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\S 1. Square-free discriminants.

Unramified $A_{n}$-extensions of quadratic number fields are discussed by Uchida [5],
[6] and Yamamoto [10]. Their results are closely related to the fact that there are
infinitely many algebraic number fields $K$ of degree $n(n>1)$ with the following prop-
erties:

1. The Galois group of $\overline{K}/Q$ is the symmetric group $S_{n}$ , where $\overline{K}$ denotes the
Galois closure of $K/Q$.

2. The discriminant of $K$ is square-free.
It is the purpose of the present paper to discuss square-free discriminants and

affect-free (affektlos) equations. We begin by proving the following theorem. The Galois
closure of $K/Q$ means the minimal Galois extension of $Q$ which contains $K$.

THEOREM 1. Let $K$ denote an algebraic number field of degree $n(n\geq 1)$ and let $\overline{K}$

denote the Galois closure of $K/Q$ . Suppose that the discriminant $d$ of $K$ is square-free.
Then we have:

1. The Galois group of $E/Q$ is the symmetric group $S_{n}$ .
2. The Galois group of $K/\alpha\sqrt{d}$) is the alternating group $A_{n}$ .
3. Every prime ideal is unramified in $\overline{K}/\alpha\sqrt{d}$).

$PR\infty F$ . We may assume that $n>1$ . Let $G$ denote the Galois group of $K/Q$ . Then
$G$ is a transitive permutation group on $\{1, 2, \cdots, n\}$ . Suppose that $K$ has a subfield $F$

such that

$Q\subset F\subset K$ , $F\neq Q$ , $F\neq K$ .
Let $d_{F}$ denote the discriminant of $F$. Then $d$ is divisible by $d_{F}^{m}$ , where $m=[K:F]$ ([1],
Satz 39). Since $m>1$ , by Minkowski’s theorem we see that $d$ cannot be square-free.
This implies that $G$ is primitive ([9], Theorem 7.4). Let $p$ denote a prime number
which divides $d$; by hypothesis $d$ is exactly divisible by $p$ . Then (van der Waerden [7])
the prime ideal decomposition of $p$ (in $K$) is of the form
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$p=p_{0}^{2}\mathfrak{p}_{1}\cdots p_{s}$ , $N(\mathfrak{p}_{0})=p$ .
Let $\mathfrak{P}$ be a prime ideal in $\overline{K}$ which divides $p$ . Then the inertia group of $\mathfrak{P}$ contains a
transposition ([7], Satz I). Hence $G=S_{n}$ ([9], Theorem 13.3). Since the ramification
index of $\mathfrak{P}$ with respect to $\overline{K}/Q$ is equal to 2 ([7], Satz I), $\mathfrak{P}$ is unramified in $\overline{K}/\alpha\sqrt{d}$ ).
Every prime number which ramifies in $\overline{K}$ also ramifies in $K$ ([7]). This proves the assertion
(3). The assertion (2) follows from the fact that $\alpha\sqrt{d}$) is the fixed field of $A_{n}$ .

From Theorem 1 and a result of [2] we obtain the following theorem.

THEOREM 2. Let $a_{0},$ $a_{1},$ $\cdots,$ $a_{n-1}(n>1)$ be rational integers such that

$f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{O}$

is irreducible over Q. Let $\alpha$ be a root of $f(x)=0$ , and let $\delta=f^{\prime}(\alpha),$ $ D=norm\delta$ (in $\mathfrak{g}\alpha$)).
Let $x_{0},$ $x_{1},$ $\cdots,$ $x_{n-1}$ be rational integers such that

$D/\delta=x_{0}+x_{1}\alpha+\cdots+x_{n-1}\alpha^{n-1}$

Suppose that

$(D, x_{0}, x_{1}, \cdots, x_{n-1})=1$ .
Then the discriminant of $\mathfrak{g}\alpha$) is square-free, and the Galois group of $f(x)=0$ over $Q$ is
the symmetric group $S_{n}$ .

$PR\infty F$ . Every prime factor $p$ of the discriminant $d$ of $\mathfrak{g}\alpha$) is also a prime factor
of $D$ . Therefore there exists a number $i$ such that $x_{j}$ is not divisible by $p$ . By Theorem
1 of [2] we see that $d$ is not divisible by $p^{2}$ . Hence $d$ is square-free, and the Galois
group of $f(x)=0$ is $S_{n}$ (Thoerem 1).

