-unstable manifold for C^1 -flow and an application to the Navier-Stokes equation, Arch. Rational Mech. Anal., **93** (1986), 185-201. - [7] N. FENICHEL, Persistence and smoothness of invariant manifolds for flows, Indiana Univ. Math. J., 21 (1971), 193-226. - [8] N. Fenichel, Asymptotic stability with rate conditions, ibid., 23 (1974), 1109-1137. - [9] J. K. Hale, Ordinary Differential Equations, 2nd ed., Robert E. Krieger (1980). - [10] P. HARTMAN, Ordinary Differential Equations, Wiley (1964). - [11] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840 (1981), Springer-Verlag. - [12] M. W. Hirsch, C. C. Pugh and M. Shub, *Invariant Manifolds*, Lecture Notes in Math., **583** (1977), Springer-Verlag. - [13] G. Iooss, Bifurcation et Stabilité, Cours de 3ème cycle 1972-1974, Publ. Math. d'Orsay, 31 (1974). - [14] A. Kelley, The stable, center-stable, center, center-unstable, unstable manifolds, J. Differential Equations, 3 (1967), 546-570. - [15] A. Kelley, Stability of the center-stable manifold, J. Math. Anal. Appl., 18 (1967), 336-344. - [16] J. S. A. Hepburn and W. M. Wonham, The semistable-center-unstable manifold near a critical element, J. Differential Equations, 103 (1984), 321-331. - [17] N. D. KAZARINOFF, On orbital stability and center manifolds, Nonlinear Differential Equations (de Mottoni and L. Salvador, Eds.), pp. 195-206, Academic Press (1981). - [18] O. E. Lanford, Bifurcation of periodic solutions into invariant tori: the work of Ruelle and Takens, *Nonlinear Problems in Physical Sciences and Biology* (A. Dold and B. Eckmann, Eds.), pp. 159-192, Lecture Notes in Math., **322** (1973), Springer-Verlag. - [19] J. E. MARSDEN and M. McCracken, The Hopf Bifurcation and its Applications, Appl. Math. Sci., 19 (1976), Springer-Verlag. - [20] D. RUELLE and F. TAKENS, On the nature of turbulence, Comm. Math. Phys., 20 (1971), 167-192. - [21] J. SIJBRAND, Properties of center manifolds, Trans. Amer. Math. Soc., 289 (1985), 431-467. - [22] A. VANDERBAUWHEDE and S. A. VAN GILS, Center manifolds and contractions on a scale of Banach spaces, J. Functional Analysis, 72 (1987), 209-224. - [23] S. VAN STRIEN, Center manifolds are not C^{∞} , Math. Z., 166 (1979), 143-145. #### Present Address: DEPARTMENT OF PUPE AND APPLIED SCIENCES COLLEGE OF ARTS AND SCIENCES, UNIVERSITY OF TOKYO KOMABA, MEGURO-KU, TOKYO 153, JAPAN