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1. Introduction.

In [2], S. Kinoshita showed that there exists a knotted 6;-curve in the 3-sphere
3 such that its all cycles are unknotted. K. Wolcott proved that Kinoshita’s 8;-curve
is not amphicheiral (see [7]). In [5], S. Suzuki showed that, for any integer m, there
exists a knotted 6,,-curve in S> such that its all subgraphs are unknotted, and such
knotted 0,,-curves in S?> are called almost unknotted.

In this paper, we give infinitely many almost unknotted 6,-curves in S>, and
determine their amphicheirality.

Let e,, e,, e; and e, be simple arcs in S* with common endpoints v, v, and
mutually disjoint interiors. Then the union of these arcs is called a 64-curve. Two
6,-curves 0 and 0’ are said to be equivalent (or of the same knot type), denoted by 0=6’,
if there exists an orientation preserving homeomorphism f : $2—S? such that f(6)=6".
We call a 8,-curve 0 unkotted if there exists an embedded S? in $* with $2>6.

Let  be a 0,-curve. Let B, and B, be mutually disjoint regular neighborhoods of
b, and v, in S? such that the pairs (B;, B; n 0) are as illustrated in Fig. 1 (a). Remove
(B, B, n0) U (B,, B, N 0) from (S, 0) and sew back trivial tangles (B;, T,) as illustrated
in Fig. 1 (b) by some homeomorphisms

h; : (0B;, 0T) — (0B, d(B;n 0)) ,

then we obtain a link ¢ in S3. Note that the link type of ¢ depends on attaching
homeomorphisms 4;. By L(6), we denote the set of all such knot and link types, and we
set

K(0)={keL() | pk)=1, bk)<n}
where u(k) and b(k) are the number of components and the bridge index of k respectively.

THEOREM 1. Let 0 be a 0,-curve. Then 0 is unknotted if and only if L(0)=
{ke L) | blk)<2}.
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FIGURE 2

For integers p,, p,, p; and p,, the 0,-curve as shown in Fig. 2 is denoted by
(P1, P25 P3s Pa)-

THEOREM 2. Let p,, p,, p3 and p4 be integers such that | p;|=>2 for i=1, 2, 3, 4.
Then, e(pls D2s P3; P4) is knotted.

If p, =p,=p3;=p,=2, then Theorem 2 is a special case of Suzuki’s theorem (see
[5D). In this paper, we determine amphicheirality of &(p,, p,, Ps, Ps)-

THEOREM 3. Let p,, p,, P3 and p, be even integers such that | p;| >4 for i=1, 2,
3, 4. Then the 0,-curve &(p,, P2, P3, Ps) is amphicheiral if and only if p,, p,, ps and p,
satisfy one of the following three conditions.

(i) p1=—p; and p3=—p,.

(i) py=—psandp,=—p,.

(iii) p,=—p4 and p,=—p;s.
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2. Proof of Theorem 1.

We call an incompressible torus 7"in a 3-manifold M essential if T is not boundary
parallel in M.

LEMMA 4. Let {=k, Uk, be a two-component link in a lens space L. If all
3-manifolds which are obtained by Dehn surgeries along ¢ are lens spaces (allowing S x S*
and S® both as a lens space), then the exterior of ¢ in L is homeomorphic to T* x I.

PrOOF. Let ¥, and V, be mutually disjoint regular neighborhoods of k, and &,
respectively. We set 0V, =T,,0V,=T, and M=L—iny(V, u V,). If £ were a split link,
then we could obtain non-prime manifolds by some Dehn surgeries along ¢. Therefore,
¢ is non-splittable and M is irreducible and J-irreducible.

Since M is a Haken manifold with torus boundary, M admits a torus decomposition,
that is, M contains (possibly empty) mutually disjoint and non-parallel, essential tori
U,, U,, --+, U, such that, for the closure P (called a piece) of each component of
M—(U,vU,u ---uU,, either P is Seifert fibered or int P is a (complete) hyperbolic
3-manifold of finite volume. Let P, be the piece containing 7';. By Hyperbolic Dehn
Surgery Theorem (see [6, Theorem 5.9]) (resp. the definition of Seifert fibered manifolds),
if int P, is hyperbolic (resp. P, is a Seifert fibered manifold not homeomorphic to
T? x I), then there exists a homeomorphism f; : T;—T; such that int(P, U ;, V) is
hyperbolic (resp. P, U .,V is a Seifert fibered manifold with incompressible boundary).
Therefore, if P, #M, then M U , ¥V, would contain an essential torus. By a similar
argument, there would exist a homeomorphism f, : T,—» T, suchthat(MuU ; V,)u ,,V,
contains an incompressible torus. This contradicts that any lens space contains no
incompressible tori. Hence, M = P,, in other words either int M is hyperbolic or M is
Seifert fibered. By Hyperbolic Dehn Surgery Theorem, if int M is hyperbolic, then we
can obtain a hyperbolic manifold from M by some Dehn surgery. Therefore, M is
Seifert fibered and its base space is either a disk, or an annulus, or a Mobius band.
Since M has two components, the base space is an annulus. If M contained exceptional
fibers, then we could obtain a Seifert fibered manifold not homeomorphic to a lens
space, from M by some Dehn surgery, a contradicton. Therefore, M is homeomorphic
to T? x I. O

