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1. M. Riesz proved the so-called convexity theorem between the Riesz means of
different orders which was subsequently generalized by several authors. Our purpose
here is to give an ultimate form to this theorem. In particular, the main idea in L. S.
Bosanquet [1] lies in “translating” the situation so as to be covered by the original M.
Riesz theorem. Since there is no convenient ‘““translation” in our case, we are forced to
meet this difficulty (case (iii)). The proof is completed by repeated “backward shifts”
as in L. S. Bosanquet [1].

To state our results we need the following standard notations.

Let Y a, be a given infinite series and let {4,} be an increasing sequence of positive
numbers tending to co. We define, for x satisfying 4, =x<4,.,, 4 Ax)=> 1osx Qv
Furthermore, let -

A¥(x)=k J x(x — 0 tAndt= Y, (x—4,)a,, k>0.
0

AvEX

We here define A%(x)=A;(x), and if x<l,, 44(x)=0 for every k20. C(x)=x""A}(x)
is called the Riesz mean of order k and type A of the series Y a,, while 4%(x) is called
the Riesz sum of the order k and type A of that series. If lim,_, ., C5(x)=s exists and is
finite, we say that the series is summable by Riesz mean of order k and type 4, or simply
summable (R, 4, k), to the sum s. Let b,, B;(x), B%(x) be defined as follows:

bu=Iuy, Bix)=2 Aa,, (=X<lnsi),

BYx)=Y (x—AYha,, (k>0, 4, <X<lp.1).
=0

v

We then have
(1.1) BY(x)=xA%(x)— A5 (x) .
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We omit the suffix A in the sequel since no confusion will arise.

2. The author [6] proved the following theorem.

THEOREM A. Let V(x) and W(x) be positive functions defined for x>0 such that
(1) x*W(x) is non-decreasing for some o, 0<a <1,
(i) xf V(x) is non-decreasing for some f, =0,
(iii) {W(x)/V(x)}'°=O(x) for some fixed 6>0.
Then the two extremity conditions
A%x)=o(W(x))
A(x)=O(V ()

together imply, for intermediate y, 0 <y <39,

AY(x)=o(V(x)' P W (x)1/?) .

This theorem is a generalization of Sunouchi [7] and Bosanquet [1], Theorem A
reduces to Riesz convexity theorem [5] by deleting the condition (iii) and putting
a=B=0 (see [6: Theorem 1]). The following Theorem I is an extension of Theorem A
with a=0. In Theorem A with «=0, the condition (ii) shows that x? V(x) is a
non-decreasing function. Theorem I is a convexity theorem for the class of ¥(x) with
the condition (2.1) (ii) weaker than (ii) in Theorem A.

THEOREM 1. Let V(x) and W(x) be positive functions defined for x>0 such that

(i) WI(x) is non-decreasing,
2.1 (ii) there exist constants H (> 1) and n (0 <n<1) such that
0<x—x"<nx implies V(x')/V(x)< H,
(iii) (W(x)/V(x))'°=O(x) for some fixed > 0.

Then the two extremity conditions

(2.2) | A%(x)=o(W(x))

(2.3) A(x)=0(V(x))
together imply, for intermediate y, 0<y <4,

(2.4) A'(x)=o(V(x)' " W(x)'1%) .

Rangachari’s theorem [4], which treats Cesaro sums, holds for 0 <8< 1, while our
Theorem I holds for all §>0, as will be proved in Section 4. Using Theorem I, we prove
the following generalization of Theorem A, whose proof will be given in Section 5.

THEOREM II. Let V(x) and W(x) be positive functions defined for x>0 such that
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(i) x*W(x) is non-decreasing for some o, 0<a <1,

(ii) there exist constants H (>1) and n (0<n<1) such that
0<x—x'<nx implies V(x')/V(x)<H,

(ii) {W(x)/V(x)}°=O(x) for some fixed 6> 0.

Then the two extremity conditions

2.5)

(2.6 A%x)=o(W(x))

2.7 A(x)=0(V(x))
together imply, for intermediate y, 0 <y <9,

(2.8) AY(x)=o(V(x)! ~"°W(x)""%) .

3. Lemmas.

The following lemmas are needed for the proof of the above theorems.

