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1. Introduction.

The voter model was introduced independently by Clifford and Sudbury [1] and
by Holley and Liggett [2]. For this model, a complete description of all invariant
measures and ergodic theorems were obtained in [2] and [3]. On the other hand, Spitzer
[7] introduced a generalized voter model as a class of infinite systems with locally
interacting components, and the same problems were discussed in Liggett and Spitzer [4].

In this paper, we study the multitype voter model which is described as follows.
Let S be a countable set and p(x, y) the transition probability for an irreducible Markov
chain on S. We regard S as a collection of voters, each having one of countably many
possible positions on an issue. Every voter x waits an exponential time with parameter
one and then, he chooses a voter y with probability p(x, y) and adopts the position of
y. For a set of positions on an issue we take Z, ={0, 1, 2, - - -}, since the structure of
the set does not play an important role in our model.

In the case there are only two possible positions, it is a genuine voter model. Our
model corresponds to the generalized voter model of Spitzer [7] whose parameter is
particularly zero. This case is not treated in [4].

Our model is defined on a state space

X=(Z,’={n:S-2.}.

Here we equip Z, with the discrete topology and X with the product topology. X is
then a complete separable metric space. For ne X and x€ S, n(x)e Z, represents the
position of the voter x. So n € X is regarded as a configuration of positions of the voters.
First we construct a Markov process on X describing the time evolution of our model.
We do this by using a stochastic differential equation associated with Poisson random
measures. Next we find all extremal invariant measures for this model and determine
the domain of attraction of each of them. To do this, we make use of Shiga’s method
in [6], who discussed the continuous time multi-allelic stepping stone models which
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were closely related to our model. The invariant measures for our model can be described
in the same way as those models.

In Section 2 we state our results. In Section 3 we prove our theorem about the
construction of a Markov process. In Section 4 we summarize the results on the
two-position voter model in [2] and [3] for the later use. In Section 5 we prove our
theorems about the invariant measures.

2. Results.

Given an irreducible transition function p(x, y) on a countable set S, we first
construct a Markov process on X describing the time evolution of our model explained
in the introduction. Roughly speaking, it is a Markov process with generator

2.1) . Lfm= 2. Y ple, WSr=)—fn)},

xeS yeS

where, for ne X and x, ye S, n*” € X is defined by

if z=x,
nY(z) = { n(y) .
n(z) if z#x, zeS.

For the construction of such a Markov process, we use a stochastic differential equation.
Let (2, #, P) be a probability space, equipped with a filtration {&,},., of increasing
sub-o-fields of &, and denote by E the expectation with respect to P. For xe S, let
N,(dsdy) be an # -adapted Poisson random measure on (0, o0) x S with intensity mea-
sure dsp(x, y)dy and let {N,(dsdy), xe S} be independent.

THEOREM 2.1. For any ne X, there exists a unique solution of

(2.2) n{x)=n(x)+ J {ns-(0)—n,-(}Nldsdy), xeS, t>0.
0,115
Let D= D([0, c0)— X) be the set of all functions on [0, co) with values in X which
are right continuous and have left limits. For a generic element &. of D, the value (€ X)
of £. at time ¢ is denoted by &,. For 7€[0, o), let ¢, be the smallest o-field on D with
respect to which all £, 0<s<¢, are measurable, and put ¥ =V,g,. For each ne X, the
unique solution of (2.2) defines a random variable #. with values in D. The distribution
of n. is denoted by P". This is a probability measure on (D, 4). Denote by E" the”
expectation with respect to P". Let C,(X) be the Banach space of all bounded continuous
functions on X with the supremum norm, and let

P ={feCyX): f depends only on finitely many coordinates} .
For fe2, Lfin (2;1) is well-defined. By It6’s formula, we have, for fe 9,
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f)—fm=Y {F 32— f(n,_)} N (dsdy) .

xeS 0,t]xS

Therefore we see that P" solves the following martingale problem:

P{no=n}=1;
t

f(m)—fm)— J Lf(n,)ds is a {%,}-martingale under P" for all fe2 .
0

In this sense {#,, t>0, P"} is associated with L and may be regarded as a Markov
process describing the time evolution of our model. For feCy(X), define

S@Ofm=E"Lf(n)], =0,

Then {S(#), >0} is a contraction semigroup on C,(X) which corresponds to the Markov
process {n,, =0, P"}. Note that this is not strongly continuous.

