Symmetry of $\boldsymbol{\theta}_{4}$-Curves

Masao HARA

Waseda University
(Communicated by S. Suzuki)

1. Introduction.

In [2], S . Kinoshita showed that there exists a knotted θ_{3}-curve in the 3 -sphere \boldsymbol{S}^{3} such that its all cycles are unknotted. K. Wolcott proved that Kinoshita's $\boldsymbol{\theta}_{\mathbf{3}}$-curve is not amphicheiral (see [7]). In [5], S. Suzuki showed that, for any integer m, there exists a knotted θ_{m}-curve in $\boldsymbol{S}^{\mathbf{3}}$ such that its all subgraphs are unknotted, and such knotted θ_{m}-curves in $\boldsymbol{S}^{\mathbf{3}}$ are called almost unknotted.

In this paper, we give infinitely many almost unknotted θ_{4}-curves in S^{3}, and determine their amphicheirality.

Let e_{1}, e_{2}, e_{3} and e_{4} be simple arcs in S^{3} with common endpoints v_{1}, v_{2} and mutually disjoint interiors. Then the union of these arcs is called a θ_{4}-curve. Two θ_{4}-curves θ and θ^{\prime} are said to be equivalent (or of the same knot type), denoted by $\theta \cong \theta^{\prime}$, if there exists an orientation preserving homeomorphism $f: \boldsymbol{S}^{3} \rightarrow \boldsymbol{S}^{3}$ such that $f(\theta)=\theta^{\prime}$. We call a θ_{4}-curve θ unkotted if there exists an embedded S^{2} in S^{3} with $S^{2} \supset \theta$.

Let θ be a θ_{4}-curve. Let B_{1} and B_{2} be mutually disjoint regular neighborhoods of v_{1} and v_{2} in S^{3} such that the pairs ($B_{i}, B_{i} \cap \theta$) are as illustrated in Fig. 1 (a). Remove $\left(B_{1}, B_{1} \cap \theta\right) \cup\left(B_{2}, B_{2} \cap \theta\right)$ from $\left(S^{3}, \theta\right)$ and sew back trivial tangles $\left(B_{i}, T_{i}\right)$ as illustrated in Fig. 1 (b) by some homeomorphisms

$$
h_{i}:\left(\partial B_{i}, \partial T_{i}\right) \rightarrow\left(\partial B_{i}, \partial\left(B_{i} \cap \theta\right)\right),
$$

then we obtain a link ℓ in S^{3}. Note that the link type of ℓ depends on attaching homeomorphisms h_{i}. By $L(\theta)$, we denote the set of all such knot and link types, and we set

$$
K_{n}(\theta)=\{k \in L(\theta) \mid \mu(k)=1, b(k) \leq n\},
$$

where $\mu(k)$ and $b(k)$ are the number of components and the bridge index of k respectively.
Theorem 1. Let θ be a θ_{4}-curve. Then θ is unknotted if and only if $L(\theta)=$ $\{k \in L(\theta) \mid b(k) \leq 2\}$.

[^0]

Figure 1

Figure 2
For integers p_{1}, p_{2}, p_{3} and p_{4}, the θ_{4}-curve as shown in Fig. 2 is denoted by $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.

Theorem 2. Let p_{1}, p_{2}, p_{3} and p_{4} be integers such that $\left|p_{i}\right| \geq 2$ for $i=1,2,3,4$. Then, $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is knotted.

If $p_{1}=p_{2}=p_{3}=p_{4}=2$, then Theorem 2 is a special case of Suzuki's theorem (see [5]). In this paper, we determine amphicheirality of $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.

Theorem 3. Let p_{1}, p_{2}, p_{3} and p_{4} be even integers such that $\left|p_{i}\right| \geq 4$ for $i=1,2$, 3, 4. Then the θ_{4}-curve $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is amphicheiral if and only if p_{1}, p_{2}, p_{3} and p_{4} satisfy one of the following three conditions.
(i) $p_{1}=-p_{2}$ and $p_{3}=-p_{4}$.
(ii) $p_{1}=-p_{3}$ and $p_{2}=-p_{4}$.
(iii) $p_{1}=-p_{4}$ and $p_{2}=-p_{3}$.