LEMMA A ([2]). Let us write, for 0<I<1,0<&<x, k20,

TR+ (5
giilé, x)————_F(k+ DI Jl) (x—1) "1 A4%o)dt .
Then A**(x)=o(W(x)) implies
(.1 giné, X)=o(W(x))  uniformly in &.
LemMaA B ([2]). For k=0, I>0 we have
wi1pn TE+IFD) jx N1k
(3.2) A (x)—————l"(k+ DI e (x—0' " 1A4"(n)dt .

We also need “backward difference of a function F(x) of order m and step 4 (>0)”
defined as follows:

m
J

(3.3) s =r,  amr= 5 (" e,

where m is a positive integer. For fractional «, 0 <a<1, put

x

(3.4 A“_,,F(x)=ocj

x—

(x—0)* " *R¥)dt
h

and generally for §=m+a, 4% ,F(x)= 4" (4% ,F(x)).

Lemma C ([2]). If h>0, m is a positive integer, r>0 and 0= f <1, then
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r(y+1)
I'y+m+1)

x 1 tm-1
+A"_,,( f dt, j dt, - - j‘ (A'(x)—A'(t,,.))dt,,,).
x—h ti—h tm-1—h

4. Proof of Theorem 1.

(3.5) BB 47 () = A™ L8 4T m(x)

From (2.1) (iii), there exists a constant H’> 0 such that
(W(x)/V(x)'°<H'x (x>0).

Given £>0 such that ¢'?H’ <n, choose x, by Lemma A, in such a way that, when
0<I<1 and k=0,

4.1) lg1.:(&, x) | <eW(x) for x>x, and O0<¢=x.
We choose x’ so that
4.2 x—x"=(EW(x)/V(x)'°.

Then x'=x—(EW(x)/V(x))}*>x(1 —ePH)>x(1—n)>0 and 0<x—x'<e’H'x<nx,
so from (2.1) (ii), V(x')< HV(x) holds.
Case (i) 0<é=1. We write

AV(x)=y( Jx +.r)(x—t)7“1A(t)dt=J1 +J,, say .
0 x’
By (2.1) (i), (2.3) and (4.2) we have

4.3) | /2] =|v Jx(x—t)"lA(t)dt =yV(x)

f (x—2)"" dt

< V(xNx—x") =P V(x)! ~"PW(x)"® .

By the second mean-value theorem, for some u, O0<u=<x’,

J, =7 j‘x' (x—0 AWt =y(x—x")* 2 Jw (x—0° 2 A(p)dt
0 u

=p(x—x')" "( Jw — J u)(x — 1)’ A(0)dt
0 )

=(y/0)x—x") ~%gs,0(x", X)—g5,0(u; X)) -
By (4.1) and (4.2), we get
4.4) | Ty | <2(p/8)e = V(W (x)/ V(x))?~ e W (x)
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=20/0)"V (9! W
Since ¢ is arbitrary, (4.3) and (4.4) together imply
4.5) AY(x)=o(V(x)* ~"PW(x)"'%) as x—00 .

Case (i) 6>1 and y, 0<y <4, is an integer. Put d=p+ B, where p is the integral
part of 6. We prove our assertion by induction on 7. Since we are interested in the
behavior of A”(x) for large x, we may confine ourselves to x large enough, and the
indication ‘““as x—00” is often omitted.

Let us begin with the case 0< f < 1. First assume that

(4.6) |47 Y(x)| <~ DRy (x)t— 0~ DI (x) ~ 1)/6.1)y ,

where D,=(1+H)T(y)2**(p+ 1" (+1)/[(B+p+1). Since D;>1, from (2.3) we
have (the case y=1 in (4.6))

4.7) | A(x)| <D V(x) .
From (4.6) and (4.2) we have

4.8) |A“’(x)-—A"(x’)|=‘y< Jx—jx )Ay_l(t)dt
0 0

évj | A”~(0) |t

é v(x _ x/)(e(v —1)/6 V(x)l —(y—1)/o W(x)(y -1)/8, Dy
<ye"V(x)t ~¥° W(x)"'®-D
By (3.5) with m=p—7y, we obtain, at least for y<p,

ry+1)
I'(p+1)

+45 ( j dt, J j N (A”(x)—A"(tm))dtm
tm-1—h

=IL+1,, sa
By (3.4) and (3.3), we have

I'y+1)
I'(p+1)
_I'y+1)
I"(p+1)

(4.9) B8 4(x) = AP35 AP(x)

AP 8 4P(x)

