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In this note we study knots and links in the 3-sphere $S^{3}$ . J. H. Conway introduced
the potential function for a link with labels and stated three Identities in [1]. It is
well-known that each replacement appearing in the Conway First Identity is a kind of
unknotting operation. In the Conway Second Identity, two replacements are an
(ordinary) unknotting operation and the other one is unknown even if we ignore labels
(cf. [3], [4]). Here, we will consider replacements appearing in the Conway Third
Identity. Let $L_{1},$ $L_{2},$ $L_{3}$ , and $L_{4}$ be four links which differ only in one place as shown
in Fig. 1.
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FIGURE 1.

A $\Delta_{ij}$-move is defined to be a local move on a link diagram between $L_{i}$ and $L_{i}$ . If
adiagram ofa link L’ isaresult ofa $\Delta_{ij}$-move onadiagram ofa link L, then we say
that $L$ is deformed into $L^{\prime}$ by a $\Delta_{ij}$-move. $\Delta_{14^{-}}$ and $\Delta_{23^{-}}$ moves are $\Delta$ -unknotting
operations defined by H. Murakami and the author in [2]. Our purpose in this note is
to show that each $\Delta_{ij}$-move $(t\neq j)$ is a kind of unknotting operation and which kind of
equivalence relation for links is generated by each $\Delta_{i_{J}}$-move.

1. Deflnitions and theorems.

It is clear that $\Delta_{ij}$-moves never change the number of components of links. And
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we can see the following relationship among $\Delta_{ij}$-moves.

PROPOSmON 1. (1) $\Delta_{12}$-and $\Delta_{34^{-}}$ moves are the same move.
(2) $\Delta_{13}$-and $\Delta_{24^{-}}$ moves are the same move.
(3) $\Delta_{14^{-}}and$ $\Delta_{23}$-moves are equivalent moves, i.e., each one can be realized by a

finite sequence of the other.
(4) $\Delta_{12}$-and $\Delta_{13}$-moves are equivalent moves.
(5) A $\Delta_{14}$-move can be realized by a finite sequence of $\Delta_{12}$-moves (and so, by a

finite sequence of $\Delta_{13}$-moves).

The proof will be given in the section 2.
Abstractly, six replacements are considered in the Conway Third Identity. By the

above Proposition 1, we will consider two replacements $\Delta_{12^{-}}$ and $\Delta_{14^{-}}$ moves as
representatives from now.

OBSERVAnONS. (1) For knots, a $\Delta_{14}$-move must change the knot types. For links,
a $\Delta_{14}$-move may not do so.

(2) A $\Delta_{12^{-}}(or \Delta_{13^{-}})$ move may not change the knot (link) types.

$PR\infty F$ . (1) For a knot, a $\Delta_{14}$-move must change the Arf invariant and the
coefficient of $z^{2}$ in the Conway polynomial by one as in [2] and M. Okada [5]. So, we
have the former part. (Similarly for a proper link, a $\Delta_{14}$-move must change the Arf
invariant by one. So, a $\Delta_{14}$-move must change the oriented link types for proper links.)
For the later part, we have examples as in Fig. 2. (We remark that for the second
example the oriented link type is changed, however. There is an orientation reversing
homeomorphism which maps the original link onto the result link.)

(2) It is easily checked by Fig. 3.

FIGURE 2.

FIGURE 3.
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NOTE. The example of the later part of the Observation (1) was firstly observed
by M. Okada, whose example is a 2-component link with linking number 3.

For two n-component links $L=K_{1}\cup K_{2}\cup\cdots\cup K_{n}$ and $L^{\prime}=K_{1}^{\prime}uK_{2}^{\prime}\cup\cdots\cup K_{n}^{\prime}$ ,
we characterize $\Delta_{ij}$-moves as follows.

