Токуо Ј. Матн. Vol. 14, No. 1, 1991

Symmetry of θ_4 -Curves

Masao HARA

Waseda University (Communicated by S. Suzuki)

1. Introduction.

In [2], S. Kinoshita showed that there exists a knotted θ_3 -curve in the 3-sphere S^3 such that its all cycles are unknotted. K. Wolcott proved that Kinoshita's θ_3 -curve is not amphicheiral (see [7]). In [5], S. Suzuki showed that, for any integer *m*, there exists a knotted θ_m -curve in S^3 such that its all subgraphs are unknotted, and such knotted θ_m -curves in S^3 are called *almost unknotted*.

In this paper, we give infinitely many almost unknotted θ_4 -curves in S^3 , and determine their amphicheirality.

Let e_1 , e_2 , e_3 and e_4 be simple arcs in S^3 with common endpoints v_1 , v_2 and mutually disjoint interiors. Then the union of these arcs is called a θ_4 -curve. Two θ_4 -curves θ and θ' are said to be *equivalent* (or *of the same knot type*), denoted by $\theta \cong \theta'$, if there exists an orientation preserving homeomorphism $f: S^3 \rightarrow S^3$ such that $f(\theta) = \theta'$. We call a θ_4 -curve θ unkotted if there exists an embedded S^2 in S^3 with $S^2 \supset \theta$.

Let θ be a θ_4 -curve. Let B_1 and B_2 be mutually disjoint regular neighborhoods of v_1 and v_2 in S^3 such that the pairs $(B_i, B_i \cap \theta)$ are as illustrated in Fig. 1 (a). Remove $(B_1, B_1 \cap \theta) \cup (B_2, B_2 \cap \theta)$ from (S^3, θ) and sew back trivial tangles (B_i, T_i) as illustrated in Fig. 1 (b) by some homeomorphisms

$$h_i: (\partial B_i, \partial T_i) \rightarrow (\partial B_i, \partial (B_i \cap \theta)),$$

then we obtain a link ℓ in S^3 . Note that the link type of ℓ depends on attaching homeomorphisms h_i . By $L(\theta)$, we denote the set of all such knot and link types, and we set

$$K_n(\theta) = \{k \in L(\theta) \mid \mu(k) = 1, b(k) \le n\},\$$

where $\mu(k)$ and b(k) are the number of components and the bridge index of k respectively.

THEOREM 1. Let θ be a θ_4 -curve. Then θ is unknotted if and only if $L(\theta) = \{k \in L(\theta) \mid b(k) \le 2\}$.

Received March 1, 1990

FIGURE 2

For integers p_1 , p_2 , p_3 and p_4 , the θ_4 -curve as shown in Fig. 2 is denoted by $\theta(p_1, p_2, p_3, p_4)$.

THEOREM 2. Let p_1 , p_2 , p_3 and p_4 be integers such that $|p_i| \ge 2$ for i=1, 2, 3, 4. Then, $\theta(p_1, p_2, p_3, p_4)$ is knotted.

If $p_1 = p_2 = p_3 = p_4 = 2$, then Theorem 2 is a special case of Suzuki's theorem (see [5]). In this paper, we determine amphicheirality of $\theta(p_1, p_2, p_3, p_4)$.

THEOREM 3. Let p_1 , p_2 , p_3 and p_4 be even integers such that $|p_i| \ge 4$ for i=1, 2, 3, 4. Then the θ_4 -curve $\theta(p_1, p_2, p_3, p_4)$ is amphicheiral if and only if p_1, p_2, p_3 and p_4 satisfy one of the following three conditions.

- (i) $p_1 = -p_2$ and $p_3 = -p_4$.
- (ii) $p_1 = -p_3$ and $p_2 = -p_4$.
- (iii) $p_1 = -p_4$ and $p_2 = -p_3$.

2. Proof of Theorem 1.

We call an incompressible torus T in a 3-manifold M essential if T is not boundary parallel in M.

LEMMA 4. Let $\ell = k_1 \cup k_2$ be a two-component link in a lens space L. If all 3-manifolds which are obtained by Dehn surgeries along ℓ are lens spaces (allowing $S^2 \times S^1$ and S^3 both as a lens space), then the exterior of ℓ in L is homeomorphic to $T^2 \times I$.

