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1. Introduction.

In [2], S. Kinoshita showed that there exists a knotted $\theta_{3}$-curve in the 3-sphere
$S^{3}$ such that its all cycles are unknotted. K. Wolcott proved that Kinoshita’s $\theta_{3}$-curve
is not amphicheiral (see [7]). In [5], S. Suzuki showed that, for any integer $m$ , there
exists a knotted $\theta_{m}$-curve in $S^{3}$ such that its all subgraphs are unknotted, and such
knotted $\theta_{m}$-curves in $S^{3}$ are called almost unknotted.

In this paper, we give infinitely many almost unknotted $\theta_{4}$-curves in $S^{3}$ , and
determine their amphicheirality.

Let $e_{1},$ $e_{2},$ $e_{3}$ and $e_{4}$ be simple arcs in $S^{3}$ with common endpoints $v_{1},$ $v_{2}$ and
mutually disjoint interiors. Then the union of these arcs is called a $\theta_{4}$-curve. Two
$\theta_{4}$-curves $\theta$ and $\theta^{\prime}$ are said to be equivalent (or of the same knot type), denoted by $\theta\cong\theta^{\prime}$ ,

if there exists an orientation preserving homeomorphism $f$ : $S^{3}\rightarrow S^{3}$ such that $f(\theta)=\theta^{\prime}$ .
We call a $\theta_{4}$-curve $\theta$ unkotted if there exists an embedded $S^{2}$ in $S^{3}$ with $ S^{2}\supset\theta$ .

Let $\theta$ be a $\theta_{4}$-curve. Let $B_{1}$ and $B_{2}$ be mutually disjoint regular neighborhoods of
$b_{1}$ and $v_{2}$ in $S^{3}$ such that the pairs $(B_{i}, B_{i}\cap\theta)$ are as illustrated in Fig. 1 (a). Remove
$(B_{1}, B_{1}\cap\theta)\cup(B_{2}, B_{2}\cap\theta)$ from $(S^{3}, \theta)$ and sew back trivial tangles $(B_{i}, T_{i})$ as illustrated
in Fig. 1 (b) by some homeomorphisms

$h_{i}$ : $(\partial B_{i}, \partial T_{i})\rightarrow(\partial B_{i}, \partial(B_{i}\cap\theta))$ ,

then we obtain a link $l$ in $S^{3}$ . Note that the link type of $l$ depends on attaching
homeomorphisms $h_{i}$ . By $L(\theta)$ , we denote the set of all such knot and link types, and we
set

$K_{n}(\theta)=\{k\in L(\theta)|\mu(k)=1, b(k)\leq n\}$ ,

where $\mu(k)$ and $b(k)$ are the number ofcomponents and the bridge index of $k$ respectively.

THEOREM 1. Let $\theta$ be a $\theta_{4}$-curve. Then $\theta$ is unknotted if and only if $ L\langle\theta$) $=$

$\{k\in L(\theta)|b(k)\leq 2\}$ .
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(a) (b)

FIGURE 1

$\theta(\rho_{1^{r}}\rho_{2^{\prime}}\rho_{3^{\prime}}\rho_{4})$

FIGURE 2

For integers $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ , the $\theta_{4}$-curve as shown in Fig. 2 is denoted by
$\mathfrak{A}p_{1},p_{2},p_{3},p_{4})$ .

THEOREM 2. Let $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ be integers such that $|p_{i}|\geq 2$ for $i=1,2,3,4$ .
Then, $\mathfrak{A}p_{1},$ $p_{2},$ $p_{3},$ $p_{4}$) is knotted.

If $p_{1}=p_{2}=p_{3}\cong p_{4}=2$ , then Theorem 2 is a special case of Suzuki’s theorem (see
[5]). In this paper, we determine amphicheirality of $\mathfrak{A}p_{1},$ $p_{2},$ $p_{3},$ $p_{4}$).