PrOOF OF THEOREM 1. Since the “only if”’ part is clear, we prove the “if”” part.
Let v, and v, be vertices of 8. We denote mutually disjoint regular neighborhoods of
v, and v, by B, and B, respectively. Let /£ be an element of L(6). Since b(¢)<2, the -
double cover of S3 branched over ¢ is a lens space L, and the preimage of B, (i=1, 2)
in L is a solid torus V;. For any closed 3-manifold L’ obtained by Dehn Surgery on M =
L—int(V, u V,), there exists a link #’ in L(6) whose double branched covering space is
homeomorphic to L'. Since b(¢’)<2, L' is a lens space. By Lemma 4, we have M=~ T? x I.
Hence, 6 is unknotted. O
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3. Knots obtained from O(p,, p,, p3, P4)-

PROOF OF THEOREM 2. If 6(p,, P2, P3, P4) is unknotted, then L(6(p,, p1, p3, P4)) is
the set of all two-bridge links and trivial knots. But L(6(p,, p,, P3, P4)) contains the
three-bridge link as shown in Fig. 3. . 0
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FIGURE 3

The two-bridge knot whose double cover is a lens space L(s, ?) is denoted by C, .
For integers a,, a,, * -, a,, we set

[anaz, ”'aan]= 1

)

and set C,,=C[ay, a,, - - -, a,] if t/s =[a,,a,, - -, a,].

PROPOSITION 5. Let p,, p,, p3 and p, be even integers such that | p; | >4 for i=1,
2, 3, 4. Then K,(6(p,, P2, P3, Ps)) is equal to the union € defined by

U {C[pb —P2 2x+la —P4,P3], C[p29 —DP1» 2x+19 —p3,p4],

xeZ
CLpi» —Pas 2x+1, —p3, p31, CLP2, —P3, 2x+1, —p1, ps1} .
PROOF. Any element of L(6(p,, p,, P3, Ps)) is the link which has the diagram as

shown in Fig. 4, where « and B are rational numbers and R, is a rational tangle diagram
of type y. We denote this link by £(a, B; p1, P2, P3, Ps)- Let M(a, B; py, P,, P3, p4) be the
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double cover of S3 branched over Z(a, B; p,, P2, P3» P4) and V, the preimage of R, in
M@, B; p1> P2, D3, Pa)-

First we will show that K,(0(p;, p2, 3, Pa) <€ If £(a, B; Py, P2, P3, Pa) € Ko(0(ps,
P2: D3, Ps)), then M(a, B; py, Py, P3, Ps) is a lens space. Since £(a, B; 0, py, p3, ps) 18
two-bridge, M(a, B; 0, p,, P3, p4) is also a lens space. The latter M(x, B; 0, p,, P3, P4) is
obtained from the former M(«, B; p,, P2, P3, Ps) by @ Dehn surgery along a core of V.
By Cyclic Surgery Theorem in [1], the closure of M(«, B; py, P2, P3, Ps)— V), is Seifert
fibered and its base space is either a disk with at most two exceptional points or a
Mobius band with at most one exceptional point. Therefore, M(a, f; 1/0, p,, p3, P4) is
either the connected sum of two lens spaces, or a Seifert fibered manifold whose base
space is a 2-sphere with at most three exceptional points, or a Seifert fibered manifold
whose base space is a projective plane with two exceptional points. In particuler, we have

(*) anincompressible separating torus in M(a, f; 1/0, p,, p3, p4) bounds a twisted
I-bundle over the Klein bottle.

