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Square-Free Discriminants and Affect-Free Equations
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§1. Square-free discriminants.

Unramified 4,-extensions of quadratic number fields are discussed by Uchida [5],
[6] and Yamamoto [10]. Their results are closely related to the fact that there are
infinitely many algebraic number fields K of degree n (n>1) with the following prop-
erties:

1. The Galois group of K/Q is the symmetric group S,, where K denotes the

Galois closure of K/Q.

2. The discriminant of K is square-free.

It is the purpose of the present paper to discuss square-free discriminants and
affect-free (affektlos) equations. We begin by proving the following theorem. The Galois
closure of K/Q means the minimal Galois extension of Q which contains K.

THEOREM 1. Let K denote an algebraic number field of degree n (n>1) and let K
denote the Galois closure of K/Q. Suppose that the discriminant d of K is square-free.
Then we have:

1. The Galois group of K/Q is the symmetric group S,.

2. The Galois group of K/Q(/ 'd) is the alternating group A,.

3. Every prime ideal is unramified in K/Q(,/ d).

PrROOF. We may assume that n> 1. Let G denote the Galois group of K/Q. Then
G is a transitive permutation group on {1, 2, - - -, n}. Suppose that K has a subfield F
such that

QcFcK, F#Q, F#K.

Let dr denote the discriminant of F. Then d is divisible by dF, where m=[K: F] ([1],
Satz 39). Since m>1, by Minkowski’s theorem we see that d cannot be square-free.
This implies that G is primitive ([9], Theorem 7.4). Let p denote a prime number
which divides d; by hypothesis d is exactly divisible by p. Then (van der Waerden [7])
the prime ideal decomposition of p (in K) is of the form
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P=pP%: P, No)=p.

Let B be a prime ideal in K which divides p. Then the inertia group of B contains a
transposition ([7], Satz I). Hence G=3S, ([9], Theorem 13.3). Since the ramification
index of B with respect to K/Q is equal to 2 ([7], Satz I), ‘B is unramified in K/Q(,/ d).
Every prime number which ramifies in K also ramifies in K ([7]). This proves the assertion

(3). The assertion (2) follows from the fact that Q(\/?) is the fixed field of A4,
From Theorem 1 and a result of [2] we obtain the following theorem.
THEOREM 2. Let aq, a,, * -, a,_, (n>1) be rational integers such that

fX)=x"+a,_x""*+---+a;x+a,

is irreducible over Q. Let o be a root of f(x)=0, and let 6= f'(a), D=norm (in Q(x)).
Let x4, x4, * **, X,_, be rational integers such that

D/6=xq+ x4+ +x,_a" 1.
Suppose that
(D, X0, X15 " "y Xg—1)=1.

Then the discriminant of o) is square-free, and the Galois group of f(x)=0 over Q is
the symmetric group S,.

PrOOF. Every prime factor p of the discriminant d of ((«) is also a prime factor
of D. Therefore there exists a number i such that x; is not divisible by p. By Theorem
1 of [2] we see that d is not divisible by p?. Hence d is square-free, and the Galois
group of f(x)=0is S, (Thoerem 1).

§2. Examples.
In [8] Wegner proved that the Galois group over Q of the equation
f(xX)=xP+ax+b=0

of prime degree p>3 is the symmetric group S, if f(x) is irreducible and if
(a, b)=(p, a)=(p—1, b)=1. We generalize Wegner’s result as follows:

THEOREM 3. Let n (n>1), a, b be rational integers such that f(x)=x"+ax+b is
irreducible over Q. If (n— 1)a, nb)=1, then the Galois group of f(x)=0 over Q is the
symmetric group S,, and the discriminant of (Xa) is square-free, where a denotes a root

of f(x)=0.

PrROOF. The result follows immediately from Theorem 2 and [2] (Theorem 2).

Selmer [4] proved that x"—x—1 is irreducible for every n>1. From Theorem 3
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we obtain the following theorem.
THEOREM 4. The Galois group of
xX"—x—1=0
over Q is the symmetric group S, for every n>1.

It follows from a theorem of Perron [3] that x"+ax+ 1 is irreducible if n> 1, ae Z,
la|=3 ([4], Theorem 2). Hence we have the following theorem.

THEOREM 5. If n(n>1) and a are rational integers such that |a|>3, (n, a)=1, then
the Galois group of

X"+ax+1=0

over Q is the symmetric group S,.

§3. Unramified 4,-extensions of quadratic number fields: An explicit construction.

Since x"+ax+1 is irreducible for |a|>3, it is not difficult to construct (for any
integer n>1) infinitely many algebraic number fields of degree n with square-free
discriminants (§1). It is also possible to give an explicit construction of infinitely many
quadratic number fields which have unramified 4 ,-extensions (cf. [6], Theorem 2): Let
n (n>1) be a fixed integer. Define a,, D, (k=1,2, ---) by

a=n+l, Dy=(=1)""n—1)"""a} +n",
a=DD;*Dy—y, De=(=1)""'(n—1y"'az+n".

Let fi(x)=x"+ax+1, and let a, be a root of f,(x)=0; let d;, denote the discriminant
of the field 4, = (), and let 4, denote the Galois closure of 4, over Q; let F, = Q(\/E,‘).
Then f;(x) is irreducible, since |a, | >3; D, is divisible by d,, and so | D, |>|d, |=>3. By
induction, we see that (for every k) |a, | >3, fi(x) is irreducible, and (n, a;)=(n, D,)=1.
Since Dy is the norm of f(«,) ([2], Theorem 2), we have F, = O(/(— 1)"®~ Y72 D,). Clearly
i<j implies (D;, D)=1, (d;, d)=1, and so 4;# A;, F;#F;. Since (n, ¢;)=1, d, is square-
free (Theorem 3). Therefore, for every k, the Galois group of A4,/Q (resp. A,/F,) is
the symmetric (resp. alternating) group of degree n, and no prime ideals are ramified
in A4,/F, (Theorem 1).
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