THEOREM 3. Let $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ be even integers such that $|p_{i}|\geq 4$ for $i=1,2$,
3, 4. Then the $\theta_{4}$-curve $\mathfrak{A}p_{1},p_{2},p_{3},p_{4}$) is amphicheiral if and only if $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$

satisfy one of the following three conditions.
(i) $p_{1}=-p_{2}$ and $p_{3}=-p_{4}$ .
(ii) $p_{1}=-p_{3}$ and $p_{2}=-p_{4}$ .
(111) $p_{1}=-p_{4}$ and $p_{2}=-p_{3}$ .
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2. Proof of Theorem 1.

We call an incompressible torus $T$ in a 3-manifold $M$ essential if $T$ is not boundary
parallel in $M$.

LEMMA 4. Let $t=k_{1}\cup k_{2}$ be a two-component link in a lens space L. If all
3-manifolds which are obtained by Dehn surgeries $along\swarrow are$ lens spaces (allowing $S^{2}xS^{1}$

and $S^{3}$ both as a lens space), then the exterior of $t$ in $L$ is homeomorphic to $T^{2}xI$.
PROOF. Let $V_{1}$ and $V_{2}$ be mutually disjoint regular neighborhoods of $k_{1}$ and $k_{2}$

respectively. We set $\partial V_{1}=T_{1},$ $\partial V_{2}=T_{2}$ and $M=L-int(V_{1}uV_{2})$ . If 1 were a split link,
then we could obtain non-prime manifolds by some Dehn surgeries along $\swarrow$ . Therefore,
$t$ is non-splittable and $M$ is irreducible and $\partial$-irreducible.

Since $M$ is a Haken manifold with torus boundary, $M$ admits a torus decomposition,
that is, $M$ contains (possibly empty) mutually disjoint and non-parallel, essential tori
$U_{1},$ $U_{2},$ $\cdots$ , $U_{n}$ such that, for the closure $P$ (called a piece) of each component of
$M-(U_{1}\cup U_{2}\cup\cdots\cup U_{n})$ , either $P$ is Seifert fibered or int $P$ is a (complete) hyperbolic
3-manifold of finite volume. Let $P_{1}$ be the piece containing $T_{1}$ . By Hyperbolic Dehn
Surgery Theorem (see [6, Theorem 5.9]) (resp. the definition ofSeifert fibered manifolds),
if int $P_{1}$ is hyperbolic (resp. $P_{1}$ is a Seifert fibered manifold not homeomorphic to
$T^{2}\times I)$ , then there exists a homeomorphism $f_{1}$ : $T_{1}\rightarrow T_{1}$ such that int$(P_{1}u_{f_{1}}V_{1})$ is
hyperbolic (resp. $P_{1}U_{f_{1}}V_{1}$ is a Seifert fibered manifold with incompressible boundary).
Therefore, if $P_{1}\neq M$, then $M\cup V_{1}J_{1}$ would contain an essential torus. By a similar
argument, there would exist a homeomorphism $f_{2}$ : $T_{2}\rightarrow T_{2}$ such that $(MU_{f_{1}}V_{1})\cup V$

contains an incompressible torus. This contradicts that any lens space contains no
incompressible tori. Hence, $M=P_{1}$ , in other words either int $M$ is hyperbolic or $M$ is
Seifert fibered. By Hyperbolic Dehn Surgery Theorem, if int $M$ is hyperbolic, then we
can obtain a hyperbolic manifold from $M$ by some Dehn surgery. Therefore, $M$ is
Seifert fibered and its base space is either a disk, or an annulus, or a M\"obius band.
Sinoe $\partial M$ has two components, the base space is an annulus. If $M$ contained exceptional
fibers, then we could obtain a Seifert fibered manifold not homeomorphic to a lens
space, from $M$ by some Dehn surgery, a contradicton. Therefore, $M$ is homeomorphic
to $T^{2}\times I$. $\square $