PROOF. Let V_1 and V_2 be mutually disjoint regular neighborhoods of k_1 and k_2 respectively. We set $\partial V_1 = T_1$, $\partial V_2 = T_2$ and $M = L - int(V_1 \cup V_2)$. If ℓ were a split link, then we could obtain non-prime manifolds by some Dehn surgeries along ℓ . Therefore, ℓ is non-splittable and M is irreducible and ∂ -irreducible.

Since *M* is a Haken manifold with torus boundary, *M* admits a torus decomposition, that is, M contains (possibly empty) mutually disjoint and non-parallel, essential tori U_1, U_2, \cdots, U_n such that, for the closure P (called a *piece*) of each component of $M - (U_1 \cup U_2 \cup \cdots \cup U_n)$, either P is Seifert fibered or int P is a (complete) hyperbolic 3-manifold of finite volume. Let P_1 be the piece containing T_1 . By Hyperbolic Dehn Surgery Theorem (see [6, Theorem 5.9]) (resp. the definition of Seifert fibered manifolds), if int P_1 is hyperbolic (resp. P_1 is a Seifert fibered manifold not homeomorphic to $T^2 \times I$, then there exists a homeomorphism $f_1: T_1 \rightarrow T_1$ such that $int(P_1 \cup_{f_1} V_1)$ is hyperbolic (resp. $P_1 \cup_{f_1} V_1$ is a Seifert fibered manifold with incompressible boundary). Therefore, if $P_1 \neq M$, then $M \cup_{f_1} V_1$ would contain an essential torus. By a similar argument, there would exist a homeomorphism $f_2: T_2 \rightarrow T_2$ such that $(M \cup_{f_1} V_1) \cup_{f_2} V_2$ contains an incompressible torus. This contradicts that any lens space contains no incompressible tori. Hence, $M = P_1$, in other words either int M is hyperbolic or M is Seifert fibered. By Hyperbolic Dehn Surgery Theorem, if int M is hyperbolic, then we can obtain a hyperbolic manifold from M by some Dehn surgery. Therefore, M is Seifert fibered and its base space is either a disk, or an annulus, or a Möbius band. Since ∂M has two components, the base space is an annulus. If M contained exceptional fibers, then we could obtain a Seifert fibered manifold not homeomorphic to a lens space, from M by some Dehn surgery, a contradicton. Therefore, M is homeomorphic to $T^2 \times I$. П

PROOF OF THEOREM 1. Since the "only if" part is clear, we prove the "if" part. Let v_1 and v_2 be vertices of θ . We denote mutually disjoint regular neighborhoods of v_1 and v_2 by B_1 and B_2 respectively. Let ℓ be an element of $L(\theta)$. Since $b(\ell) \le 2$, the double cover of S^3 branched over ℓ is a lens space L, and the preimage of B_i (i=1, 2) in L is a solid torus V_i . For any closed 3-manifold L' obtained by Dehn Surgery on $M = L - int(V_1 \cup V_2)$, there exists a link ℓ' in $L(\theta)$ whose double branched covering space is homeomorphic to L'. Since $b(\ell') \le 2$, L' is a lens space. By Lemma 4, we have $M \cong T^2 \times I$. Hence, θ is unknotted.

MASAO HARA

3. Knots obtained from $\theta(p_1, p_2, p_3, p_4)$.

PROOF OF THEOREM 2. If $\theta(p_1, p_2, p_3, p_4)$ is unknotted, then $L(\theta(p_1, p_2, p_3, p_4))$ is the set of all two-bridge links and trivial knots. But $L(\theta(p_1, p_2, p_3, p_4))$ contains the three-bridge link as shown in Fig. 3.

FIGURE 3

The two-bridge knot whose double cover is a lens space L(s, t) is denoted by $C_{t/s}$. For integers a_1, a_2, \dots, a_n , we set

$$[a_{1}, a_{2}, \cdots, a_{n}] = \frac{1}{a_{1} + \frac{1}{a_{2} + \frac{1}{\cdots + \frac{1}{a_{n}}}}}$$

and set $C_{t/s} = C[a_1, a_2, \dots, a_n]$ if $t/s = [a_1, a_2, \dots, a_n]$.