Let S, and S, be spheres in S which intersect the standard S? as shown in Fig.
5,and let T, and T, be the preimages in M(«, B; 1/0, p,, p3, ps) of S; and S, respectively.
Both T, and T, are separating tori in M(a, 8; 1/0, p,, p3, Ps). We consider the closures
of the components of M(a, B; 1/0, p,, p3, Ps)— T, one of them contains the preimage
of R,, it is denoted by A4, and the other is denoted by B. If « is an integer or 1/0, then
T, (=03A) is compressible in 4. If « is not an integer, then A4 is a Seifert fibered manifold
such that it has two exceptional fibers and one of them is an exceptional fiber of index
| p4 |- Then, in particular, 4 is d-irreducible and not homeomorphic to a twisted /-bundle
over the Klein bottle. If =0, then T, (=0B) is compressible in B. If 1/8 is an integer,
then B is a Seifert fibered manifold such that it has two exceptional fibers and one of
them is an exceptional fiber of index | p5 |. If 1/ is not an integer, then B is a d-irreducible
Haken manifold which contains a separating essential annulus. Therefore, if f#0, then
B is 0-irreducible and not homeomorphic to a twisted I-bundle over the Klein bottle.
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By (*), if §#0, then « is either an integer or 1/0. By the similar argument for T,, if
a#0, then B is either an integer or 1/0. Thus either at least one of « and f is equal to
0 or 1/0, or both « and B are non-zero integers.

If both « and B are non-zero integers, then by the similar argument for R,,, we

have
le|=|B8|=1.

- Then ¢(1, 1; py, P2, P3, P4) is a two-component link. Therefore, at least one of « and 8
is equal to 0 or 1/0, and ¢(a, B; p1, P2, P3, Ps) is a two bridge Montesinos knot.
If «=0, then 1/ must be an odd integer r and

£(0, 1/r, p1, P2, P3, P=CLP1s —P2, 7, —Pas P3] -
If x=1/0, then f must be an odd integer r and

£(1/0, 1, py, P2, P3, Pa)=CLP3;, —P3, T, —P1, Pal -
If =0, then 1/a must be an odd integer r and

£(1/r, 0, Py, P2, P3s P = CLP2, —P1, 7, —P3, Pa] -
If =1/0, then « must be an odd integer r and

£(r, 1/0, p1, P2, P3, P)=CLPy, —Pas ¥, —P2, P3] -

Therefore, we have K,(8(p,, P2, P3, Ps)) < €.
For any odd integer r, £(a, B, Py, P2, P3, P4) is an element of K,(0(p,, p2, P3, Po)) if
{a, B} is equal to {0, 1/r} or {1/0, r}. Hence, € is contained in K,(8(p,, P2, P3, Ps)). (]
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Let k be a knot and V, the Conway polynomial of k. When V(z)=)7_, ¢;z* (¢, #0),
we denote n, ¢, and ¢, by deg k, a(k) and A(k) respectively.

LEMMA 6. Let a,, a,, ay and a, be even integers and r an odd integer. Then

(1) . VC[al.az.r,az,asl

a,asz?

‘_l}i Ta4Ta1 +r+T TalTa4Tr ’

axz
= Ta| +a4+r+7 TalTa4+r+ 2

where T, is the Conway polynomial of a (2, s)-torus link oriented as shown in Fig. 6.

Moreover

a,a,+axa, N (a;+a,+r?—1
4 8 '

%)  MClay, ag, 1, as, as])=

(\// \J

FIGURE 6

Proor. Equation (1) is proved by induction on | a, |+]| a5 |. We prove only (2).
For an odd integer s, let k, be a (2, s)-torus knot, then we have

Ay =21

For a two-component link Z, the coefficient of z of V, is equal to the linking number of
¢. By (1), we have (2). . O

COROLLARY 7. Letay, a,, a; and a, be even integers and r an odd integer. If | a;| > 4
Sori=1,2,3,4and|a,+a,+r|=1, then

3) deg(Cla,, a,, 1, a3, a])=|a; | +la,|+|r|—1.
Moreover, a(Clay, a,, r, as, a,1) <0 if and only if aya; <O. O

THEOREM 8. Let p,, p,, P3 and p, be even integers such that |p;|=>4 for i=1, 2,
3,4 and p\p,+pspsa=piPa+DPaps. The integer p,p,+pap, is a knot type invariant of
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e(pla Pz, p3a p4)a and the Subset A(G(Pb Pz, p3’ P4)) Of KZ(O(pl, P2a P3, P4)) deﬁned by
{C[Pp —P2, —P1—P3t 1, —p4, p3], CLP2, —P1, —P2—Pat 1, —ps, P4]}
is also a knot type invariant of 0(p,, P, D3> Da)-