$PR\infty F$ OF THEOREM 1. Since the “only if” part is clear, we prove the “if” part.
Let $v_{1}$ and $v_{2}$ be vertices of $\theta$ . We denote mutually disjoint regular neighborhoods of
$v_{1}$ and $v_{2}$ by $B_{1}$ and $B_{2}$ respectively. Let $\swarrow$ be an element of $L(\theta)$ . Since $\mu\parallel$) $\leq 2$ , the
double cover of $S^{3}$ branched over $\swarrow$ is a lens space $L$ , and the preimage of $B_{i}(i=1,2)$

in $L$ is a solid torus $V_{i}$ . For any closed 3-manifold $L^{\prime}$ obtained by Dehn Surgery on $M=$

$L-int(V_{1}uV_{2})$ , there exists a link $t^{\prime}$ in $L(\theta)$ whose double branched covering space is
homeomorphic to $L^{\prime}$ . Since $b(t^{\prime})\leq 2,$ $L^{\prime}$ is a lens space. By Lemma 4, we have $M\cong T^{2}\times I$.
Hence, $\theta$ is unknotted. $\square $
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3. Knots obtained from $\theta(p_{1},p_{2}, p_{3},p_{4})$.
PROOF OF THEOREM 2. If $\theta(p_{1},p_{2},p_{3},p_{4})$ is unknotted, then $L(\theta(p_{1},p_{2},p_{3},p_{4}))$ is

the set of all two-bridge links and trivial knots. But $L(\theta(p_{1},p_{2},p_{3},p_{4}))$ contains the
three-bridge link as shown in Fig. 3. $\square $

FIGURE 3

The two-bridge knot whose double cover is a lens space $L(s, t)$ is denoted by $C_{\iota/s}$ .
For integers $a_{1},$ $a_{2},$ $\cdots,$ $a_{n}$ , we set

$[a_{1}, a_{2}, \cdots, a_{n}]=\frac{1}{a_{1}+\frac{1}{1}}$

$a_{2}+-$
.
$++$

and set $C_{\iota/s}=C[a_{1}, a_{2}, \cdots, a_{n}]$ if $t/s=[a_{1}, a_{2}, \cdots, a_{n}]$ .

PROPOSITION 5. Let $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ be even integers such that $|p_{i}|\geq 4$ for $i=1$ ,
2, 3, 4. Then $K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))$ is equal to the union 9 defined by

$\bigcup_{x\epsilon Z}\{C[p_{1}, -p_{2},2x+1, -p_{4},p_{3}],$ $C[p_{2}, -p_{1},2x+1, -p_{3},p_{4}]$ ,

$C[p_{1}, -p_{4},2x+1, -p_{2},p_{3}],$ $C[p_{2}, -p_{3},2x+1, -p_{1},p_{4}]$}.
PROOF. Any element of $L\langle\theta(p_{1},p_{2},p_{3},p_{4}))$ is the link which has the diagram as

shown in Fig. 4, where $\alpha$ and $\beta$ are rational numbers and $R_{\gamma}$ is a rational tangle diagram
of type $\gamma$ . We denote this link by $t(\alpha, \beta;p_{1}, p_{2}, p_{3},p_{4})$ . Let $M(\alpha, \beta;p_{1}, p_{2}, p_{3},p_{4})$ be the
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FIGURE 4

double cover of $S^{3}$ branched over $l(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})$ and $V_{1}$ the preimage of $R_{p_{1}}$ in
$M(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})$ .