PROPOSITION 5. Let p_1 , p_2 , p_3 and p_4 be even integers such that $|p_i| \ge 4$ for i=1, 2, 3, 4. Then $K_2(\theta(p_1, p_2, p_3, p_4))$ is equal to the union \mathscr{C} defined by

$$\bigcup_{x \in \mathbb{Z}} \{ C[p_1, -p_2, 2x+1, -p_4, p_3], C[p_2, -p_1, 2x+1, -p_3, p_4], \\ C[p_1, -p_4, 2x+1, -p_2, p_3], C[p_2, -p_3, 2x+1, -p_1, p_4] \}$$

PROOF. Any element of $L(\theta(p_1, p_2, p_3, p_4))$ is the link which has the diagram as shown in Fig. 4, where α and β are rational numbers and R_{γ} is a rational tangle diagram of type γ . We denote this link by $\ell(\alpha, \beta; p_1, p_2, p_3, p_4)$. Let $M(\alpha, \beta; p_1, p_2, p_3, p_4)$ be the

 θ_{4} -CURVES

double cover of S^3 branched over $\ell(\alpha, \beta; p_1, p_2, p_3, p_4)$ and V_1 the preimage of R_{p_1} in $M(\alpha, \beta; p_1, p_2, p_3, p_4)$.

First we will show that $K_2(\theta(p_1, p_2, p_3, p_4)) \subset \mathscr{C}$. If $\ell(\alpha, \beta; p_1, p_2, p_3, p_4) \in K_2(\theta(p_1, p_2, p_3, p_4))$, then $M(\alpha, \beta; p_1, p_2, p_3, p_4)$ is a lens space. Since $\ell(\alpha, \beta; 0, p_2, p_3, p_4)$ is two-bridge, $M(\alpha, \beta; 0, p_2, p_3, p_4)$ is also a lens space. The latter $M(\alpha, \beta; 0, p_2, p_3, p_4)$ is obtained from the former $M(\alpha, \beta; p_1, p_2, p_3, p_4)$ by a Dehn surgery along a core of V_1 . By Cyclic Surgery Theorem in [1], the closure of $M(\alpha, \beta; p_1, p_2, p_3, p_4) - V_1$ is Seifert fibered and its base space is either a disk with at most two exceptional points or a Möbius band with at most one exceptional point. Therefore, $M(\alpha, \beta; 1/0, p_2, p_3, p_4)$ is either the connected sum of two lens spaces, or a Seifert fibered manifold whose base space is a 2-sphere with at most three exceptional points, or a Seifert fibered manifold whose base space is a projective plane with two exceptional points. In particuler, we have

(*) an incompressible separating torus in $M(\alpha, \beta; 1/0, p_2, p_3, p_4)$ bounds a twisted *I*-bundle over the Klein bottle.

Let S_1 and S_2 be spheres in S^3 which intersect the standard S^2 as shown in Fig. 5, and let T_1 and T_2 be the preimages in $M(\alpha, \beta; 1/0, p_2, p_3, p_4)$ of S_1 and S_2 respectively. Both T_1 and T_2 are separating tori in $M(\alpha, \beta; 1/0, p_2, p_3, p_4)$. We consider the closures of the components of $M(\alpha, \beta; 1/0, p_2, p_3, p_4) - T_1$, one of them contains the preimage of R_{α} , it is denoted by A, and the other is denoted by B. If α is an integer or 1/0, then $T_1 (= \partial A)$ is compressible in A. If α is not an integer, then A is a Seifert fibered manifold such that it has two exceptional fibers and one of them is an exceptional fiber of index $|p_4|$. Then, in particular, A is ∂ -irreducible and not homeomorphic to a twisted *I*-bundle over the Klein bottle. If $\beta = 0$, then $T_1 (= \partial B)$ is compressible in B. If $1/\beta$ is an integer, then B is a Seifert fibered manifold such that it has two exceptional fibers and one of them is an exceptional fiber of index $|p_3|$. If $1/\beta$ is not an integer, then B is a ∂ -irreducible Haken manifold which contains a separating essential annulus. Therefore, if $\beta \neq 0$, then B is ∂ -irreducible and not homeomorphic to a twisted *I*-bundle over the Klein bottle.