2. Proof of Theorem 1.

We call an incompressible torus T in a 3-manifold M essential if T is not boundary parallel in M.

Lemma 4. Let $\ell=k_{1} \cup k_{2}$ be a two-component link in a lens space L. If all 3-manifolds which are obtained by Dehn surgeries along ℓ are lens spaces (allowing $\boldsymbol{S}^{2} \times \boldsymbol{S}^{1}$ and S^{3} both as a lens space), then the exterior of ℓ in L is homeomorphic to $T^{2} \times I$.

Proof. Let V_{1} and V_{2} be mutually disjoint regular neighborhoods of k_{1} and k_{2} respectively. We set $\partial V_{1}=T_{1}, \partial V_{2}=T_{2}$ and $M=L-\operatorname{int}\left(V_{1} \cup V_{2}\right)$. If ℓ were a split link, then we could obtain non-prime manifolds by some Dehn surgeries along ℓ. Therefore, ℓ is non-splittable and M is irreducible and ∂-irreducible.

Since M is a Haken manifold with torus boundary, M admits a torus decomposition, that is, M contains (possibly empty) mutually disjoint and non-parallel, essential tori $U_{1}, U_{2}, \cdots, U_{n}$ such that, for the closure P (called a piece) of each component of $M-\left(U_{1} \cup U_{2} \cup \cdots \cup U_{n}\right)$, either P is Seifert fibered or int P is a (complete) hyperbolic 3-manifold of finite volume. Let P_{1} be the piece containing T_{1}. By Hyperbolic Dehn Surgery Theorem (see [6, Theorem 5.9]) (resp. the definition of Seifert fibered manifolds), if int P_{1} is hyperbolic (resp. P_{1} is a Seifert fibered manifold not homeomorphic to $\left.T^{2} \times I\right)$, then there exists a homeomorphism $f_{1}: T_{1} \rightarrow T_{1}$ such that $\operatorname{int}\left(P_{1} \cup_{f_{1}} V_{1}\right)$ is hyperbolic (resp. $P_{1} \cup_{f_{1}} V_{1}$ is a Seifert fibered manifold with incompressible boundary). Therefore, if $P_{1} \neq M$, then $M \cup_{f_{1}} V_{1}$ would contain an essential torus. By a similar argument, there would exist a homeomorphism $f_{2}: T_{2} \rightarrow T_{2}$ such that $\left(M \cup_{f_{1}} V_{1}\right) \cup_{f_{2}} V_{2}$ contains an incompressible torus. This contradicts that any lens space contains no incompressible tori. Hence, $M=P_{1}$, in other words either int M is hyperbolic or M is Seifert fibered. By Hyperbolic Dehn Surgery Theorem, if int M is hyperbolic, then we can obtain a hyperbolic manifold from M by some Dehn surgery. Therefore, M is Seifert fibered and its base space is either a disk, or an annulus, or a Möbius band. Since ∂M has two components, the base space is an annulus. If M contained exceptional fibers, then we could obtain a Seifert fibered manifold not homeomorphic to a lens space, from M by some Dehn surgery, a contradicton. Therefore, M is homeomorphic to $T^{2} \times I$.

Proof of Theorem 1. Since the "only if" part is clear, we prove the "if" part. Let v_{1} and v_{2} be vertices of θ. We denote mutually disjoint regular neighborhoods of v_{1} and v_{2} by B_{1} and B_{2} respectively. Let ℓ be an element of $L(\theta)$. Since $b(\ell) \leq 2$, the double cover of S^{3} branched over ℓ is a lens space L, and the preimage of $B_{i}(i=1,2)$ in L is a solid torus V_{i}. For any closed 3-manifold L^{\prime} obtained by Dehn Surgery on $M=$ $L-\operatorname{int}\left(V_{1} \cup V_{2}\right)$, there exists a link ℓ^{\prime} in $L(\theta)$ whose double branched covering space is homeomorphic to L^{\prime}. Since $b\left(\ell^{\prime}\right) \leq 2, L^{\prime}$ is a lens space. By Lemma 4, we have $M \cong T^{2} \times I$. Hence, θ is unknotted.