First we will show that $K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))\subset \mathscr{C}$ . If $l(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})\in K_{2}(\theta(p_{1}$ ,
$p_{2},p_{3},p_{4}))$ , then $M(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})$ is a lens space. Since $\swarrow(\alpha, \beta;0,p_{2},p_{3},p_{4})$ is
two-bridge, $M(\alpha, \beta;0,p_{2},p_{3},p_{4})$ is also a lens space. The latter $M(\alpha, \beta;0,p_{2},p_{3},p_{4})$ is
obtained from the former $M(\alpha, \beta;p_{1}, p_{2}, p_{3}, p_{4})$ by a Dehn surgery along a core of $V_{1}$ .
By Cyclic Surgery Theorem in [1], the closure of $M(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})-V_{1}$ is Seifert
fibered and its base space is either a disk with at most two exceptional points or a
M\"obius band with at most one exceptional point. Therefore, $M(\alpha, \beta;1/0,p_{2},p_{3},p_{4})$ is
either the connected sum of two lens spaces, or a Seifert fibered manifold whose base
space is a 2-sphere with at most three exceptional points, or a Seifert fibered manifold
whose base space is a projective plane with two exceptional points. In particuler, we have

$(*)$ an incompressible separating torus in $M(\alpha, \beta;1/0,p_{2},p_{3},p_{4})$ bounds a twisted
I-bundle over the Klein bottle.

Let $S_{1}$ and $S_{2}$ be spheres in $S^{3}$ which intersect the standard $S^{2}$ as shown in Fig.
5, and let $T_{1}$ and $T_{2}$ be the preimages in $M(\alpha, \beta;1/0,p_{2},p_{3},p_{4})$ of $S_{1}$ and $S_{2}$ respectively.
Both $T_{1}$ and $T_{2}$ are separating tori in $M(\alpha, \beta;1/0,p_{2},p_{3},p_{4})$ . We consider the closures
of the components of $M(\alpha, \beta;1/0,p_{2},p_{3},p_{4})-T_{1}$ , one of them contains the preimage
of $R_{a}$ , it is denoted by $A$ , and the other is denoted by $B$ . If $\alpha$ is an integer or 1/0, then
$T_{1}(=\partial A)$ is compressible in $A$ . If $\alpha$ is not an integer, then $A$ is a Seifert fibered manifold
such that it has two exceptional fibers and one of them is an exceptional fiber of index
$|p_{4}|$ . Then, in particular, $A$ is $\partial$-irreducible and not homeomorphic to a twisted I-bundle
over the Klein bottle. If $\beta=0$ , then $T_{1}(=\partial B)$ is compressible in $B$ . If $ 1/\beta$ is an integer,
then $B$ is a Seifert fibered manifold such that it has two exceptional fibers and one of
them is an exceptional fiber ofindex $|p_{3}|$ . If $ 1/\beta$ is not an integer, then $B$ is a $\partial$-irreducible
Haken manifold which contains a separating essential annulus. Therefore, if $\beta\neq 0$ , then
$B$ is $\partial$-irreducible and not homeomorphic to a twisted I-bundle over the Klein bottle.
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$S_{1}$

FIGURE 5

By $(*)$, if $\beta\neq 0$ , then $\alpha$ is either an integer or 1/0. By the similar argument for $T_{2}$ , if
$\alpha\neq 0$, then $\beta$ is either an integer or 1/0. Thus either at least one of $\alpha$ and $\beta$ is equal to
$0$ or 1/0, or both $\alpha$ and $\beta$ are non-zero integers.

If both $\alpha$ and $\beta$ are non-zero integers, then by the similar argument for $R_{p_{2}}$ , we
have

1 $\alpha|=|\beta|=1$ .

Then $t(1,1;p_{1},p_{2},p_{3},p_{4})$ is a two-component link. Therefore, at least one of $\alpha$ and $\beta$

is equal to $0$ or 1/0, and $\swarrow(\alpha, \beta;p_{1},p_{2},p_{3},p_{4})$ is a two bridge Montesinos knot.
If $\alpha=0$ , then $ 1/\beta$ must be an odd integer $r$ and

$t(0,1/r,p_{1},p_{2},p_{3},p_{4})\cong C[p_{1}, -p_{2}, r, -p_{4},p_{3}]$ .
If $\alpha=1/0$ , then $\beta$ must be an odd integerr and