FIGURE 5

By (*), if $\beta \neq 0$, then α is either an integer or 1/0. By the similar argument for T_2 , if $\alpha \neq 0$, then β is either an integer or 1/0. Thus either at least one of α and β is equal to 0 or 1/0, or both α and β are non-zero integers.

If both α and β are non-zero integers, then by the similar argument for R_{p_2} , we have

$$|\alpha| = |\beta| = 1$$
.

Then $\ell(1, 1; p_1, p_2, p_3, p_4)$ is a two-component link. Therefore, at least one of α and β is equal to 0 or 1/0, and $\ell(\alpha, \beta; p_1, p_2, p_3, p_4)$ is a two bridge Montesinos knot.

If $\alpha = 0$, then $1/\beta$ must be an odd integer r and

$$\ell(0, 1/r, p_1, p_2, p_3, p_4) \cong C[p_1, -p_2, r, -p_4, p_3].$$

If $\alpha = 1/0$, then β must be an odd integer r and

$$\ell(1/0, r, p_1, p_2, p_3, p_4) \cong C[p_2, -p_3, r, -p_1, p_4].$$

If $\beta = 0$, then $1/\alpha$ must be an odd integer r and

$$\ell(1/r, 0, p_1, p_2, p_3, p_4) \cong C[p_2, -p_1, r, -p_3, p_4].$$

If $\beta = 1/0$, then α must be an odd integer r and

$$\ell(r, 1/0, p_1, p_2, p_3, p_4) \cong C[p_1, -p_4, r, -p_2, p_3].$$

Therefore, we have $K_2(\theta(p_1, p_2, p_3, p_4)) \subset \mathscr{C}$.

For any odd integer r, $\ell(\alpha, \beta, p_1, p_2, p_3, p_4)$ is an element of $K_2(\theta(p_1, p_2, p_3, p_4))$ if $\{\alpha, \beta\}$ is equal to $\{0, 1/r\}$ or $\{1/0, r\}$. Hence, \mathscr{C} is contained in $K_2(\theta(p_1, p_2, p_3, p_4))$. \Box

θ_4 -CURVES

Let k be a knot and ∇_k the Conway polynomial of k. When $\nabla_k(z) = \sum_{i=0}^n c_i z^i$ $(c_n \neq 0)$, we denote n, c_n and c_2 by deg k, a(k) and $\lambda(k)$ respectively.

LEMMA 6. Let a_1 , a_2 , a_3 and a_4 be even integers and r an odd integer. Then

(1) $\nabla_{C[a_1,a_2,r,a_2,a_3]}$

$$= T_{a_1+a_4+r} + \frac{a_2 z}{2} T_{a_1} T_{a_4+r} + \frac{a_3 z}{2} T_{a_4} T_{a_1+r} + \frac{a_2 a_3 z^2}{4} T_{a_1} T_{a_4} T_r,$$

where T_s is the Conway polynomial of a (2, s)-torus link oriented as shown in Fig. 6. Moreover

(2)
$$\lambda(C[a_1, a_2, r, a_3, a_4]) = \frac{a_1a_2 + a_3a_4}{4} + \frac{(a_1 + a_4 + r)^2 - 1}{8}.$$

PROOF. Equation (1) is proved by induction on $|a_2|+|a_3|$. We prove only (2). For an odd integer s, let k_s be a (2, s)-torus knot, then we have

$$\lambda(k_s) = \frac{s^2 - 1}{8} \, .$$

For a two-component link ℓ , the coefficient of z of ∇_{ℓ} is equal to the linking number of ℓ . By (1), we have (2).

COROLLARY 7. Let a_1, a_2, a_3 and a_4 be even integers and r an odd integer. If $|a_i| \ge 4$ for i=1, 2, 3, 4 and $|a_1+a_4+r|=1$, then

(3)
$$\deg(C[a_1, a_2, r, a_3, a_4]) = |a_1| + |a_4| + |r| - 1.$$

Moreover, $a(C[a_1, a_2, r, a_3, a_4]) < 0$ if and only if $a_2a_3 < 0$.