3. Knots obtained from $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.

Proof of Theorem 2. If $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is unknotted, then $L\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ is the set of all two-bridge links and trivial knots. But $L\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ contains the three-bridge link as shown in Fig. 3.

Figure 3
The two-bridge knot whose double cover is a lens space $L(s, t)$ is denoted by $C_{t / s}$. For integers $a_{1}, a_{2}, \cdots, a_{n}$, we set

$$
\left[a_{1}, a_{2}, \cdots, a_{n}\right]=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdot \cdot+\frac{1}{a_{n}}}}}
$$

and set $C_{t / s}=C\left[a_{1}, a_{2}, \cdots, a_{n}\right]$ if $t / s=\left[a_{1}, a_{2}, \cdots, a_{n}\right]$.
Proposition 5. Let p_{1}, p_{2}, p_{3} and p_{4} be even integers such that $\left|p_{i}\right| \geq 4$ for $i=1$, 2, 3, 4. Then $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ is equal to the union \mathscr{C} defined by

$$
\begin{aligned}
& \bigcup_{x \in Z}\left\{C\left[p_{1},-p_{2}, 2 x+1,-p_{4}, p_{3}\right], C\left[p_{2},-p_{1}, 2 x+1,-p_{3}, p_{4}\right]\right. \\
& \left.\quad C\left[p_{1},-p_{4}, 2 x+1,-p_{2}, p_{3}\right], C\left[p_{2},-p_{3}, 2 x+1,-p_{1}, p_{4}\right]\right\} .
\end{aligned}
$$

Proof. Any element of $L\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ is the link which has the diagram as shown in Fig. 4, where α and β are rational numbers and R_{γ} is a rational tangle diagram of type γ. We denote this link by $\ell\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$. Let $M\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ be the

Figure 4
double cover of S^{3} branched over $\ell\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ and V_{1} the preimage of $R_{p_{1}}$ in $M\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$.

First we will show that $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right) \subset \mathscr{C}$. If $\ell\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right) \in K_{2}\left(\theta\left(p_{1}\right.\right.$, $\left.p_{2}, p_{3}, p_{4}\right)$), then $M\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a lens space. Since $\ell\left(\alpha, \beta ; 0, p_{2}, p_{3}, p_{4}\right)$ is two-bridge, $M\left(\alpha, \beta ; 0, p_{2}, p_{3}, p_{4}\right)$ is also a lens space. The latter $M\left(\alpha, \beta ; 0, p_{2}, p_{3}, p_{4}\right)$ is obtained from the former $M\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ by a Dehn surgery along a core of V_{1}. By Cyclic Surgery Theorem in [1], the closure of $M\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)-V_{1}$ is Seifert fibered and its base space is either a disk with at most two exceptional points or a Möbius band with at most one exceptional point. Therefore, $M\left(\alpha, \beta ; 1 / 0, p_{2}, p_{3}, p_{4}\right)$ is either the connected sum of two lens spaces, or a Seifert fibered manifold whose base space is a 2 -sphere with at most three exceptional points, or a Seifert fibered manifold whose base space is a projective plane with two exceptional points. In particuler, we have
(*) an incompressible separating torus in $M\left(\alpha, \beta ; 1 / 0, p_{2}, p_{3}, p_{4}\right)$ bounds a twisted I-bundle over the Klein bottle.
Let S_{1} and S_{2} be spheres in S^{3} which intersect the standard S^{2} as shown in Fig. 5 , and let T_{1} and T_{2} be the preimages in $M\left(\alpha, \beta ; 1 / 0, p_{2}, p_{3}, p_{4}\right)$ of S_{1} and S_{2} respectively. Both T_{1} and T_{2} are separating tori in $M\left(\alpha, \beta ; 1 / 0, p_{2}, p_{3}, p_{4}\right)$. We consider the closures of the components of $M\left(\alpha, \beta ; 1 / 0, p_{2}, p_{3}, p_{4}\right)-T_{1}$, one of them contains the preimage of R_{α}, it is denoted by A, and the other is denoted by B. If α is an integer or $1 / 0$, then $T_{1}(=\partial A)$ is compressible in A. If α is not an integer, then A is a Seifert fibered manifold such that it has two exceptional fibers and one of them is an exceptional fiber of index $\left|p_{4}\right|$. Then, in particular, A is ∂-irreducible and not homeomorphic to a twisted I-bundle over the Klein bottle. If $\beta=0$, then $T_{1}(=\partial B)$ is compressible in B. If $1 / \beta$ is an integer, then B is a Seifert fibered manifold such that it has two exceptional fibers and one of them is an exceptional fiber of index $\left|p_{3}\right|$. If $1 / \beta$ is not an integer, then B is a ∂-irreducible Haken manifold which contains a separating essential annulus. Therefore, if $\beta \neq 0$, then B is ∂-irreducible and not homeomorphic to a twisted I-bundle over the Klein bottle.