THEOREM 2 ([2]). $L$ can be deformed into $L^{\prime}$ by a finite sequence of $\Delta_{14}$-moves if
and only if after suitably oriented $and/or$ ordered if necessary, the linking numbers of $L$

and $L^{\prime}$ are identical: $lk(K_{i}, K_{j})=lk(K_{i}^{\prime}, K_{j}^{\prime})$ for each pair $i$ andj $(1 \leq i<j\leq n)$ .
THEOREM 3. $L$ can be deformed into $L^{\prime}$ by a finite sequence of $\Delta_{12}$-moves if and

only if, after suitably oriented $and/or$ ordered ifnecessary, $\sum_{j\neq i}lk(K_{i}, K_{j})\equiv\sum_{j\neq i}lk(K_{i}^{\prime}, K_{j}^{\prime})$

$mod 2$ for each $i(i=1,2, \cdots, n)$ .
The proof will be given in the section 2.

COROLLARY 4. For the equivalence relation generated by $\Delta_{12}$-moves, the number
of equivalence classes is $2^{n-1}$ .

The proof will be given in the section 2.
We will consider the oriented version of $\Delta_{ij}$-moves in the section 3.

2. Proofs.

PROOF OF PROPOSITION 1. (1) and (2): It is easily checked by rotating the figures
in Fig. 1. (3): The proof is indicated in Fig. 1.1 (c) in [2]. (4): Fig. 4 indicates that a
$\Delta_{12}$-move can be realized by two $\Delta_{13}$-moves. And Fig. 5 indicates that a $\Delta_{13}$-move can
be realized by two $\Delta_{12}$-moves. (5): Fig. 6 indicates that a $\Delta_{14}$-move can be realized by
three $\Delta_{12}$-moves. The proof is completed.

FIGURE 4.

FIGURE 5.

The proof of Theorem 3 follows the following two Lemmas A and B.

LEMMA A. $L$ can be deformed into $L^{\prime}$ by afinite sequence of $\Delta_{12}$-moves ifand only
if after suitably oriented $and/or$ ordered if necessary, the linking numbers of $L$ and $L^{\prime}$
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FIGURE 6.

are connected by afinite sequence of the following relations:
(1) $lk(K_{i}, K_{j})\equiv lk(K_{i}^{\prime}, K_{j}^{\prime})$ mod2for each pairi andj $(1\leq i<j\leq n)$ .
(2) There exists a triple $i<j<k$ such that $lk(K_{i}, K_{j})+1=lk(K_{i}^{\prime}, K_{j}^{\prime}),$ $lk(K_{j},$ $K\theta+1=$

$lk(K_{j}^{\prime}, K_{k}^{\prime}),$ $lk(K_{k}, K_{i})+1=lk(K_{k}^{\prime}, K_{i}^{\prime})$, and $lk(K_{r}, K_{s})=lk(K_{r}^{\prime}, K_{s}^{\prime})$ for each pair $\{r, s\}\not\in$

$\{i,j, k\}$ .
PROOF. First, we show the “only if” part. For (1): If there is a pair $i$ and $j$ such

that $lk(K_{i}, K_{j})\neq lk(K_{i}^{\prime}, K_{j}^{\prime})$, then we take subarcs of $K_{i}$ and $K_{i}$ . By applying the move as
in Fig. 7, we can change $lk(K_{i}, K_{j})$ by two. Performing such operations succesively, we

$\cong$ $\leftrightarrow$
$\cong$ $\backslash \Gamma^{\prime\prime J_{\backslash }}$

$\Delta_{12}$

$FlGURB7$ .

can regard $lk(K_{i}, K_{i})=lk(K_{i}^{\prime}, K_{j}^{\prime})$ for each pair $i$ and $j$. For (2): We take subarcs of $K_{i},$ $K_{j}$,
and $K_{k}$ . By applying the move as in Fig. 8, we can change the linking numbers suitably.

$\cong$ $\leftrightarrow$

$\Delta_{1_{-}2}$

FIGURE 8.