THEOREM 8. Let p_1, p_2, p_3 and p_4 be even integers such that $|p_i| \ge 4$ for i = 1, 2, 3, 4 and $p_1p_2 + p_3p_4 \ge p_1p_4 + p_2p_3$. The integer $p_1p_2 + p_3p_4$ is a knot type invariant of

MASAO HARA

 $\theta(p_1, p_2, p_3, p_4)$, and the subset $\Lambda(\theta(p_1, p_2, p_3, p_4))$ of $K_2(\theta(p_1, p_2, p_3, p_4))$ defined by

 $\{C[p_1, -p_2, -p_1-p_3\pm 1, -p_4, p_3], C[p_2, -p_1, -p_2-p_4\pm 1, -p_3, p_4]\}$ is also a knot type invariant of $\theta(p_1, p_2, p_3, p_4)$.

PROOF. By Proposition 8 and (2), we have

$$\min\{\lambda(k) \mid k \in K_2(\theta(p_1, p_2, p_3, p_4))\} = -\frac{p_1 p_2 + p_3 p_4}{4}$$

Therefore, $p_1p_2 + p_3p_4$ is a knot type invariant of $\theta(p_1, p_2, p_3, p_4)$, and the subset of $K_2(\theta(p_1, p_2, p_3, p_4))$ defined by

$$\left\{ k \in K_2(\theta(p_1, p_2, p_3, p_4)) \middle| \lambda(k) = -\frac{p_1 p_2 + p_3 p_4}{4} \right\}$$

is also a knot type invariant of $\theta(p_1, p_2, p_3, p_4)$. By Proposition 5 and Lemma 6, we obtain

$$\Lambda(\theta(p_1, p_2, p_3, p_4)) = \left\{ k \in K_2(\theta(p_1, p_2, p_3, p_4)) \ \middle| \ \lambda(k) = -\frac{p_1 p_2 + p_3 p_4}{4} \right\}.$$

4. Proof of Theorem 3.

LEMMA 9. Let p_1, p_2, p_3 and p_4 be even integers such that $|p_i| \ge 4$ for i = 1, 2, 3, 4. Then at least one of the two knots $C[p_1, -p_2, -p_1-p_3\pm 1, -p_4, p_3]$ is not amphicheiral.

PROOF. For an amphicheiral two-bridge knot k, the writhe of an alternating diagram of k is equal to zero (see [3] and [4]). Since at least one of $C[p_1, -p_2, -p_1 - p_3 \pm 1, -p_4, p_3]$ has no alternating diagram whose writhe is equal to zero, it is not amphicheiral.

PROOF OF THEOREM 3. Since $\theta(p_1, p_2, p_3, p_4) \cong \theta(p_2, p_3, p_4, p_1) \cong \theta(p_4, p_3, p_2, p_1)$, the "if" part is clear. We prove the "only if" part. Since $\theta(p_1, p_2, p_3, p_4) \cong \theta(p_2, p_3, p_4, p_1)$, we may assume that $p_1p_2 + p_3p_4 \ge p_1p_4 + p_2p_3$ and $p_1 > 0$. By Theorem 8, if $\theta(p_1, p_2, p_3, p_4)$ is amphicheiral, then

(4)
$$\Lambda(\theta(p_1, p_2, p_3, p_4)) = \Lambda(\theta(-p_1, -p_2, -p_3, -p_4)).$$

By Lemma 9, for $\varepsilon = \pm 1$, $k = C[p_1, -p_2, -p_1-p_3+\varepsilon, -p_4, p_3]$ is not amphicheiral. By (4), k is equivalent to one of three knots in $\Lambda(\theta(-p_1, -p_2, -p_3, -p_4))$:

$$k_0 = C[-p_1, p_2, p_1 + p_3 + \varepsilon, p_4, -p_3],$$

$$k_\varepsilon = C[-p_2, p_1, p_2 + p_4 + \varepsilon, p_3, -p_4],$$

14

θ_4 -CURVES

$$k_{-\varepsilon} = C[-p_2, p_1, p_2 + p_4 - \varepsilon, p_3, -p_4].$$

We need consider following three cases.

Case 1. $k \cong k_0$. By (3), we have

deg
$$k = |p_1| + |p_3| + |p_1 + p_3 - \varepsilon| - 1$$
,
deg $k_0 = |p_1| + |p_3| + |p_1 + p_3 + \varepsilon| - 1$.