Figure 5

By (*), if $\beta \neq 0$, then α is either an integer or $1 / 0$. By the similar argument for T_{2}, if $\alpha \neq 0$, then β is either an integer or $1 / 0$. Thus either at least one of α and β is equal to 0 or $1 / 0$, or both α and β are non-zero integers.

If both α and β are non-zero integers, then by the similar argument for $\boldsymbol{R}_{\boldsymbol{p}_{2}}$, we have

$$
|\alpha|=|\beta|=1 .
$$

Then $\ell\left(1,1 ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a two-component link. Therefore, at least one of α and β is equal to 0 or $1 / 0$, and $\ell\left(\alpha, \beta ; p_{1}, p_{2}, p_{3}, p_{4}\right)$ is a two bridge Montesinos knot.

If $\alpha=0$, then $1 / \beta$ must be an odd integer r and

$$
\ell\left(0,1 / r, p_{1}, p_{2}, p_{3}, p_{4}\right) \cong C\left[p_{1},-p_{2}, r,-p_{4}, p_{3}\right]
$$

If $\alpha=1 / 0$, then β must be an odd integer r and

$$
\ell\left(1 / 0, r, p_{1}, p_{2}, p_{3}, p_{4}\right) \cong C\left[p_{2},-p_{3}, r,-p_{1}, p_{4}\right]
$$

If $\beta=0$, then $1 / \alpha$ must be an odd integer r and

$$
\ell\left(1 / r, 0, p_{1}, p_{2}, p_{3}, p_{4}\right) \cong C\left[p_{2},-p_{1}, r,-p_{3}, p_{4}\right]
$$

If $\beta=1 / 0$, then α must be an odd integer r and

$$
\ell\left(r, 1 / 0, p_{1}, p_{2}, p_{3}, p_{4}\right) \cong C\left[p_{1},-p_{4}, r,-p_{2}, p_{3}\right]
$$

Therefore, we have $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right) \subset \mathscr{C}$.
For any odd integer $r, \ell\left(\alpha, \beta, p_{1}, p_{2}, p_{3}, p_{4}\right)$ is an element of $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$.if $\{\alpha, \beta\}$ is equal to $\{0,1 / r\}$ or $\{1 / 0, r\}$. Hence, \mathscr{C} is contained in $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$.

Let k be a knot and ∇_{k} the Conway polynomial of k. When $\nabla_{k}(z)=\sum_{i=0}^{n} c_{i} z^{i}\left(c_{n} \neq 0\right)$, we denote n, c_{n} and c_{2} by $\operatorname{deg} k, a(k)$ and $\lambda(k)$ respectively.