Therefore, $L$ can be deformed into $L^{\prime\prime}$ whose linking numbers are identical to those of
$L^{\prime}$ bya finite sequence of $\Delta_{12}$-moves. By Theorem2, $L^{\prime\prime}$ can be deformed into L’ by a
finite sequence of $\Delta_{14}$-moves, and so by a finite sequence of $\Delta_{12}$-moves from Proposition
1. Hence, $L$ can be deformed into $L^{\prime}$ by a finite sequence of $\Delta_{12}$-moves. The “if” part
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is trivial, remarking the difference of linking numbers due to a $\Delta_{12}$-move. The proof is
completed.

LEMMA B. Let $l_{ij},$ $l_{ij}^{\prime}(1\leq i,j\leq n, i\neq J)$ be integers such that $l_{ij}=l_{ji}$ and $l_{ij}^{\prime}=l_{\acute{j}l}$ . The
following two equivalence relations (I) and (II) are equivalent.

(I) $\sum_{j\neq i}l_{ij}\equiv\sum_{j\neq i}l_{ij}^{\prime}mod 2$ for each $i(i=1,2, \cdots, n)$ .
(II) The sets of integers $\{l_{ij}\}$ and $\{l_{ij}^{\prime}\}$ are connected by a finite sequence of the

following relations:
(1) $l_{ij}\equiv l_{ij}^{\prime}mod 2$ for each pair $i$ andj $(1 \leq t<j\leq n)$ .
(2) There exists a triple $i<j<k$ such that $l_{ij}+1=l_{ij}^{\prime}$, $l_{jk}+1=l_{jk}^{\prime},$ $l_{ki}+1=l_{ki}^{\prime}$ , and

$l_{rs}=l_{rs}^{\prime}$ for each pair $\{r, s\}\not\in\{i,j, k\}$ .
$PR\infty F$ . It is obvious that $\{\sum_{j\neq i}l_{ij}(mod 2)\}$ is an invariant under the relation (1).

Since the relation (2) changes exactly two or none of $l_{i1},$ $l_{i2},$ $\cdots,$ $l_{in}$ by one, $\{\sum_{j\neq i}l_{ij}$

$(mod 2)\}$ is an invariant under the relation (2), too. Therefore, {$\sum_{j\neq i}l_{ij}(m$od 2)} is an
invariant for the equivalence relation (II). Conversely, suppose that $\sum_{j\neq i}l_{ij}\equiv\sum_{j\neq i}l_{ij}^{\prime}$

$mod 2$ for each $i(i=1,2, \cdots, n)$ . If there is a pair $i$ and $j(1<t<j\leq n)$ such that $l_{ij}\not\equiv l_{ij}^{\prime}$

mod2, then we apply the operation in (2) to geta set of integers { $l_{ij}^{\prime\prime}(1\leq i,j\leq n;i\neq j)$ ;
$l_{ij}^{\prime\prime}=l_{ji}^{\prime\prime}\}$ so that $l_{ij}+1=l_{ij}^{\prime\prime},$ $l_{1i}+1=l_{1i}^{\prime\prime},$ $l_{1j}+1=l_{1j}^{\prime\prime}$, and $l_{rs}=l_{rs}^{\prime\prime}$ for each pair $\{r, s\}\not\in\{1, i,j\}$ .
Performing such operations succesively, we can get $\{l_{ij}^{\prime\prime}\}$ such that $\{l_{ij}^{\prime\prime}\}$ and $\{l_{ij}\}$ are
connected by a finite sequence of the relation (2) and $l_{ij}^{\prime\prime}\equiv l_{ij}^{\prime}mod 2$ for each pair $i$ and
$j(1<l<j\leq n)$ . Since $\sum_{j\neq i}l_{ij}^{\prime\prime}\equiv\sum_{j\neq i}l_{ij}\equiv\sum_{j\neq i}l_{ij}^{\prime}mod 2$ and $l_{ij}^{\prime\prime}\equiv l_{ij}^{\prime}mod 2$ for each pair $i$

and $j(1<i<j\leq n)$ , we have $l_{i1}^{\prime\prime}\equiv l_{i1}^{\prime}mod 2$ for each $i(1<i\leq n)$ . Therefore, $\{l_{ij}^{\prime\prime}\}$ and $\{l_{jj}^{\prime}\}$

are connected by the relation (1). Hence $\{l_{ij}\}$ and $\{l_{ij}^{\prime}\}$ are connected by a finite sequence
of the relations (1) and (2). The proof is completed.

