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Abstract. Let $K$ be a branched surface whose branch set $S$ is an embedded circle and such that $K\backslash S$

is connected and oriented. We show that $K$ does not admit expanding immersions. Combined with our
previous result [3], this implies that among branched surfaces with branch sets single embedded circles, there
are only two which admit expanding immersions.

0. Introduction.

In [3], we have studied the existence of expanding immersions for branched sur-
faces $K$ with branch sets $S$ single embedded circles. But there we restricted ourselves
to the case when all connected components of $K\backslash S$ are orientable and their number
is two or three. In this paper, we study the remaining case, i.e., the case when $K\backslash S$ is
connected. We still assume $K\backslash S$ is an orientable manifold.

Then this type of branched surfaces is constructed from $\hat{K}_{g}^{1}=\Sigma_{g-1}-(B^{+}\coprod B^{-})$ or
$\hat{K}_{g}^{0}=\Sigma_{g-1}-(D_{1}^{Q}+\coprod\mathring{D}_{2}^{+}\coprod B^{-})$ as follows, where $\Sigma_{g-1}$ denotes a Riemann surface of
genus $g-1$ , and $B^{+},$ $D_{1}^{o}+,$ $D_{2}^{o}+$ and $p-denote$ disjoint embedded open disks. Let $S^{+}$

and $S^{-}$ be connected components of $\partial\hat{K}_{g}^{1}$ , and let $S_{1}^{+},$ $S_{2}^{+}$ and $S^{-}$ be connected
components of $\partial\hat{K}_{g}^{0}$ . Let us take a $C^{1}$ immersion $\varphi:S^{+}\rightarrow S^{-}$ , whose mapping degree
is $+2$ or-2 with respect to the orientation on $S^{+}$ and $S^{-}$ induced from an orientation
of $\Sigma_{g-1}$ . We identify $x\in S^{+}$ with $y\in S^{-}$ whenever $\varphi(x)=y$ and glue $S^{+}$ to $S^{-}$ , so that
we obtain a $C^{1}$ branched surface from $\hat{K}_{g}^{1}$ . By the identification, using $C^{1}$

diffeomorphisms $\psi_{1}$ : $S_{1}^{+}\rightarrow S^{-}$ and $\psi_{2}$ : $S_{2}^{+}\rightarrow S^{-}$ , on $S_{1}^{+},$ $S_{2}^{+}$ and $S^{-}$ , we can construct
a branched surface from $\hat{K}_{g}^{0}$ in the same way as above. Ignoring the difference of degrees
of attaching maps $\varphi,$

$\psi_{1}$ and $\psi_{2}$ , we simply denote the former by $K_{g}^{1}$ and the latter by
$K_{g}^{0}$ . In fact, we have two topological types for the former, and three types for the latter.
We call the image of $S_{1}^{+},$ $S_{2}^{+}$ and $S^{-}$ , or $S^{+}$ and $S^{-}$ under the above identification the
branch set of $K_{g}^{0}$ or $K_{g}^{1}$ respectively.

Our main result is as follows:
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THEOREM. $C^{1}$ branched surface $K_{g}^{v}$ , with $v=0$ or 1 and $g\geq 1$ , does not admit $C^{1}$

expanding immersions.

For definitions of $C$‘ branched surfaces and $C$‘ expanding immersions, refer to
Definition 1 and 2 [3]. Combining this result with the previous one [3], we conclude
that in the class of branched surfaces with branch sets single embedded circles, only $T^{*}$

and $T_{*}$ (See [3]) admit expanding immersions.
In \S 1, we define a hyperbolic structure on $K_{g}^{v}$ , that is, a Riemannian metric on

the tangent space with negative constant curvature. \S 2 is devoted to the proof of the
theorem. First we show that there exist isometric immersions $f:D\rightarrow\tilde{K}_{g}^{v}$ and $d:\tilde{K}_{g}^{v}\rightarrow D$ ,

where $D$ denotes the Poincar\’e disk and $\tilde{K}_{g}^{v}$ denotes the universal covering of $K_{g}^{v}$ .
Suppose that $K_{g}^{v}$ admits an expanding immersion $f$ . Then the composite $d\circ f\circ f$ is
shown to be an expanding quasiconformal map of $D$ , where $f$ denotes a lift of $f$ . In
the final lemma, we show that no such maps exist.

The author thanks the referee for pointing out the use of hyperbolic structures.
The idea of the proof adopted in this paper is due to him.