1=

— B J (x—f~! Z (—1)’< )A"(t—Jh)dt




-
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_T(y+1) x—Jh ) _1
—jh— AP(u)d,
T +1)BZ( ( j )L_ww.(x Jh— ™ A%

r(y+1)r(ﬁ+1)z(' ( v)
I'(p+B+1) j=o J

x {gg p(x—jh, x —jh) —gg (x—(j+ 1)h, x—jh)} .
Thus each term constituting 7, does not exceed in absolute value
' r(y+1)r(ﬂ+1)(p—y)
r'(p+p+1) \ j
X {1 gp,)(x —jh, x—jh) | +1gp ,(x—(j+ 1h, x—jh)|} .
Let x satisfy (y+ 1)x/(p+ 1)>x,. For j=0,1, - -+, p—y—1 we have

(4.10)

+Dx (p+yx’ (G+Dx_

x—jh2x—(p—ph= >
J (7=2) p+1 p+1 p+1

Hence, basing on (4.1) and (2.1) (i), we see

4.11) [ gp,plx—(j+ Dh, x—jh)| <eW(x)
and
4.12) | 9p,p(x —jh, x —jh) | =| A%(x —jh) | <eW(x—jh) <eW(x) .
1 Observing (4.10) we have by (4.11) and (4.12)
1 TG+DrB+1),, ..
} (4.13) |1 | < Tp+B+1) 2 eW(x)
<F(y+ nNrp+ 1)21,+1 e W(x).
I'(p+p+1)
By (4.8), (3.4), (2.1) (i) and (2.1) (ii), we have
(4.14) I,= A% (J dt1j f B (AY(x)— A(t,))dt,,
| tm-1—h
| =A"_h(f dt1f dt,- - f (A"(xX)—AN(x—t,—t,— - -+ —1,))dt,,
; (0] (4] o

éﬂr (x—u)”’1<jhdt1 fhdtz"‘fhl(*)ldl".)du (m=p—vy)
~ Jx—h (V] (1] (]

(where the abbreviated expression (*) designates)
AW)—Au—t,—t,— - —t,)
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< Bye?’h? 7D, j (x—uf "1V (x) W(x)"°du

x—h
< H~ v/é.},evlﬁhp—v +BD7 V(x)1 -/ W(x)vlé i
Hence, by (4.9), (4.13) and (4.14) we have

ry+ 1).2p+ 1h—(p—v+ﬁ).p(/3+ l)eW(x)
I(p+p+1) '

4 e"SHL Y3y DV (x)! T W (%))
<yD (14 H ")V (x)t ~ W (x)" .

(4.15) | A%(x) | <

Thus we have the following inequality:
(4.16) | A"(x) | <D, &0 + HY ) P(x) W (x)"° .

This is established, inductively, for y=1,2, - -+, p—1. The case y=p is treated, without
appealing to (3.5), by direct application of (3.4); the computation is much the same as
the proof of (4.16) and may be left to the reader. Thus we have seen

4.17) A7(x)=o(V(x)! """ W(x)"?) .
Next consider the case f=0. We make use of induction on y. Assume that
(4.18) |Av—l(x)|<Eyg(v—1)/pV(x)1~(y—1)/aW(x)(v—1)/a

where E,=I(y)1+H)"2(p+17/T'(p+ 1). Since we see evidently that E,; >1, we have
from (2.3)

(4.19) | A(x) | < E V(%) .
From (4.18) and (4.2),

(4.20) | A7(x)— A"(x") | = l y( r - r)Av— Y(f)dt
0 0

évf | A7) |dt

<p(x—x")e? T VPV (x)l O VP (x)0 - P E,
= ygv/p V( x)l VPR x)r/p . Ey .
Since m=p—7y>0 now, from (3.5) we obtain

r'y+1)

4.21) hP=7 A7(x) = o)

AP35 AP(x)
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X 11 tm—1
+f dtl .[ dtz ° 'J‘ (Ay(x)_Ay(tm))dtm
x—h ti—h t

m—l‘h
=I3+I4, Say .
By (3.3) we have
I'y+1)rg? Py
(4.22 I =| —14( AP(x — jh
) |13 F(p+1)j§0( ) ; (x—jh)
SI(y+1)-(2°77/[(p+ 1)) | AP(x—jh)| .
Let x be such that (y+ 1)x/(p+ 1)>x,, then for j=0, 1,2, - - -, p—y, we see