Let 2(X) be the set of all probability measures on X with the topology of weak
convergence. For ue 2(X), define uS(f)e #(X) by the relation

uS@), f5=<u, SO

for all f e Cy(X), where {u, f>=[,f(nudn). The probability measure uS(#) is inter-
preted as the distribution at time ¢ of the process when the initial distribution is pu.
Let .# be the set of all invariant measures for {S(z), >0}, i.e.,

FI={ueP(X): uS@=u for all >0} .

# is a non-empty, closed and convex subset of 2(X). Denote by .#, the set of all extreme
points for .#. Then £ is the closed convex hull of .#,. Let

=;>?={cc: S—[0,1]: Y p(x, y)u(y)=a(x) for all xeS} ,

yeS
and define

PR 1
pt(x’y)::e ! Z n'p(n)(x:y)a x,)"ES,
n=0 .

where p"(x, y) are the n-step transition probabilities associated with p(x, y). Let
W=D([0, c0)—S) and denote by P,, xe S, the probability measure on W such that
{w(r), =0, P.} is a continuous time Markov chain on S with transition function p,(+, *)
starting at x. Define

g(x, y)=P, QP {(w,z)e Wx W : w(t)=z(t) for some t>0}, x,yeS.

Then, for any x, ye S, {gw(t), z(t)), t=0, P,®P,} is a nonnegative supermartingale, so
there exists
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G = lim g(w(t), z(t)), P,®P,as.
t— o

In fact G is the indicator of the event

& = {there exists ¢, 1 co such that w(t,)=2z(z,)} .
For aes# and xeS, {a(w()),?=>0, P} is a bounded martingale, so there exists
lim, ., ,, «(w(?)) P,-a.s. According to [2], define

H*={aeH : lim a(w(t))=0 or 1 P,®P,a.s. on & for any pair (x, y)} .
t— o0

Let

3?={h=(h,,);°=o : hye H for all ae Z, and ) h,=1}

a=0
and let

%={h=(ha);°=o : hye #* for allae Z, and ), h,=1}.

a=0

For h € ), define v, € #(X) by

va{n : n(x)=a(x) for all xe A} =[] h,(x) ,

xeA

where A is a finite subset of S and a(x)e Z, for all xe A.

THEOREM 2.2. (1) p,=lim,_, v,S(?) exists for all ke #, and p,e 5.
2) wmin: n(x)=a}_=h,,(x) for all xeS and ae Z ..
(3) F.={us:heH*}.

THEOREM 2.3. (1) Let ue P(X) and he #*. Then lim,_, , uS(t)=p, if and only if

(2.3) lim Zsp,(x, yu{n : n(y)=a}=h,(x)
and
(2.9 lim ) pfx, wplx, v)u{n : n(w)=nv)=a}=h2(x)

t—+ o y,pes

for all xe S and ac Z ...
(2) Suppose g(x, y)=1forallx,yeS. Inthis case #,={d,: ac Z .}, where ,€ P(X)
is the 6-measure at n such that n(x)=a for all xe S, a being a point of Z.. Let (2,)> -0
satisfy a,€[0, 1] for all acZ, and Y.7°_,0,=1, and let pe P(X). Then lim,_, , uS(?)=
o0 %0, if and only if
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2.5) | lim ¥, p(x, yu{n : n(y)=a}=a,

t— o yeS

for all xeS and ae Z .

In the special case where S=Z¢ and p(x, y)=p(0, y—x), we obtain the following
corollary from Theorem 2.3. Let & be the set of all shift invariant probability measures
on X and let &, be the set of all extreme points for &.

CoOROLLARY 2.1. (1) Suppose {w(t)—z(), t>0, P,&P,} is recurrent. In this case
SF.={0,:aeZ,} If ue <, then lim,, , uS()=Y.2. , b0, where h,=pu{n : n(x)=a} for
aelZ,.

(2) Suppose {W(f)—z(t),t=0, P.®P,} is transient. In this case F,={p,:h=
(ho)a=0, ha€[0, 1] forallac Z, and ). h,=1}. If pe &, then lim,_, , uS()= u,, where
h=(h))-o and h,=u{n : n(x)=a} for an+

3. Proof of Theorem 2.1.

In this section, we prove Theorem 2.1. For n>0, let

l n:2(x)=n(x) ,

n"M(x)=n(x)+ f () -0 V(X)) N(dsdy), n=1.