PrOOF. By Proposition 8 and (2), we have

_P1P2+P3Pa

min{A(k) | k€ Ky(0(p1, P2, P3: Ps))} = 2

Therefore, p,p, +pip, is a knot type invariant of 6(p,, p,, p3, P4), and the subset of
Ky(0(p1, P2, P3, P4)) defined by

+
{ke Kz(e(Pl, P2, D3, P4)) }'(k) = —Iﬂi»&}

is also a knot type invariant of 68(p,, p,, p3, p,)- By Proposition 5 and Lemma 6, we ob-
tain

A@(py, p2s P3s Pa)) = {k € Ky(6(p1, P2> P3> Pa)) |

ARy = _P2P2 :P3P4} .

4. Proof of Theorem 3.

LEMMA 9. Let py, p,, p3 and p, be even integers such that |p;|>4 for i=1, 2, 3,
4. Then at least one of the two knots C[py, —p,, —p,—p3s+1, —p4, p3] is not
amphicheiral.

PROOF. For an amphicheiral two-bridge knot k, the writhe of an alternating dia-

gram of k is equal to zero (see [3] and [4]). Since at least one of C[p,, —p,, —p, —
p3t1, —p,, ps] has no alternating diagram whose writhe is equal to zero, it is not
amphicheiral. O

PROOF OF THEOREM 3. Since &(p,, p;, P3, Pa) = O0(D3, P3, Pas P1) = O0(Pa, P3, P2, P1),
the “if” part is clear. We prove the “only if” part. Since 6(p,, p,, ps, ps) =0(p2, P3, P4, P1),

we may assume that p,p,+pi3p,>pps+p,p3 and p,>0. By Theorem 8, if
6(p1, P2, P3, Ps) is amphicheiral, then

4) A(6(py, P25 P3> Pa))=AO(—p1, — P2, —P3, —Pa)) -

By Lemma 9, for e=+1,k=C[p;, —p;, —p1 —P3+&, —Ppg4, p5] is not amphicheiral.
By (4), k is equivalent to one of three knots in A((—p,, —p,, —P3, —DP)):

ko=CL—p1, P2, P1+P3+8, Py, —p3],
ke=C[—'p23p1’p2 +p4+8’P3’ —p4] s
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k_,=C[—ps, p1, P2+Ps—& P3, —Pal .

We need consider following three cases.
Case 1. k=~k,. By (3), we have

degk=|p.|+|psl+|p1+ps—¢|-1,
deg ko=|p;|+|ps|+[p1+ps+el—1.
Since deg k=deg k,,, it follows that p, +p;=0. By (1), we have

V4
Vko—vk=? Tpl(Tpl +e+ Tpl—s)(p2 +p4)=0 .

Therefore p,, p,, p; and p, satisfy that p; = —p; and p, = —p,.
Case 2. k=k, Ifp;>0,thenby Corollary 7, p, and p, have the same sign. Since
deg k=deg k,, by (3), it follows that

2py+p3)—e=£(2Ap,+pa)+e).

Since p; is even for i=1, 2, 3, 4, we have

() P1+P3=—P2—Da4-

Since a(k)=a(k,), it follows that

(6) | P2P4=P1D3 -

By (5) and (6), py, p,, P5 and p, satisfy that either
pi=—p; and p3=—p,, or
pr=—ps and p,=—p;.

If p3 <0, then by Corollary 7, p,p, <0. Since p,p, +pspPs=p1Ps+P2D3, it follows
that p,>0 and p, <0. By deg k=deg k, and a(k)=a(k,), we have either

{21’1—3 =—2p,—¢,
PaPs—2p;=p1P3+2p;, oOr
{2p3+s =—2p,+¢,
P2Ps—2ps=pP3+2p; .
Therefore we obtain
P1=—ps and p,=—p;.

Case 3. k=~k_, Ifp,>0,then by th argument similar to that in Case 2, we have
either '



16 MASAO HARA

p1=p, and p3=p,, or
pP1=ps and p,=p;.

In both cases, k is amphicheiral. This is a contradiction.
If p; <0, then by the argument similar to that in Case 2, we have either

P1=P2> Pa=p3+4, p;>0 and p,<0, or
P3=Pa, P2=p1+4, p;>0 and p,;<0.

In both cases, k and k _, have alternating diagrams such that the difference between their
crossing numbers is four. Then Theorem A in Murasugi [3] implies that k#*k_,, a
contradiction. Thus Case 3 can not occur. 0O
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