$\swarrow(1/0, r,p_{1},p_{2},p_{3},p_{4})\cong C[p_{2}, -p_{3}, r, -p_{1},p_{4}]$ .
If $\beta=0$, then $ 1/\alpha$ must be an odd integer $r$ and

$\swarrow(1/r, 0,p_{1},p_{2},p_{3},p_{4})\cong C[p_{2}, -p_{1}, r, -p_{3},p_{4}]$ .
If $\beta=1/0$ , then $\alpha$ must be an odd integerr and

$t(r, 1/0,p_{1},p_{2},p_{3},p_{4})\cong C[p_{1}, -p_{4}, r, -p_{2},p_{3}]$ .
Therefore, we have $ K_{2}(\mathfrak{A}p_{1},p_{2},p_{3},p_{4}))\subset\wp$ .

For any odd integer $r,$ $t(\alpha, \beta,p_{1},p_{2},p_{3},p_{4})$ is an element of $K_{2}(\theta(p_{1},p_{2},p_{3},p_{4})).if$

$\{\alpha, \beta\}$ is equal to $\{0,1/r\}$ or $\{$ 1/0, $r\}$ . Hence, $\wp$ is contained in $K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))$ . $\square $
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Let $k$ be a knot and $\nabla_{k}$ the Conway polynomial of $k$ . When $\nabla_{k}(z)=\sum_{i=0}^{n}c_{i}z^{i}(c_{n}\neq 0)$ ,
we denote $n,$ $c_{n}$ and $c_{2}$ by $\deg k,$ $a(k)$ and $\lambda(k)$ respectively.

LEMMA 6. Let $a_{1},$ $a_{2},$ $a_{3}$ and $a_{4}$ be even integers and $r$ an odd integer. Then

(1) $\nabla_{C[a_{1},a_{2},r,a_{2}.a_{3}]}$

$=T_{a_{1}+a_{4}+r}+\frac{a_{2}z}{2}T_{a_{1}}T_{a_{4}+r}+\frac{a_{3}z}{2}T_{a_{4}}T_{a_{1}+r}+\frac{a_{2}a_{3}z^{2}}{4}T_{a_{1}}T_{a_{4}}T_{r}$ ,

where $T_{s}$ is the Conway polynomial of a (2, s)-torus link oriented as shown in Fig. 6.
Moreover

(2) $\lambda(C[a_{1}, a_{2}, r, a_{3}, a_{4}])=\frac{a_{1}a_{2}+a_{3}a_{4}}{4}+\frac{(a_{1}+a_{4}+r)^{2}-1}{8}$ .

FIGURE 6

PROOF. Equation (1) is proved by induction on $|a_{2}|+|a_{3}$ . We prove only (2).
For an odd integer $s$, let $k_{s}$ be a (2, s)-torus knot, then we have

$\lambda(k_{s})=\frac{s^{2}-1}{8}$ .

For a two-component link $l$ , the coefficient of $z$ of $\nabla_{t}$ is equal to the linking number of
$l$ . By (1), we have (2). $\square $

COROLLARY 7. Let $a_{1},$ $a_{2},$ $a_{3}$ and $a_{4}$ be even integers and $r$ an odd integer. $If|a_{i}|\geq 4$

for $i=1,2,3,4$ and $|a_{1}+a_{4}+r|=1$ , then

(3) $\deg(C[a_{1}, a_{2}, r, a_{3}, a_{4}])=|a_{1}|+|a_{4}|+|r|-1$ .
Moreover, $a(C[a_{1}, a_{2}, r, a_{3}, a_{4}])<0ifandonlyifa_{2}a_{3}<0$ . $\square $

THEOREM 8. Let $p_{1},p_{2},$ $p_{3}$ and $p_{4}$ be even integers such that $|p_{i}|\geq 4$ for $i=1,2$ ,
3, 4 and $p_{1}p_{2}+p_{3}p_{4}\geq p_{1}p_{4}+p_{2}p_{3}$ . The integer $p_{1}p_{2}+p_{3}p_{4}$ is a knot type invariant of
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$\theta(p_{1},p_{2},p_{3},p_{4})$ , and the subset $\Lambda(\theta(p_{1},p_{2},p_{3},p_{4}))$ of $K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))$ defined by

$\{C[p_{1}, -p_{2}, -p_{1}-p_{3}\pm 1, -p_{4},p_{3}], C[p_{2}, -p_{1}, -p_{2}-p_{4}\pm 1, -p_{3},p_{4}]\}$

is also a knot type invariant of $\theta[p_{1},$ $p_{2},p_{3},p_{4}$).