(0,11 xS
Then n{"(x) € Z for all n>0. Define a metric in Z by

0 if a=b,
d(a, b)=
1 if a#b.
For n>1, by It6’s formula, we see
0@, nPeN= | {dln$ O +n () -0,

0,s]1%S

&L () + i () =0T D)) —dnd V(x), n&(x)} N(dudy)

< f {dm(3), n3= () +d@m L (x), n& V(x)}N (dudy) .
(0,s]1%S

Therefore

E [ sup d(n"* V(x), ﬂ‘"’(X))]

O<s<t

2. E[d@P(), n&~ P00 +dmP(x), n& ™ V(x)1plx, y)du .

0 YES
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Put
Ya(0)= sup E [ sup d(n®* (x), n‘"’(x))] , n=0.

Then, for n>1,

‘/’n(t) <2 I '/ln - 1(U)du .
(V]

Since Y o(f)<t, we have
2n +1

(n+1)!

Wt )_

for all n>0. Therefore

fﬁmﬂwmwww%}inw“

n=1 [(0ss=t n=1 (n+1)!

Hence, by Borel-Cantelli’s lemma, we see with probability one that n™(x) converges
uniformly on each finite z-interval as n—oo. Put

74x) = lim n®(x) .
n— oo

Then this is a solution of (2.2). Since ne X, we see n,€ X from (2.2). The uniqueness
follows from Gronwall’s lemma.

4. Two-position voter model.

In this section, we summarize the results on the invariant measures for the two-
position voter model obtained in [2] and [3].
Let

Xo={0, 1}5={n° : S {0, 1}}

with the product topology. Then X, is a compact metric space. Let C(X,) be the Banach
space of all continuous functions on X, with the supremum norm. Denote by {S(?), =0}
the strongly continuous contraction semigroup on C(X,) which corresponds to the
Markov process on X, describing the time evolution of the two-position voter model,
and define 2(X,), £,, and (F,), associated with {Sy(?), >0} in the same way as in
Section 2. Then £, is a non-empty, compact and convex subset of #(X,), and is the
closed convex hull of (#£,),. For ae s, define v,e (X,) to be the product measure
with marginals

Ve {n® i n°(x)=1}=a(x) .
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THEOREM 4.1 ([2]).

(1) p,=lim,_, v, So(?) exists for all xe #, and p,e 5 o

@) 1 {n°: n°(x)=1} =a(x) for all xeS.

(3) (fo)e = {#a ‘XE '}f*}

THEOREM 4.2 ([2], [3]).

(1) Let pe P(X,) and o.e 5#*. Then lim,_, , uSy(1)=p, if and only if
Lim Y p(x, yu{n® : n°(y)=1} =a(x)

t— o0 yeS

and

tlllg Zspt(xs u)p,(x, U)li{ﬂo : 'Io(u)=’70(v)= 1} =Ot2(x)
for all xe S.

(2) Suppose g(x, y)=1forall x, y€ S. In this case (Fo)e={0;:i=0, 1}. Leta [0, 1]
and pe P(X,). Then lim,_, , uSo(f)=ad, +(1 —a)d, if and only if

lim 3, pi(x, Y)u{n® : n°(y)=1} =«

t—> 0 yeSs

for all xeS.

5. Proof of Theorem 2.2 and Theorem 2.3.

To prove Theorem 2.2 and Theorem 2.3, we make use of Shiga’s method in [5]
and [6]. So we only sketch the proof. To prove the convergence of a family of probability
measures on X, we need to show the tightness of the family and the convergence of the
finite dimensional distributions, since our state space is not compact.

First we introduce a dual process. Let

Y={{e X : Supp({) is a finite set (# )},

where Supp({)={xe S: {(x)#0} for {e X. Then Y is a countable set. Here we regard
x€ S as a site and interpret { € Y as follows. The relation {(x)=a means the absence of
particles at the site x if =0 and the existence of one particle of type a at x if a>1.
So {eY is regarded as a configuration of finitely many particles each of which has a
type. Let 4 be an extra point and set

Y=Yvu{4}.

This will be the state space for the dual process we are going to define. For ne€ X and
Ce Y, define
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1 if (eY and {(x)=n(x) for all xeSupp({),
0 otherwise .