Lemma 6. Let a_{1}, a_{2}, a_{3} and a_{4} be even integers and r an odd integer. Then

$$
\begin{align*}
& \nabla_{C\left[a_{1}, a_{2}, r, a_{2}, a_{3}\right]} \tag{1}\\
& \quad=T_{a_{1}+a_{4}+r}+\frac{a_{2} z}{2} T_{a_{1}} T_{a_{4}+r}+\frac{a_{3} z}{2} T_{a_{4}} T_{a_{1}+r}+\frac{a_{2} a_{3} z^{2}}{4} T_{a_{1}} T_{a_{4}} T_{r},
\end{align*}
$$

where T_{s} is the Conway polynomial of $a(2, s)$-torus link oriented as shown in Fig. 6. Moreover

$$
\begin{equation*}
\lambda\left(C\left[a_{1}, a_{2}, r, a_{3}, a_{4}\right]\right)=\frac{a_{1} a_{2}+a_{3} a_{4}}{4}+\frac{\left(a_{1}+a_{4}+r\right)^{2}-1}{8} . \tag{2}
\end{equation*}
$$

Figure 6
Proof. Equation (1) is proved by induction on $\left|a_{2}\right|+\left|a_{3}\right|$. We prove only (2). For an odd integer s, let k_{s} be a $(2, s)$-torus knot, then we have

$$
\lambda\left(k_{s}\right)=\frac{s^{2}-1}{8} .
$$

For a two-component link ℓ, the coefficient of z of ∇_{ℓ} is equal to the linking number of ℓ. By (1), we have (2).

Corollary 7. Let a_{1}, a_{2}, a_{3} and a_{4} be even integers and r an odd integer. If $\left|a_{i}\right| \geq 4$ for $i=1,2,3,4$ and $\left|a_{1}+a_{4}+r\right|=1$, then

$$
\begin{equation*}
\operatorname{deg}\left(C\left[a_{1}, a_{2}, r, a_{3}, a_{4}\right]\right)=\left|a_{1}\right|+\left|a_{4}\right|+|r|-1 \tag{3}
\end{equation*}
$$

Moreover, $a\left(C\left[a_{1}, a_{2}, r, a_{3}, a_{4}\right]\right)<0$ if and only if $a_{2} a_{3}<0$.
Theorem 8. Let p_{1}, p_{2}, p_{3} and p_{4} be even integers such that $\left|p_{i}\right| \geq 4$ for $i=1,2$, 3, 4 and $p_{1} p_{2}+p_{3} p_{4} \geq p_{1} p_{4}+p_{2} p_{3}$. The integer $p_{1} p_{2}+p_{3} p_{4}$ is a knot type invariant of
$\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$, and the subset $\Lambda\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ of $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ defined by

$$
\left\{C\left[p_{1},-p_{2},-p_{1}-p_{3} \pm 1,-p_{4}, p_{3}\right], C\left[p_{2},-p_{1},-p_{2}-p_{4} \pm 1,-p_{3}, p_{4}\right]\right\}
$$

is also a knot type invariant of $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$.
Proof. By Proposition 8 and (2), we have

$$
\min \left\{\lambda(k) \mid k \in K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)\right\}=-\frac{p_{1} p_{2}+p_{3} p_{4}}{4}
$$

Therefore, $p_{1} p_{2}+p_{3} p_{4}$ is a knot type invariant of $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$, and the subset of $K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)$ defined by

$$
\left\{k \in K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right) \left\lvert\, \lambda(k)=-\frac{p_{1} p_{2}+p_{3} p_{4}}{4}\right.\right\}
$$

is also a knot type invariant of $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$. By Proposition 5 and Lemma 6, we obtain

$$
\Lambda\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)=\left\{k \in K_{2}\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right) \left\lvert\, \lambda(k)=-\frac{p_{1} p_{2}+p_{3} p_{4}}{4}\right.\right\}
$$

4. Proof of Theorem 3.

Lemma 9. Let p_{1}, p_{2}, p_{3} and p_{4} be even integers such that $\left|p_{i}\right| \geq 4$ for $i=1,2,3$, 4. Then at least one of the two knots $C\left[p_{1},-p_{2},-p_{1}-p_{3} \pm 1,-p_{4}, p_{3}\right]$ is not amphicheiral.