PROOF OF COROLLARY 4. It can be seen that there are at least $2^{n-1}$ types of
$\{\sum_{j\neq i}lk(K_{i}, K_{j})(mod 2)\}$ ; which are represented by $lk(K_{1}, K_{i})=0$ or 1 $(i=2,3, \cdots, n)$

and $lk(K_{i}, K_{i})=0$ for each pair $j$ and $j(1<i<j\leq n)$ . On the other hand,
$\sum_{i}\sum_{j\neq i}lk(K_{i}, K_{j})=2\sum_{i<j}lk(K_{i}, K_{j})\equiv 0mod 2$ . So, $\sum_{j\neq i}lk(K_{i}, K_{j})(i=1,2, \cdots, n)$ are not
independent, and there are at most $2^{n-1}$ types of $\{\sum_{j\neq i}lk(K_{i}, K_{j})(mod 2)\}$ . Hence, there
are exactly $2^{n-1}$ types of $\{\sum_{j\neq i}lk(K_{i}, K_{j})(mod 2)\}$ . The proof is completed.

3. Oriented patterns of $\Delta_{i_{J}}$-move.

There are abstractly eight oriented pattems of each $\Delta_{ij}$-move. We can identify some
of them by rotating and turning over the figures and there are essentially two oriented
pattems of each $\Delta_{ij}$-move like as in Fig. 9. We denote them by $\Delta_{ij}^{o}$ and $\Delta_{ij}^{A}$ like as in
Fig. 9.

From now, we consider relationship among them, however some parts have been
still open at the present time.
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FIGURE 9.

PROPOSmON 5. (1) $\Delta_{14}^{o}-,$ $\Delta_{14}^{A}-,$ $\Delta_{23^{-}}^{O}$ , and $\Delta_{23}^{A}$-moves are equivalent moves.
(2) $\Delta_{12}^{A}$-and $\Delta_{13}^{O}$-moves are equivalent moves.
(3) A $\Delta_{12}^{o}$-move can be realized by afinite sequence of $\Delta_{13}^{A}$-moves.
(4) A $\Delta_{13}^{A}$-move can be realized by afinite sequence of $\Delta_{12}^{o}$-and $\Delta_{12}^{A}$-moves.
(5) A $\Delta_{14}^{o}$-move can be realized by afinite sequence of $\Delta_{12}^{o}$-and $\Delta_{12}^{A}$-moves.
PROOF. (1): The proof is indicated in Fig. 1.1 (b) in [2]. Though it shows only

one case, we can see all of them by the exchange of orientation of strings and the
combination with Fig. 1.1 (c) in [2]. (2): For suitably oriented strings in Figs. 4 and 5,
they indicate the proof. (3): Fig. 10 indicates that a $\Delta_{12}^{o}$-move can be realized by two
$\Delta_{13}^{A}$-moves. (4): For suitably oriented strings in Fig. 5, it indicates the proof. (5): For
suitably oriented strings in Fig. 6, it indicates the proof. The proof is completed.
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FIGURE 10.
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After the work in [2], it is known that each one of $\Delta_{14}^{o}-,$ $\Delta_{14}^{\wedge}-,$ $\Delta_{23^{-}}^{o}$ , and $\Delta_{2^{\wedge}3}$-moves
is a kind of unknotting operation. At the present time, the author does not know
whether $\Delta_{12}^{o}-,$ $\Delta_{12}^{\wedge}-,$ $\Delta_{13^{-}}^{o}$ , and $\Delta_{1^{\wedge}3}$-moves are a kind of unknotting operation or not. It
is still open.
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