On Some Branched Surfaces Which Admit Expanding Immersions II

Eijirou HAYAKAWA

Kyoto University
(Communicated by N. Iwahori)

Abstract

Let K be a branched surface whose branch set S is an embedded circle and such that $K \backslash S$ is connected and oriented. We show that K does not admit expanding immersions. Combined with our previous result [3], this implies that among branched surfaces with branch sets single embedded circles, there are only two which admit expanding immersions.

0. Introduction.

In [3], we have studied the existence of expanding immersions for branched surfaces K with branch sets S single embedded circles. But there we restricted ourselves to the case when all connected components of $K \backslash S$ are orientable and their number is two or three. In this paper, we study the remaining case, i.e., the case when $K \backslash S$ is connected. We still assume $K \backslash S$ is an orientable manifold.

Then this type of branched surfaces is constructed from $\hat{K}_{g}^{1}=\Sigma_{g-1}-\left(D^{+} \amalg D^{-}\right)$or $\hat{K}_{g}^{0}=\Sigma_{g-1}-\left(D_{1}^{+} \amalg D_{2}^{+} \amalg D^{-}\right)$as follows, where Σ_{g-1} denotes a Riemann surface of genus $g-1$, and $D^{+}, D_{1}^{+}, D_{2}^{+}$and D^{-}denote disjoint embedded open disks. Let S^{+} and S^{-}be connected components of $\partial \hat{K}_{g}^{1}$, and let S_{1}^{+}, S_{2}^{+}and S^{-}be connected components of $\partial \hat{K}_{g}^{0}$. Let us take a C^{1} immersion $\varphi: S^{+} \rightarrow S^{-}$, whose mapping degree is +2 or -2 with respect to the orientation on S^{+}and S^{-}induced from an orientation of Σ_{g-1}. We identify $x \in S^{+}$with $y \in S^{-}$whenever $\varphi(x)=y$ and glue S^{+}to S^{-}, so that we obtain a C^{1} branched surface from \hat{K}_{g}^{1}. By the identification, using C^{1} diffeomorphisms $\psi_{1}: S_{1}^{+} \rightarrow S^{-}$and $\psi_{2}: S_{2}^{+} \rightarrow S^{-}$, on S_{1}^{+}, S_{2}^{+}and S^{-}, we can construct a branched surface from \hat{K}_{g}^{0} in the same way as above. Ignoring the difference of degrees of attaching maps φ, ψ_{1} and ψ_{2}, we simply denote the former by K_{g}^{1} and the latter by K_{g}^{0}. In fact, we have two topological types for the former, and three types for the latter. We call the image of S_{1}^{+}, S_{2}^{+}and S^{-}, or S^{+}and S^{-}under the above identification the branch set of K_{g}^{0} or K_{g}^{1} respectively.

Our main result is as follows:

Theorem. $\quad C^{1}$ branched surface K_{g}^{v}, with $v=0$ or 1 and $g \geq 1$, does not admit C^{1} expanding immersions.

For definitions of C^{r} branched surfaces and C^{r} expanding immersions, refer to Definition 1 and 2 [3]. Combining this result with the previous one [3], we conclude that in the class of branched surfaces with branch sets single embedded circles, only T^{*} and T_{*} (See [3]) admit expanding immersions.

In $\S 1$, we define a hyperbolic structure on K_{g}^{v}, that is, a Riemannian metric on the tangent space with negative constant curvature. $\S 2$ is devoted to the proof of the theorem. First we show that there exist isometric immersions $\tilde{j}: D \rightarrow \tilde{K}_{g}^{v}$ and $d: \tilde{K}_{g}^{v} \rightarrow D$, where D denotes the Poincaré disk and \tilde{K}_{g}^{v} denotes the universal covering of $K_{\boldsymbol{g}}^{v}$. Suppose that K_{g}^{ν} admits an expanding immersion f. Then the composite $d \circ \tilde{f} \circ \tilde{j}$ is shown to be an expanding quasiconformal map of D, where \tilde{f} denotes a lift of f. In the final lemma, we show that no such maps exist.

The author thanks the referee for pointing out the use of hyperbolic structures. The idea of the proof adopted in this paper is due to him.

1. Hyperbolic structures on $\boldsymbol{K}_{\boldsymbol{g}}^{\boldsymbol{v}}$.

We will define a hyperbolic structure on $\boldsymbol{K}_{\boldsymbol{g}}^{\nu}$. For hyperbolic structures on ordinary surfaces, the readers can refer to [1].