PROOF. By Proposition 8 and (2), we have

$\min\{\lambda(k)|k\in K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))\}=-\frac{p_{1}p_{2}+p_{3}p_{4}}{4}$ .

Therefore, $p_{1}p_{2}+p_{3}p_{4}$ is a knot type invariant of $\theta(p_{1},p_{2},p_{3},p_{4})$ , and the subset of
$K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))$ defined by

$\{k\in K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))|\lambda(k)=-\frac{p_{1}p_{2}+p_{3}p_{4}}{4}\}$

is also a knot type invariant of $\theta(p_{1}, p_{2},p_{3},p_{4})$ . By Proposition 5 and Lemma 6, we ob-
tain

$\Lambda(\theta(p_{1},p_{2},p_{3},p_{4}))=\{k\in K_{2}(\theta(p_{1},p_{2},p_{3},p_{4}))|\lambda(k)=-\frac{p_{1}p_{2}+p_{3}p_{4}}{4}\}$ . $\square $

4. Proof of Theorem 3.

LEMMA 9. Let $p_{1},p_{2},p_{3}$ and $p_{4}$ be even integers such that $|p_{i}|\geq 4$ for $i=1,2,3$ ,
4. Then at least one of the two knots $C[p_{1}, -p_{2}, -p_{1}-p_{3}\pm],$ $-p_{4},p_{3}$] is not
amphicheiral.

$PR\infty F$ . For an amphicheiral two-bridge knot $k$, the writhe of an altemating dia-
gram of $k$ is equal to zero (see [3] and [4]). Since at least one of $C[p_{1},$ $-p_{2},$ $-p_{1}-$

$p_{3}\pm 1,$ $-p_{4},p_{3}$] has no altemating diagram whose writhe is equal to zero, it is not
amphicheiral. $\square $

PROOF OF THEOREM 3. Since $\theta(p_{1},p_{2},p_{3},p_{4})\cong\theta(p_{2},p_{3},p_{4},p_{1})\cong\theta(p_{4},p_{3},p_{2},p_{1})$ ,
the if’ part is clear. We prove the“only if” part. Since $\theta(p_{1},p_{2},p_{3},p_{4})\cong\theta(p_{2},p_{3},p_{4},p_{1})$ ,
we may assume that $p_{1}p_{2}+p_{3}p_{4}\geq p_{1}p_{4}+p_{2}p_{3}$ and $p_{1}>0$ . By Theorem 8, if
$\theta(p_{1},p_{2},p_{3},p_{4})$ is amphicheiral, then

(4) $\Lambda(\theta(p_{1},p_{2},p_{3},p_{4}))=\Lambda(\theta(-p_{1}, -p_{2}, -p_{3}, -p_{4}))$ .
By Lemma 9, for $\epsilon=\pm 1,$ $k=C[p_{1}, -p_{2}, -p_{1}-p_{3}+\epsilon, -p_{4},p_{3}]$ is not amphicheiral.
By (4), $k$ is equivalent to one of three knots in $\Lambda(\theta(-p_{1}, -p_{2}, -p_{3}, -p_{4}))$ :

$k_{0}=C[-p_{1},p_{2},p_{1}+p_{3}+\epsilon,p_{4}, -p_{3}]$ ,

$k_{\epsilon}=C[-p_{2},p_{1},p_{2}+p_{4}+\epsilon,p_{3}, -p_{4}]$ ,
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$k_{-\epsilon}=C[-p_{2},p_{1},p_{2}+p_{4}-\epsilon,p_{3}, -p_{4}]$ .