Proof. For an amphicheiral two-bridge knot k, the writhe of an alternating diagram of k is equal to zero (see [3] and [4]). Since at least one of $C\left[p_{1},-p_{2},-p_{1}-\right.$ $\left.p_{3} \pm 1,-p_{4}, p_{3}\right]$ has no alternating diagram whose writhe is equal to zero, it is not amphicheiral.

Proof of Theorem 3. Since $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \cong \theta\left(p_{2}, p_{3}, p_{4}, p_{1}\right) \cong \theta\left(p_{4}, p_{3}, p_{2}, p_{1}\right)$, the "if" part is clear. We prove the "only if" part. Since $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right) \cong \theta\left(p_{2}, p_{3}, p_{4}, p_{1}\right)$, we may assume that $p_{1} p_{2}+p_{3} p_{4} \geq p_{1} p_{4}+p_{2} p_{3}$ and $p_{1}>0$. By Theorem 8 , if $\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ is amphicheiral, then

$$
\begin{equation*}
\Lambda\left(\theta\left(p_{1}, p_{2}, p_{3}, p_{4}\right)\right)=\Lambda\left(\theta\left(-p_{1},-p_{2},-p_{3},-p_{4}\right)\right) \tag{4}
\end{equation*}
$$

By Lemma 9, for $\varepsilon= \pm 1, k=C\left[p_{1},-p_{2},-p_{1}-p_{3}+\varepsilon,-p_{4}, p_{3}\right]$ is not amphicheiral. By (4), k is equivalent to one of three knots in $\Lambda\left(\theta\left(-p_{1},-p_{2},-p_{3},-p_{4}\right)\right.$):

$$
\begin{aligned}
k_{0} & =C\left[-p_{1}, p_{2}, p_{1}+p_{3}+\varepsilon, p_{4},-p_{3}\right], \\
k_{\varepsilon} & =C\left[-p_{2}, p_{1}, p_{2}+p_{4}+\varepsilon, p_{3},-p_{4}\right],
\end{aligned}
$$

$$
k_{-\varepsilon}=C\left[-p_{2}, p_{1}, p_{2}+p_{4}-\varepsilon, p_{3},-p_{4}\right] .
$$

We need consider following three cases.
Case 1. $k \cong k_{0} . \quad$ By (3), we have

$$
\begin{aligned}
\operatorname{deg} k & =\left|p_{1}\right|+\left|p_{3}\right|+\left|p_{1}+p_{3}-\varepsilon\right|-1, \\
\operatorname{deg} k_{0} & =\left|p_{1}\right|+\left|p_{3}\right|+\left|p_{1}+p_{3}+\varepsilon\right|-1 .
\end{aligned}
$$

Since $\operatorname{deg} k=\operatorname{deg} k_{0}$, it follows that $p_{1}+p_{3}=0$. By (1), we have

$$
\nabla_{k_{0}}-\nabla_{k}=\frac{z}{2} T_{p_{1}}\left(T_{p_{1}+\varepsilon}+T_{p_{1}-\varepsilon}\right)\left(p_{2}+p_{4}\right)=0
$$

Therefore p_{1}, p_{2}, p_{3} and p_{4} satisfy that $p_{1}=-p_{3}$ and $p_{2}=-p_{4}$.
Case 2. $k \cong k_{\varepsilon}$. If $p_{3}>0$, then by Corollary 7, p_{2} and p_{4} have the same sign. Since $\operatorname{deg} k=\operatorname{deg} k_{\varepsilon}$, by (3), it follows that

$$
2\left(p_{1}+p_{3}\right)-\varepsilon= \pm\left(2\left(p_{2}+p_{4}\right)+\varepsilon\right)
$$