Ffn)= {

This will be a duality function. Note that F,e 2 for all (e ¥. Let 9 be the set of all
bounded functions on ¥. Define a linear operator on & by

(LFO= Y px, D{FC—Lx)e,+L(x)e,)— f0)}

xeSupp({) y¢Supp(l)

+ X 2 DX YOy, ion I = (x)en) —f ()}

xeSupp({) yeSupp(l)
y#x

+ 3T Y ple =8 ) SD—SQ)}, LeY,

xeSupp({) yeSupp()

L Lf(4)=0,
where e, € X, x€ S, is defined by

1 if z=x,
el(z)=
0 if z#x, zeS§,

and é,,, a, be Z, is the Kronecker’s . Then we get a continuous time Markov chain
{{,1=0, P} on Y with generator L. Here P, (e¥, is a probability measure on
D([0, o0)— ¥) and P{{o={}=1. Denote by E; the expectation with respect to P,. This
process is as follows. There is a configuration of finitely many particles and a particle
at site x waits an exponential time with parameter one and then it chooses a site y with
probability p(x, y). If y is vacant, then it goes to y; if y is occupied by a particle which
has the same type as it, then it goes to y and coalesces with that particle; otherwise the
configuration (, itself goes to 4 and remains there forever. In the two-position voter
model in [2] and [3], the coalescing Markov chain was used for the dual process. Our
dual process coincides with this, as long as all particles have the same type or every
particle does not choose a site which is occupied by a particle of a different type. We
see {n,, t=0, P"} and {{,, >0, P} are in the following duality relation.

LEMMA 5.1. For any neX, (e Y, and t>0,
E[Fn)]=E[LF ()] .

Before proving Theorem 2.2, we prepare a lemma about the tightness.

LeEMMA 5.2. Let peP(X). Then {uS(D)}.» o is a tight family in P(X) if and only if
for any >0 and any x€ S, there exist age Z, and t,>0 such that

i Y pdx, Yun : n(y)=a} <e

a=ao+1 yeS
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for all t>1,.

Proor. It is obvious since, by Lemma 5.1, we have
uS@®{n : n(x)=a}= Zspt(x, u{n : n(y)=a}
ye

for all t>0,aeZ,, and x€S.

PROOF OF THEOREM 2.2. To prove (1), let he . By Lemma 5.2, we easily see
{vaS(D}:»0 is a tight family in Z(X). So it is enough to show lim,_, ,, {v,S(?), F;) exists
forall (e Y. Let { € Y and write the elements of Supp({) by x;, x5, * - *, x,. By Lemma 5.1,

SO, Fp=E [ j F;,('?)Vh(dﬂ)]
X

for all 1>0. For 0<k <n, define
1,=inf{t>0 : {,e Y and #Supp({,)=n—k}
and let
t=inf{t>0:{,=4}.

We adopt here the convention that the infimum over the empty. set is co. These are the
stopping times. Now we consider {(w,(#), w,(2), - - -, w,(?)), t=0, P, ® P,,® - - -®P, },
which is a continuous time Markov chain on S” starting at (x,, x5, - * *, X,). Denote by
E,,.. x, the expectation with respect to P, Q P, . ® - ®P, . Let

o=inf{t>0 : w{)=w{¢) for some 1 <i#j<n}.
Then we easily see
(5.1) {Supp((), 0<1<tATy, P}
L {{wi(0, wad), -+, W)}, 0<1<0, P, ®P,,® - ®Py,} .
By the strong Markov property,

lim E, [ I F,(n)valdn), T< oo] —0.
t— 0 X

Therefore

(5.2) tlim E, [ J Fct(n)v,,(dr,):l =}im E, [J th(n)v,,(dn), T= oo] .
o X @ X

Define

H(t, C)=Ec[f F (n)vy(dn), 1:/\1:1=oo:| , t=>0.
X
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Then, by (5.1),

(5.3) lim H(t, {)=lim E;[ [T A=), tat= oo]

t— xeSupp(le)

= lim-E(xl,"‘,xn)I: ]:-[1 hc(x‘)(wi(t)), o= w] .

t— o0

Since

Exy, e xm ['[:II h;(x,,(W,(t))] = iljl Py (%)
for all >0, (5.3) becomes, by the strong Markov property,
549 ,ll’?, H(t, ()= iljl P () — Exy, -, x0) [ iljl hyxp(Wio)), o< oo] .
Denote the right-hand side of (5.4) by H({). Then (5.2) becomes

n—1
tlim E, I:J‘ F, c,('l)"h(d'l)] = tlim kZo E, [J F, (mva(dn), T=00, T, <0, Ty 41 = 00]
— 00 X —© k= X
n—1
=y E;[lim H(t,(,), t< oo:|
k=0 t— o

n—1
= ¥ B{H(.), u<].