First we deal with K_{g}^{0}. Using the Poincaré disk model, we can define a hyperbolic structure on \hat{K}_{g}^{0} which makes S_{1}^{+}, S_{2}^{+}and S^{-}closed geodesics of the same length. Then choosing ψ_{1} and ψ_{2} as isometries, we obtain a hyperbolic structure on K_{g}^{0}.

Next we consider K_{g}^{1} with $g \geq 2$. In this case, as for K_{g}^{0}, we have a hyperbolic structure on \hat{K}_{g}^{1} such that S^{+}and S^{-}are closed geodesics and $l\left(S^{+}\right)=2 \cdot l\left(S^{-}\right)$, where $l(\cdot)$ denote the length of arcs. Then we choose φ as an isometric immersion, and we can also define a hyperbolic structure on K_{g}^{1}.

Finally we will define a hyperbolic structure on K_{1}^{1}. Consider $D \backslash\{0\}$. The hyperbolic metric $-2|d z| /|z| \log |z|$ is easily seen to be invariant under the mapping $\sigma(z)=z^{2}$. Therefore by pasting two boundaries of $\{z ; 1 / 4 \leq|z| \leq 1 / 2\}$ by σ, one gets a hyperbolic structure on K_{1}^{1}.

Remark. i) Under usual hyperbolic structures on ordinary surfaces, coordinate changes of local charts are orientation preserving isometries on D. But when $\operatorname{deg} \varphi=-2$, ours on K_{g}^{1} have orientation reversing isometries. Also when $\operatorname{deg} \psi_{1}=-1$ and/or $\operatorname{deg} \psi_{2}=-1, K_{g}^{0}$'s admit such ones.
ii) Under the above hyperbolic structures, except K_{1}^{1}, their branch sets are closed geodesics. But in the case of K_{1}^{1}, the branch set is not a geodesic.
iii) We can define a hyperbolic structure on K_{g}^{1} such that there exists a closed geodesic S_{0} intersecting S perpendicularly only at one point.

In this place, as Thurston's developing map [5], we will define an isometric immersion from the universal cover \tilde{K}_{g}^{v} of K_{g}^{v} to the Poincare disk D.

Let $\pi: \widetilde{K}_{g}^{v} \rightarrow K_{g}^{v}$ be the projection. Take $x_{0} \in \tilde{K}_{g}^{v}$ and a sufficiently small neighborhood U_{0} of x_{0}. Set $\bar{U}_{0}=\pi\left(U_{0}\right)$. Then we have an isometric immersion $d_{0}: U_{0} \rightarrow D$ as the composite of a local chart on \bar{U}_{0} and π. For any $y \in \widetilde{K}_{g}^{v}$, take a path γ from x_{0} to y. By analytic continuation of d_{0} along γ, we obtain a map $d_{y}: U_{y} \rightarrow D$, where U_{y} denotes a neighborhood of y. Since \widetilde{K}_{g}^{v} is simply connected, d_{y} does not depend on the choice of a path γ. Hence mapping any $y \in \tilde{K}_{g}^{v}$ to $d_{y}(y)$, we obtain a desired isometric immersion $d: \widetilde{K}_{g}^{v} \rightarrow D$.

2. Proof of the theorem.

We will construct an isometric immersion $j: D \rightarrow K_{g}^{\nu}$.
First we deal with K_{g}^{1}. Recall that there exists a simple closed geodesic S_{0} which is orthogonal to the branch set S. Cut K_{g}^{1} first along S and then along S_{0}. Prepare infinitely many copies of the resultant surface and glue them together so as to obtain a complete surface L. See Figure 1. Clearly there is an isometric immersion of L into K_{g}^{1}. Passing to the universal covering, we get the desired immersion $j: D \rightarrow K_{g}^{1}$.

Figure 1

Next we deal with K_{g}^{0}. We prepare infinitely many copies K_{i} of the hyperbolic surface \hat{K}_{g}^{0}, and glue them to obtain a complete connected hyperbolic surface M as in

Figure 2
Figure 2 so that they satisfy:

1) Each copy K_{i} of \hat{K}_{g}^{0} has a natural embedding $\boldsymbol{t}_{i}: K_{i} \rightarrow M$.
2) M has an isometric immersion $p: M \rightarrow K_{g}^{0}$ such that $p \circ \boldsymbol{l}_{i}: K_{i} \rightarrow K_{g}^{0}$ is the same map as the projection $\hat{K}_{g}^{0} \rightarrow K_{g}^{0}$ up to the identification of K_{i} with \hat{K}_{g}^{0}.
Let $\pi_{M}: D \rightarrow M$ be the universal covering of M. Set $j=p \circ \pi_{M}$. This is the desired one.
Let us continue the proof of the theorem. Suppose for contradiction that K_{g}^{v} admits an expanding immersion f. Let us take a lift $\tilde{j}: D \rightarrow \tilde{K}_{g}^{v}$ of j, and take a lift $\tilde{f}: \tilde{K}_{g}^{v} \rightarrow$ $\widetilde{K}_{\boldsymbol{g}}^{v}$ of f.