Since deg $k = \text{deg } k_0$, it follows that $p_1 + p_3 = 0$. By (1), we have

$$\nabla_{k_0} - \nabla_k = \frac{z}{2} T_{p_1} (T_{p_1 + \varepsilon} + T_{p_1 - \varepsilon}) (p_2 + p_4) = 0.$$

Therefore p_1 , p_2 , p_3 and p_4 satisfy that $p_1 = -p_3$ and $p_2 = -p_4$.

Case 2. $k \cong k_{\epsilon}$. If $p_3 > 0$, then by Corollary 7, p_2 and p_4 have the same sign. Since deg $k = \deg k_{\epsilon}$, by (3), it follows that

$$2(p_1 + p_3) - \varepsilon = \pm (2(p_2 + p_4) + \varepsilon)$$
.

Since p_i is even for i = 1, 2, 3, 4, we have

(5)
$$p_1 + p_3 = -p_2 - p_4$$

Since $a(k) = a(k_{\epsilon})$, it follows that

(6)
$$p_2 p_4 = p_1 p_3$$
.

By (5) and (6), p_1 , p_2 , p_3 and p_4 satisfy that either

$$p_1 = -p_2$$
 and $p_3 = -p_4$, or
 $p_1 = -p_4$ and $p_2 = -p_3$.

If $p_3 < 0$, then by Corollary 7, $p_2p_4 < 0$. Since $p_1p_2 + p_3p_4 \ge p_1p_4 + p_2p_3$, it follows that $p_2 > 0$ and $p_4 < 0$. By deg $k = \deg k_{\epsilon}$ and $a(k) = a(k_{\epsilon})$, we have either

$$\begin{cases} 2p_{1} - \varepsilon &= -2p_{4} - \varepsilon, \\ p_{2}p_{4} - 2p_{2} = p_{1}p_{3} + 2p_{3}, & \text{or} \\ \\ 2p_{3} + \varepsilon &= -2p_{2} + \varepsilon, \\ p_{2}p_{4} - 2p_{4} = p_{1}p_{3} + 2p_{1}. \end{cases}$$

Therefore we obtain

 $p_1 = -p_4$ and $p_2 = -p_3$.

Case 3. $k \cong k_{-\epsilon}$. If $p_3 > 0$, then by th argument similar to that in Case 2, we have either

$$p_1 = p_2$$
 and $p_3 = p_4$, or

$$p_1 - p_4$$
 and $p_2 - p_3$.

In both cases, k is amphicheiral. This is a contradiction.

If $p_3 < 0$, then by the argument similar to that in Case 2, we have either

$$p_1 = p_2$$
, $p_4 = p_3 + 4$, $p_1 > 0$ and $p_4 < 0$, or
 $p_3 = p_4$, $p_2 = p_1 + 4$, $p_1 > 0$ and $p_3 < 0$.

In both cases, k and k_{-e} have alternating diagrams such that the difference between their crossing numbers is four. Then Theorem A in Murasugi [3] implies that $k \not\cong k_{-e}$, a contradiction. Thus Case 3 can not occur.

References

- M. CULLER, C. M. GORDON, J. LUECKE and P. B. SHALEN, Dehn surgery on knots, Ann. Math., 125 (1987), 237-300.
- [2] S. KINOSHITA, On elementary ideals of polyhedra in the 3-space, Pacific J. Math., 42 (1972), 89–98.
- [3] K. MURASUGI, Jones polynomials and classical conjectures in knot theory, Topology, 26 (1987), 187–194.
- [4] K. MURASUGI, Jones polynomials and classical conjectures in knot theory II, Math. Proc. Cambridge Philos. Soc., 102 (1987), 317-318.
- [5] S. SUZUKI, Almost unknotted θ_n -curves in the 3-sphere, Kobe J. Math., 1 (1984), 19–22.
- [6] W. THURSTON, The Geometry and Topology of 3-Manifolds, Mimeographed Notes, Princeton Univ., 1978.
- [7] K. WOLCOTT, The knotting of theta curves and other graphs in S³, Geometry and Topology, pp. 325–346, Marcel Dekker, 1987.

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY NISHI-WASEDA, SHINJUKU-KU, TOKYO 169, JAPAN

16