We need consider following three cases.
Case 1. $k\cong k_{o}$ . By (3), we have

$\deg k=|p_{1}|+|p_{3}|+|p_{1}+p_{3}-\epsilon|-1$ ,

$\deg k_{0}=|p_{1}|+|p_{3}|+|p_{1}+p_{3}+\epsilon|-1$ .

Since $\deg k=\deg k_{0}$ , it follows that $p_{1}+p_{3}=0$ . By (1), we have

$\nabla_{k_{O}}-\nabla_{k}=\frac{z}{2}T_{p_{1}}(T_{p_{1}+\epsilon}+T_{p_{1}-\epsilon}Xp_{2}+p_{4})=0$ .

Therefore $p_{1},$ $p_{2},$ $p_{3}$ and $p_{4}$ satisfy that $p_{1}=-p_{3}$ and $p_{2}=-p_{4}$ .
Case 2. $k\cong k_{\epsilon}$ . If$p_{3}>0$ , then by Corollary 7, $p_{2}$ and $p_{4}$ have the same sign. Since

$\deg k=\deg k_{e}$ , by (3), it follows that

$2(p_{1}+p_{3})-\epsilon=\pm(2(p_{2}+p_{4})+\epsilon)$ .
Since $p_{i}$ is even for $i=1,2,3,4$ , we have

(5) $p_{1}+p_{3}=-p_{2}-p_{4}$ .

Since $a(k)=a(k_{\epsilon})$ , it follows that

(6) $p_{2}p_{4}=p_{1}p_{3}$ .

By (5) and (6), $p_{i},$ $p_{2},$ $p_{3}$ and $p_{4}$ satisfy that either

$p_{1}=-p_{2}$ and $p_{3}=-p_{4}$ , or

$p_{1}=-p_{4}$ and $p_{2}=-p_{3}$ .
If $p_{3}<0$ , then by Corollary 7, $p_{2}p_{4}<0$ . Since $p_{1}p_{2}+p_{3}p_{4}\geq p_{1}p_{4}+p_{2}p_{3}$ , it follows

that $p_{2}>0$ and $p_{4}<0$ . By $\deg k=\deg k_{\epsilon}$ and $a(k)=a(k_{\epsilon})$ , we have either

$\{_{p_{2}p_{4}-2p_{2}=p_{1}p_{3}+2p_{3}}^{2p_{1}-\epsilon=-2p_{4}-\epsilon}$

, or

$\left\{\begin{array}{ll}2p_{3}+\epsilon & =-2p_{2}+\epsilon,\\p_{2}p_{4}-2p & =p_{1}p_{3}+2p_{1}.\end{array}\right.$

Therefore we obtain

$p_{1}=-p_{4}$ and $p_{2}=-p_{3}$ .
Case 3. $k\cong k_{-\epsilon}$ . If $p_{3}>0$ , then by th argument similar to that in Case 2, we have

either
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$p_{1}=p_{2}$ and $p_{3}=p_{4}$ , or

$p_{1}=p_{4}$ and $p_{2}=p_{3}$ .
In both cases, $k$ is amphicheiral. This is a contradiction.

If $p_{3}<0$, then by the argument similar to that in Case 2, we have either

$p_{1}=p_{2}$ , $p_{4}=p_{3}+4$ , $p_{1}>0$ and $p_{4}<0$ , or
$p_{3}=p_{4}$ , $p_{2}=p_{1}+4$ , $p_{1}>0$ and $p_{3}<0$ .

In both cases, $k$ and $k_{-\epsilon}$ have altemating diagrams such that the difference between their
crossing numbers is four. Then Theorem A in Murasugi [3] implies that $k\not\cong k_{-e}$, a
contradiction. Thus Case 3 can not occur. $\square $
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