Since p_{i} is even for $i=1,2,3,4$, we have

$$
\begin{equation*}
p_{1}+p_{3}=-p_{2}-p_{4} \tag{5}
\end{equation*}
$$

Since $a(k)=a\left(k_{\varepsilon}\right)$, it follows that

$$
\begin{equation*}
p_{2} p_{4}=p_{1} p_{3} \tag{6}
\end{equation*}
$$

By (5) and (6), p_{1}, p_{2}, p_{3} and p_{4} satisfy that either

$$
\begin{array}{lll}
p_{1}=-p_{2} & \text { and } \quad p_{3}=-p_{4}, & \text { or } \\
p_{1}=-p_{4} & \text { and } & p_{2}=-p_{3}
\end{array}
$$

If $p_{3}<0$, then by Corollary 7, $p_{2} p_{4}<0$. Since $p_{1} p_{2}+p_{3} p_{4} \geq p_{1} p_{4}+p_{2} p_{3}$, it follows that $p_{2}>0$ and $p_{4}<0$. By $\operatorname{deg} k=\operatorname{deg} k_{\varepsilon}$ and $a(k)=a\left(k_{\varepsilon}\right)$, we have either

$$
\begin{aligned}
& \left\{\begin{array}{l}
2 p_{1}-\varepsilon=-2 p_{4}-\varepsilon, \\
p_{2} p_{4}-2 p_{2}=p_{1} p_{3}+2 p_{3},
\end{array}\right. \text { or } \\
& \left\{\begin{array}{l}
2 p_{3}+\varepsilon=-2 p_{2}+\varepsilon, \\
p_{2} p_{4}-2 p_{4}
\end{array}=p_{1} p_{3}+2 p_{1} .\right.
\end{aligned}
$$

Therefore we obtain

$$
p_{1}=-p_{4} \quad \text { and } \quad p_{2}=-p_{3} .
$$

Case 3. $k \cong k_{-\varepsilon}$. If $p_{3}>0$, then by th argument similar to that in Case 2 , we have either

$$
\begin{array}{lll}
p_{1}=p_{2} & \text { and } \quad p_{3}=p_{4}, \quad \text { or } \\
p_{1}=p_{4} & \text { and } & p_{2}=p_{3} .
\end{array}
$$

In both cases, k is amphicheiral. This is a contradiction.
If $p_{3}<0$, then by the argument similar to that in Case 2, we have either

$$
\begin{array}{llll}
p_{1}=p_{2}, & p_{4}=p_{3}+4, & p_{1}>0 & \text { and } p_{4}<0, \\
p_{3}=p_{4}, & p_{2}=p_{1}+4, & p_{1}>0 & \text { and } \\
p_{3}<0 .
\end{array}
$$

In both cases, k and $k_{-\varepsilon}$ have alternating diagrams such that the difference between their crossing numbers is four. Then Theorem A in Murasugi [3] implies that $k \not k_{-\varepsilon}$, a contradiction. Thus Case 3 can not occur.

References

[1] M. Culler, C. M. Gordon, J. Luecke and P. B. Shalen, Dehn surgery on knots, Ann. Math., 125 (1987), 237-300.
[2] S. Kinoshita, On elementary ideals of polyhedra in the 3-space, Pacific J. Math., 42 (1972), 89-98.
[3] K. MURASUGI, Jones polynomials and classical conjectures in knot theory, Topology, 26 (1987), 187-194.
[4] K. Murasugi, Jones polynomials and classical conjectures in knot theory II, Math. Proc. Cambridge Philos. Soc., 102 (1987), 317-318.
[5] S. Suzuki, Almost unknotted θ_{n}-curves in the 3-sphere, Kobe J. Math., 1 (1984), 19-22.
[6] W. Thurston, The Geometry and Topology of 3-Manifolds, Mimeographed Notes, Princeton Univ., 1978.
[7] K. Wolcott, The knotting of theta curves and other graphs in S^{3}, Geometry and Topology, pp. 325346, Marcel Dekker, 1987.

Present Address:

Department of Mathematics, School of Education, Waseda University Nishi-Waseda, Shinjuku-ku, Tokyo 169, Japan

[^0]: Received March 1, 1990