\S 2. Examples.

In [8] Wegner proved that the Galois group over $Q$ of the equation

$f(x)=x^{p}+ax+b=0$

of prime degree $p>3$ is the symmetric group $S_{p}$ if $f(x)$ is irreducible and if
$(a, b)=(p, a)=(p-1, b)=1$ . We generalize Wegner’s result as follows:

THEOREM 3. Let $n(n>1),$ $a,$
$b$ be rational integers such that $f(x)=x^{n}+ax+b$ is

irreducible over Q. If $((n-1)a, nb)=1$ , then the Galois group of $f(x)=0$ over $Q$ is the
symmetric group $S_{n}$ , and the discriminant $ of\otimes\alpha$) is square-free, where $\alpha$ denotes a root
of $f(x)=0$ .

$PR\infty F$ . The result follows immediately from Theorem 2 and [2] (Theorem 2).

Selmer [4] proved that $x^{n}-x-1$ is irreducible for every $n>1$ . From Theorem 3
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we obtain the following theorem.

THEOREM 4. The Galois group of
$x^{n}-x-1=0$

over $Q$ is the symmetric group $S_{n}$ for every $n>1$ .
It follows from a theorem ofPerron [3] that $x^{n}+ax+1$ is irreducible if $n>1,$ $a\in Z$,

$|a|\geq 3$ ([4], Theorem 2). Hence we have the following theorem.

THEOREM 5. If$n(n>1)$ and $a$ are rational integers such that $|a|\geq 3,$ $(n, a)=1$ , then
the Galois group of

$x^{n}+ax+1=0$

over $Q$ is the symmetric group $S_{n}$ .

\S 3. Unramified $A_{n}$-extensions of quadratic number fields: An explicit $consbuc5ion$.
Since $x^{n}+ax+1$ is irreducible for $|a|\geq 3$ , it is not difficult to construct (for any

integer $n>1$ ) infinitely many algebraic number fields of degree $n$ with square-free
discriminants (\S 1). It is also possible to give an explicit construction of infinitely many
quadratic number fields which have unramified $A_{n}$-extensions (cf. [6], Theorem 2): Let
$n(n>1)$ be a fixed integer. Define $a_{k},$ $D_{k}(k=1,2, \cdots)$ by

$a_{1}=n+1$ , $D_{1}=(-1)^{n}$
‘

$1(n-1)^{n-1}a_{1}^{\hslash}+n^{n}$ ,

$a_{k}=D_{1}D_{2}\cdots D_{k-1}$ , $D_{k}=(-1)^{n-1}(n-1)^{n-1}a_{k}^{n}+n^{n}$

Let $f_{k}(x)=x^{n}+a_{k}x+1$ , and let $\alpha_{k}$ be a root of $f_{k}(x)=0;$ let$\cdot$

$d_{k}$ denote the discriminant
of the field $A_{k}=q\alpha_{k}$), and let $\overline{A}_{k}$ denote the Galois closure of $A_{k}$ over $Q$; let $F_{k}=\alpha\sqrt{d_{k}}$).
Then $f_{1}(x)$ is irreducible, since $|a_{1}|\geq 3;D_{1}$ is divisible by $d_{1}$ , and so $|D_{1}|\geq|d_{1}|\geq 3$ . By
induction, we see that (for every k) $|a_{k}|\geq 3,$ $f_{k}(x)$ is irreducible, and $(n, a_{k})=(n, D_{k})=1$ .
Since $D_{k}$ is the norm of $f_{k}^{\prime}(\alpha_{k})$ ([2], Theorem 2), we have $F_{k}=\alpha\sqrt{(-1)^{n(n-1)/2}D_{k}}$). Clearly
$i<j$ implies $(D_{i}, D_{j})=1,$ $(d_{i}, d_{j})=1$ , and so $A_{i}\neq A_{j},$ $F_{i}\neq F_{j}$ . Since $(n, a_{k})=1,$ $d_{k}$ is square-
free (Theorem 3). Therefore, for every $k$, the Galois group of $\overline{A}_{k}/Q$ (resp. $\overline{A}_{k}/F_{k}$) is
the symmetric (resp. alternating) group of degree $n$ , and no prime ideals are ramified
in $\overline{A}_{k}/F_{k}$ (Theorem 1).
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