DX (=X’ Gt Dx

x—jh=x—(p— = Xo -
¢ (p p+1  p+1 ~ p+1 = 7°
Hence, for (y+ 1)x/(p+1)>x,, by (4.1) and (2.1) (i), we have
(4.23) | AP(x —jh) | <eW(x—jh)<eW(x) .
Thus an upper bound for | I; | is obtained from (4.22) and (4.23):
2P
4.24 L<I'(y+1 eW(x).
) | 15| (V% m )
On the other hand, by (4.20), (2.1) (i) and (2.1) (ii) we have
*x ty tm-1
(4.25) 14 = dtl J dt2 ° 'f (A‘y(x)—Av(tm))dtm
Jx—nh ti—h tm-1—h
~h h h
=\ dt J dt,--- f (A" (x)—A(x—t;—t,— - - - —1t,))dt,,
Jo 0 V)
rh h h
= dt;f d’z"‘f | A7(x)— A" (x—t, —t,— - - - —1,)|dt,,
J O o o
_S_'yh""ye”/” V(x)l —v/pW(x)r/p. Ey .
Combining the estimates of I, (4.24), and I,, (4.25), we obtain
4 o
(4.26) | Ax) | < T(y+ 1)2—-h‘“’””s Wi(x)+e"?y-E, - V(x)! ""‘"W(x)’/"

I'(p+1)
< 2), Eygv/p V( x)l =y/p W( x)v/p
< Ey +1 evp V( x)l —vip W(x)"/” .

Thus, by induction, (4.26) holds for y=1, 2, - - -, p—1. Since ¢ can be taken arbitrarily
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small, this means ,
(4.27) AY(x)=o(V(x)! ~"PW(x)"'P) as x—o00.

Case (iii) 6>1 and 0<y<4 but y is not an integer. Let 6=p+ f where p is the
integral part of 5. We begin with the subcase 0<f < 1. By Lemma B, we obtain

-1 —ij —B—14p-1
(4.28) A= | A |
_T@+B ([, [T\ pp-1 401
‘r(p)r(ﬂ)qo +L>(x U

=K;+K,, say .
Replacing 7y in (4.16) by p—1, we have

(4.29) |A""(x)l<DI,£"’"”’"V(x)l“"‘”/“I/I.’(x)(”'“/‘s .
This gives
I'(p+ x - -
|K2|§F((—;’)—F%f (x— 01| AP~ 1)
(p—1)/5 x
S Df (= 0P 1V () =T IOR (P VP
14 x’
By (2.1) (i), (2.1) (ii) and (4.2) we have
(p—1)/5
*30) el STl D, V(! e W ) =
< ri(?}j;g)ﬁ g0 1)/"DPV(x)1 —@- DRy (x) @108
4
Since ¢ is arbitrary, we have
(4.31) K, =o(V(x)! ~@~ DB (x)@-10e)
As to K, an integration by parts shows
_ I(p+h)

1

=" x—0f rAD]E _l.r —t”'zA"tdt}.'
' F(p)l"(ﬂ)’p{[(x fFTrAMIG +(B—-1) . (x— 2 ()

Writing
= L(pj_ﬁl_ and T ﬂ -1
r(pr)-p

1

we have
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K =T, (x—x"P~ aP(x') + T,- L PFTB+ 1) f" (x;‘)ﬁ;_l AP(3)dt .
R

I'(p+1)I(p)
By the second mean-value theorem, for some v, O<v, =x/,
_ I'(p+B+1) f"' _
432) |K|ET - (x—x")Y"YAP(x)|+|T," — 0P~ 1 AP(1)de
(432) |K\ ST (x—xY " A(x)|+| T, o+ DB —x) )., (x—2f (?)

=J3+J,, say .
Replécing y in (4.16) by p, we have
(4.33) | AP(x) | <D, ., 1"V (x)* ~ PP W (x)Pl® .
(4.2) and (4.33) together imply
J3<Ty D, (eW(x)/V(x))f~V0ePRY (x")1 PR (x"yPIS
Thus, (2.1) (i) and (2.1) (ii) yield

(4.34) J3<T D, H® PP DBy (5)1 == D (x)@=1)/3

On the other hand, (4.2) and (4.1) give

(4.35) Jo <2T,e@~VBY (x)L ~O- Vg ()= 1)/3
Combining (4.34) and (4.35) we observe that

(4.36) | Ky | <(Ty D, H® PP 4 2T,)e~ DRy (x)1 ~@~ DIy (x)o- 18
Since ¢ is arbitrary, this implies

4.37) Ky =o(V(x)! ~@- D (x)6~ 1)) as x—o.