Now we have shown that y, =lim,_, ., v,S(?) exists. We easily see u, € £. (2) follows from
the fact that v,S(0){n : n(x)=a}=h,(x) for all t1>0, aeZ,, and x€S.

We prove Theorem 2.3 before showing Theorem 2.2 (3). According to [6], define a
mapping 7, : X—>X,, aeZ,, by
1 if n(x)=a,

nnXx)=
(man)x) {0 if n(x)#a, neX,xeS.

Then we easily obtain the following lemma.

LEMMA 5.3. For any foeC(X,),neX,and acZ,,
S fo o m)m) = (So(2) foXah) -

PrROOF OF THEOREM 2.3. To prove (1), assume first that lim,_, , uS()=p,. Since
Tvy=V,., Wwe have mpu,=p, by Lemma 5.3, where n,ue P(X,) represents the image
measure of ueP(X) under the map n,. Therefore we have lim,_, (7,1)So()=p,, by
Lemma 5.3. Hence we obtain (2.3) and (2.4) from Theorem 4.2 (1). For the converse,
assume that (2.3) and (2.4) hold for all xe S and ae Z,. It is enough to show
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(5.5) lim <uS(), F> =ty Fe

t— o0

for all {eY. Let {eY and consider the Markov chain {(w,(?), w,(2), - - -, w,(?)), £ =0,
P, ®P, ® - ®P, } introduced in the proof of Theorem 2.2 (1). Define

F(t, )=E, [f F(mudn), t Aty = 00] , t=0.
X
Then, by (5.1),

(5.6) lim F(z, )= lim E[p{n : n(x)={(x) for all x e Supp(()}, t A1y =00]

t>w
= Hm Epe, ., mli{n : n09AD)=0(x), i=1,2, -, m}, 6 =00] .
By (2.3) and (2.4), we have
i B, el : 1O = 0G0, =12, =+, 1} = [T ).
Therefore (5.6) becomes, by the strong Markov property,

lim Az, {)=H()) .

t— o0

Hence we obtain (5.5) in the same way as in the proof of Theorem 2.2 (1). Next we
show (2). The necessity of (2.5) for lim,_, , uS()=Y.2 , «,0, follows from Theorem 4.2
(2). To prove the sufficiency of (2.5), it is enough to show

(57) lim <.uS(t)’ FC> =< i aaam F§>

t— a=0

for all (e Y. Let { € Y and assume first that there exist x, y € Supp({) such that {(x) # {(y).
Then P,{t < oo} =1. Therefore, by the strong Markov property,

lim {uS(f), Fy=lim E, [ J F,(mu(dn), t< oo] =0.
t— oo X

t— o0

So we obtain (5.7) in this case. Secondly assume that {(x)=a for all x e Supp({) for some
a>1, and let #Supp({)=n. Then P,{t,_, <o} =1. Therefore, by the strong Markov
property and (2.5),

lim <MS(I), FC> = lim EC I:J‘ FCt(")”(d”)’ Ty < Oo:l =0, .
t— o0 x

t— o0
So we obtain (5.7) in this case, too. This completes the proof of (2).

To prove Theorem 2.2 (3), we introduce the following lemma, in which the assertion
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(1) is used to prove the assertion (2). These assertions are natural extensions of those
in the two-position case and can be proved in a similar way (see [3]).

LEMMA 5.4. If ue#,, then the following assertions hold.

(1) lim Y p(x, y)u{n : n(»)=n(z)=a}=p{n : n(x)=a}u{n : n(z)=a}

t— o yeSs

forall x,ze S and ae Z .

(2)  Ey, plp{n : nm@®)=n(z(t))=a}1| pu{n : n(x)=a}u{n : n(y)=a}

as tT oo for all x,yeS and ac Z,, where E,, ,, represents the expectation with respect
to P,QP,.

Now we show Theorem 2.2 (3) by using the method in [5].

PROOF OF THEOREM 2.2 (3). Let he s#*. Then we see u, € £, by Theorem 2.3 (1).
Conversely let ue #, and define

h=(ha):°=0 ’

where h,(x)=pu{n: n(x)=a} for ac Z, and xeS. Then we see he #* and u=y, by
Theorem 2.3 (1) and Lemma 5.4 (2) in the same way as in the two-position case (see
[3]) where the proof was based on [S]. This completes the proof of Theorem 2.2.
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