1. Hyperbolic structures on $K_{g}^{v}$ .
We will define a hyperbolic structure on $K_{g}^{v}$ . For hyperbolic structures on ordinary

surfaces, the readers can refer to [1].
First we deal with $K_{g}^{0}$ . Using the Poincar\’e disk model, we can define a hyperbolic

structure on $\hat{K}_{g}^{0}$ which makes $S_{1}^{+},$ $S_{2}^{+}$ and $S^{-}$ closed geodesics of the same length. Then
choosing $\psi_{1}$ and $\psi_{2}$ as isometries, we obtain a hyperbolic structure on $K_{g}^{0}$ .

Next we consider $K_{g}^{1}$ with $g\geq 2$ . In this case, as for $K_{g}^{O}$ , we have a hyperbolic
structure on $\hat{K}_{g}^{1}$ such that $S^{+}$ and $S^{-}$ are closed geodesics and $l(S^{+})=2\cdot l(S^{-})$ , where
$l(\cdot)$ denote the length of arcs. Then we choose $\varphi$ as an isometric immersion, and we
can also define a hyperbolic structure on $K_{g}^{1}$ .

Finally we will define a hyperbolic structure on $K_{1}^{1}$ . Consider $D\backslash \{0\}$ . The hyperbol-
ic metric $-2|dz|/|z|\log|z|$ is easily seen to be invariant under the mapping $\sigma(z)=z^{2}$ .
Therefore by pasting two boundaries of $\{z;1/4\leq|z|\leq 1/2\}$ by $\sigma$, one gets a hyper-
bolic structure on $K_{1}^{1}$ .

REMARK. i) Under usual hyperbolic structures on ordinary surfaces, coordinate
changes oflocal charts are orientation preserving isometries on $D$ . But when $\deg\varphi=-2$ ,
ours on $K_{g}^{1}$ have orientation reversing isometries. Also when $\deg\psi_{1}=-1and/or$

$\deg\psi_{2}=-1,$ $K_{g}^{0}’ s$ admit such ones.
ii) Under the above hyperbolic structures, except $K_{1}^{1}$ , their branch sets are closed

geodesics. But in the case of $K_{1}^{1}$ , the branch set is not a geodesic.
iii) We can define a hyperbolic structure on $K_{g}^{1}$ such that there exists a closed

geodesic $S_{O}$ intersecting $S$ perpendicularly only at one point.
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In this place, as Thurston’s developing map [5], we will define an isometric
immersion from the universal cover $\tilde{K}_{g}^{v}$ of $K_{g}^{v}$ to the Poincar\’e disk $D$ .

Let $\pi:\tilde{K}_{g}^{v}\rightarrow K_{g}^{v}$ be the projection. Take $x_{0}\in\tilde{K}_{g}^{v}$ and a sufficiently small neighborhood
$U_{0}$ of $x_{0}$ . Set $\overline{U}_{0}=\pi(U_{0})$ . Then we have an isometric immersion $d_{0}$ : $U_{0}\rightarrow D$ as the
composite of a local chart on $\overline{U}_{0}$ and $\pi$ . For any $y\in\tilde{K}_{g}^{v}$ , take a path $\gamma$ from $x_{0}$ to $y$ .
By analytic continuation of $d_{0}$ along $\gamma$ , we obtain a map $d_{y}$ : $U_{y}\rightarrow D$ , where $U_{y}$ denotes
a neighborhood of $y$ . Since $\tilde{K}_{g}^{v}$ is simply connected, $d_{y}$ does not depend on the choice
of a path $\gamma$ . Hence mapping any $y\in\tilde{K}_{g}^{v}$ to $d_{y}(y)$ , we obtain a desired isometric immersion
$d:\tilde{K}_{g}^{v}\rightarrow D$ .

2. Proof of the theorem.

We will construct an isometric immersion $j:D\rightarrow K_{g}^{v}$ .
First we deal with $K_{g}^{1}$ . Recall that there exists a simple closed geodesic $S_{O}$ which

is orthogonal to the branch set $S$ . Cut $K_{g}^{1}$ first along $S$ and then along $S_{O}$ . Prepare
infinitely many copies of the resultant surface and glue them together so as to obtain
a complete surface $L$ . See Figure 1. Clearly there is an isometric immersion of $L$ into
$K_{g}^{1}$ . Passing to the universal covering, we get the desired immersion $j:D\rightarrow K_{g}^{1}$ .