Set $F=d \circ \tilde{f} \circ \tilde{j}$. We shall show that F is an expanding quasiconformal map. Since f is an immersion, and since K_{g}^{v} is compact, we have

As d and \tilde{j} are locally isometric, we have

$$
k=\sup _{z \in D} \frac{\sup _{v \in T_{z} D}\|d F(v)\|_{h} /\|v\|_{h}}{\inf _{v \in T_{z} D}\|d F(v)\|_{h} /\|v\|_{h}}<\infty,
$$

where $\|\cdot\|_{h}$ denotes the hyperbolic metric on D. This shows immediately that F is quasiconformal. (For the definition of quasiconformal maps, refer to [2].) Also we know F is a diffeomorphism of D since F is a quasiisometric immersion.

Passing to $f^{\boldsymbol{n}}$ for a sufficiently large integer \boldsymbol{n} in the construction of F, if necessary, we may assume that

$$
\inf _{v \in T D} \frac{\|d F(v)\|_{h}}{\|v\|_{h}}>c>1
$$

Then, to complete the proof, we show the following lemma.
Lemma. The open unit disk D does not admit a k-quasiconformal diffeomorphism φ with the following properties:

1) $\inf _{v \in T D}\|d \varphi(v)\|_{h} /\|v\|_{h}>c>1$.
2) $\varphi(0)=0$.

Proof. Suppose for contradiction that there exists a k-quasiconformal diffeomorphism φ with the properties 1) and 2).

Set $A_{r}=\{z \in D ; \rho(0, z)>r\}$, where ρ is the hyperbolic distance. By the properties 1) and 2), we have $\varphi^{-1}\left(A_{r}\right) \supset A_{c^{-1} r}$ for any $r>0$. Since φ is a k-quasiconformal map, we have the following inequality:

$$
\begin{equation*}
0<\frac{1}{k}<\frac{M\left(A_{r}\right)}{M\left(\varphi^{-1}\left(A_{r}\right)\right)}, \tag{1}
\end{equation*}
$$

where $M(A)$ denotes the modulus of an annulus A. (See $\S 6$ [4] for the definition of the modulus, and refer to Theorem 7.1 [4] for the inequality (1).)

On the other hand, since $\varphi^{-1}\left(A_{r}\right) \supset A_{c^{-1_{r}}}$, we have:

$$
\begin{equation*}
\frac{M\left(A_{r}\right)}{M\left(\varphi^{-1}\left(A_{r}\right)\right)} \leq \frac{M\left(A_{r}\right)}{M\left(A_{c}-1_{r}\right)} . \tag{2}
\end{equation*}
$$

As the hyperbolic distance r is equal to the Euclidean distance $\left(e^{r}-1\right) /\left(e^{r}+1\right)$, we have:

$$
M\left(A_{r}\right)=\log \frac{e^{r}+1}{e^{r}-1} \quad \text { and } \quad M\left(A_{c^{-1}}\right)=\log \frac{e^{c^{-1} r}+1}{e^{c^{-1} r}-1} .
$$

Hence easily we show the right-hand side of (2) tends to 0 as r tends to infinity. But this contradicts (1).

Since we can choose the map d such that $d(\tilde{f} \circ \tilde{j}(0))=0$, we may assume $F(0)=0$. Then F has the properties 1) and 2). Hence Lemma implies that f cannot be an expanding immersion. This completes the proof.

References

[1] A. Casson and S. Bleiler, Automorphisms of Surfaces after Nielsen and Thurston, London Math. Soc. Student Texts, 9 (1988).
[2] W. Harvey, Discrete Groups and Automorphic Functions, Chap. 4, Academic Press (1977).
[3] E. Hayakawa, On some branched surfaces which admit expanding immersions, Tokyo J. Math., 13 (1990), 63-72.
[4] O. Lehto and K. Virtanen, Quasiconformal Mappings in the Plane, Springer (1973).
[5] W. Thurston, Geometry and topology of 3-manifolds, preprint, Princeton Univ.

Present Address:

Department of Mathematics, Kyoto University
Oiwake-cho, Kitashirakawa, Sakyō-ku, Kyoto 606, Japan