By (4.28), (4.31) and (4.37), we have

(4.38) A7) = oV (x) = IR ()0 1)

Now the hypotheses of Theorem I with =1 are satisfied with
A%~ 1(x) in place of A(x) and
V(x)! @~ LR (x)@~/ in place of V(x),
W(x) being unchanged .

In fact,

W(x)/{V(x)! ~C~ W (x)¢ D = {W(x)/V (x)} ' = O(x) ,
and, by (2.1) (ii), for x’ satisfying 0<x—x'<nx (O<n<1),

V(xl)l—(6—1)/6W(xl)(6—1)/6 V(x') 1/0 W(xl) 1-1/6 18
Vi)' O DB ()@ D =(V(x)) (W(x)) <HT
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Therefore, by the case (i) (5 =1) already established, for y satisfying 6 —1 <y <9,
(4_39) AY(x) = o((V(x)l —@6- 1)/6W(x)(6~ 1)/6)1 -(y—@—-1) W(x)y_("_ 1))
= o(V (%)L "W (x)"") .

Since in our present case y is not an integer, it can be written as y=r+o>1, where r
is the integral part of y. By Lemma B,

y—1 ____F(""'O') fx _po—1 4r—1
(4.40) A" (x) T @) J, (x—0° " tA"" Y()dt
_F(r+6) ol * _ Ao~ 1 4r—1
_r(r)r(a)“ 0 *J x}(x Ao
=M,+M,, say .

Let us consider M, first. Replacing y in (4.16) by r—1, we have
(4.41) | A" 1(x) | < D,e" = DRV (x)1 ¢~ LSy (x)r— LIS
From (4.41), the following inequality is obtained:

I'(r+o0)
I'(nI(o)

_I(r+o)e"~ 1"
"~ I'(AI'(o)

Since W(x) is non-decreasing and V(¢) < HV(x) by (2.1) (ii),

| M,|=

Jx(x— 0’ AT (D) |dr

D, j ) i 4 Rl 14 ) M

F(r + O.)Hl —(r— 1)/68(1'— 1)/0
r'(nro)
I"(r + O')Hl —(r— 1)/68(1'— 1)/o
- ol'(r)[ (o)

|M,|< D, Vi)'~ W (VP f (e—1)~tde

D, V(x)t =" DR () VB (x —x')" .

From the choice of x’ (see (4.2)), this gives

F(r + O')Hl —(r— 1)/68(1'— 1)/é

(4.42) | M| = oTT©)

Dr' V(x)l —=(y—1)/9 W(x)(v— v/

Since ¢ is arbitrary, (4.42) means
(4.43) M, =o( V(x)l -(y—1)/é W(x)“’“ 1)/6) .

Next, we consider the term M, in (4.40), separating the two subcases: p<y <9 and
o—l<y<p.
Let y satisfy p<y<J. Integrating by parts, we see
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_I'(r+o)
T (I (o)r

1

{[(x— H° 1A (D)5 +(6—1) J‘x’ (x—0°" 2A’(t)dt} .
o

Write, for the sake of brevity,

_ I'(r+o0) and T4=I‘(r+a)l"(6—r)(a—1)_
r(nro)r I'e)re+1)

3

We have

rG+1)
T+ 1Dre—r)

M, =T; (x—x"Y " LA(x")+ Ty j (x—1~ "t A"(t)dt .
0

. By the second mean-value theorem, we get, for some v,, 0 <v,<x’,

TG+ 1) x—xy =01
I(r+1)I@é—r)

= T3 '(X"— x’)a- lAr(xl) + T4(x_xl)y—6— ! {gd—r,r(xla x)_ gé—r,r(v2’ x)} s

M;=T; (x—x) 1A"(x)+ T, f (x— 0" 1A ()dt
v2 .

so that
| My |S Ty (x=x"Y " HAG) |+ Talx—x) 77 gs—p (X", X) | +1g5-r, V2, ¥) |}

=Js+Jg, say .
Replacing y in (4.16) by r, we have
(4.44) | A"(x)| < D, 1€V (x) "W (x)"® .
From (4.2) and (4.44) we see

Js<T3D, . {eW(x)/V(x)} ™ VegBBy (x)! ~PW (x)y! .