$\nearrow$

FIGURE 1

Next we deal with $K_{g}^{0}$ . We prepare infinitely many copies $K_{i}$ of the hyperbolic
surface $\hat{K}_{g}^{0}$ , and glue them to obtain a complete connected hyperbolic surface $M$ as in
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FIGURE 2

Figure 2 so that they satisfy:
1) Each copy $K_{i}$ of $\hat{K}_{g}^{O}$ has a natural embedding $\iota_{i}$ ; $K_{i}\rightarrow M$.
2) $M$ has an isometric immersion $p:M\rightarrow K_{g}^{0}$ such that $p\circ\iota_{i}$ : $K_{i}\rightarrow K_{g}^{0}$ is the same map

as the projection $\hat{K}_{g}^{O}\rightarrow K_{l}^{O}$ up to the identification of $K_{i}$ with $\hat{K}_{g}^{0}$ .
Let $\pi_{M}$ ; $D\rightarrow M$ be the universal covering of $M$. Set $j=p\circ\pi_{M}$ . This is the desired one.

Let us continue the proof of the theorem. Suppose for contradiction that $K_{g}^{v}$ ad-
mits an expanding immersion $f$ . Let us take a $lift\tilde{j}:D\rightarrow\tilde{K}_{g}^{v}$ ofj, and take alift $ f:\tilde{K}_{g}^{v}\rightarrow$

$\tilde{K}_{g}^{v}$ of $f$ .
Set $F=d\circ f\circ\tilde{j.}$ We shall show that $F$ is an expanding quasiconformal map. Since

$f$ is an immersion, and since $K_{g}^{v}$ is compact, we have

$ k=\sup_{xeK_{g}^{V}}\frac{\sup_{veT_{\approx}K_{l}^{v}}\Vert df(v)||/\Vert v\Vert}{\inf_{veT_{x}K_{g}^{V}}\Vert df(v)||/\Vert v\Vert}<\infty$ .

As $d$ and $f$are locally isometric, we have

$ k=\sup_{zeD}\frac{\sup_{veT_{*}D}\Vert dF(v)||_{\hslash}/||v\Vert_{\hslash}}{\inf_{veT_{z}D}\Vert dF(v)||_{h}/||v\Vert_{h}}<\infty$ ,

where $\Vert\cdot\Vert_{\hslash}$ denotes the hyperbolic metric on $D$ . This shows immediately that $F$ is
quasiconformal. (For the definition ofquasiconformal maps, refer to [2].) Also we know
$F$ is a diffeomorphism of $D$ since $F$ is a quasiisometric immersion.

Passing to $f^{n}$ for a sufficiently large integer $n$ in the construction of $F$, if necessary,
we may assume that
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$\inf_{v\in TD}\frac{\Vert dF(v)\Vert_{h}}{||v||_{h}}>c>1$ .

Then, to complete the proof, we show the following lemma.

LEMMA. The open unit disk $D$ does not admit a k-quasiconformal $diffeomorph\dot{i}m$

$\varphi$ with the following properties:
1) $\inf_{veTD}\Vert d\varphi(v)\Vert_{h}/\Vert v\Vert_{\hslash}>c>1$ .

2) $\varphi(0)=0$ .
PROOF. Suppose for contradiction that there exists a k-quasiconformal dif-

feomorphism $\varphi$ with the properties 1) and 2).
Set $A_{r}=\{z\in D;\rho(0, z)>r\}$ , where $\rho$ is the hyperbolic distance. By the properties

1) and 2), we have $\varphi^{-1}(A_{r})\supset A_{c^{-1}}$ for any $r>0$ . Since $\varphi$ is a k-quasiconformal map,
we have the following inequality:

$0<\frac{1}{k}<\frac{M(A_{r})}{M(\varphi^{-1}(A_{r}))}$ , (1)

where $M(A)$ denotes the modulus of an annulus A. (See \S 6 [4] for the definition of
the modulus, and refer to Theorem 7.1 [4] for the inequality (1).)

On the other hand, since $\varphi^{-1}(A_{r})\supset A_{c^{-1}r}$, we have:

$\frac{M(A_{r})}{M(\varphi^{-1}(A_{r}))}\leq\frac{M(A_{r})}{M(A_{c^{-1}r})}$ . (2)

As the hyperbolic distanoe $r$ is equal to the Euclidean distance $(e^{r}-1)/(e^{r}+1)$ , we have:

$M(A_{r})=\log\frac{l+1}{e-1}$ and $M(A_{\iota^{-1}r})=\log\frac{f^{-1}r+1}{e^{c^{-1}r}-1}$ .

Hence easily we show the right-hand side of (2) tends to $0$ as $r$ tends to infinity. But
this contradicts (1).

Since we can choose the map $d$ such that $d(f\circ j\tilde{(}0))=0$ , we may assume $F(O)=0$ .
Then $F$ has the properties 1) and 2). Hence Lemma implies that $f$ cannot be an expand-
ing immersion. This completes the proof.
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