By (2.1) (i) and (2.1) (ii), the following inequality is obtained:

(4.45) Js<T3D,,  HC o= DY ()1 == DSy (x)r =108
From (4.1) and (4.2), we obtain

(4.46) Jo<2T e~ VBY (x)1 ~O =D (x)r =108
Combining (4.45) and (4.46), we observe that

4.47) | M, |<C(r, 8, H)e? = VPY(x)l ~0 D (x)r= 1%
where

C(r, 6, H)=(T3D,, \H®™"° +2T,).
Since ¢ is arbitrary, (4.47) implies
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(4.48) M, =o(V(x)! ~ 0~ Ve (x)0~ D)
 Then, by (4.40), (4.36) and (4.48), we have
(4.49) A7) =o(V ()OI ()T

Now let y be such that § —1 <y =<p. Integrating by parts twice, we have

__F(r+a) __Ao—1 4r x’ _ * AT 2 g4r, }
Ml“F(r)F(a)r {[(x N’ rA" ()15 + (o l)j0 (x—10)° " 2A"(t)dt

_F(r+o) NG —1 gr( .t 0'?—_1 __pa-2 gr+1 x’
= PO e £ LA

(6_1)(0-—2) * _Ao—3 4r+1
+~————r+1t L (x—1)° >4 (t)dt}.

Writing
_ I'(r+o0) ’T _F(r+o)(a—1)
T Iy’ % Loy

_(o— 1o —2)[(6—r—DI(r+o)
B '+ HI'(o)

5

T,

2

we have

M, =Tsx—x") 1A (x")+ Te(x—x')" 24" 1(x")

re+1) x s
7F(’+2)F(5—r—1)j0 (x—1) »(x 0P TrTr AT (ot

By the second mean-value theorem, we have, for some v;, 0<v3;<Xx’,

M,y =To(x—x')f" 1 A"(x") + Tg(x —x)" 24" }(x")

F(5+1) _ ,y_a_lj'x’ ber—ie1 et
7r(r+2)r(5-r_1)(x x’) 03(x ) A Yoyde

| M| S Ts(x—x") "1 A(x) |+ Te(x—x")° 2 A" 1 (x")]
+ Tc—x) "0 Y| gsmr—1,r41(x"s X) |+ 1g5-r—1,r+1(V3s x)|}
=J,4+Jg+Jo, say .
By (4.2) and (4.44), we have

eW(x)

(0= 108 /0 1 /8 /6
—_ eV (XN TTeW(x")° .
V(x)) (x’) (x)

J,<TsD,. 1(
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This implies, in view of (2.1) (i) and (2.1) (ii),

(4.50) J7 < TsD, ¢ (HO ™= D0y (3)1 == 03 g0 1 _
Replacing y in (4.16) by r+ 1, we have
4.51) | A" Y (x)| <D, , e * DB (x)t =+ D8 7 ()t + I8
(4.2) and (4.51) together imply

Js<TeD, 2(8323))(6— 2)/68(”' DI (x")t =+ DB (e + 1)/

From (2.1) (i) and (2.1) (ii) we obtain
(4.52) Jg < TeD, ., HO ™= D30 = DI ()1 —(r= 0/ gy (ye)ir = 13/5
On the other hand, (4.1) and (4.2) give
(4.53) T <2T 80 VBY (x)l ~ = DR ()= 115
Combining (4.50), (4.52) and (4.53) we observe that
(4.54) | My | < Const. x e~ VY (x)t == s gy r =105
where the exact value of the “Const.” is

TsD,, H® "4 T¢D, , ,HO "~V 2T

Since ¢ is arbitrary, (4.54) means

(4.55) M =o(V(x)! ~O~ DR (=108
(4.40), (4.43), (4.49) and (4.53) together imply
(4.56) A" (x)=o(V(x)! ~ O~ VDB (x)r =108y

It remains to consider the case f=0. By the same arguments as in Case (i1), we
have

(4.57) Ap'—l(x)=o(V(x)1_(,,_1),,W(x)(,,_1),,,) .

Now the hypotheses of Case (i) are satisfied with 47~ }(x) (p>1) in place of A(x) and
V(x)! =P~ DIP(x)(P= D/ in place of V(x) (W(x) unchanged). In fact,

W(x) _ ( W(x)
V(x)

V(x)!l ~ (= Dip gy (x) P v/p
by (2.1) (ii) for x’ satisfying 0<x—x'<nx (0<n< 1),
V(x’)l —(p—1)/p W(x')(”_ 1)/p V(x') 1/p W(x’) 1-1/p "y
_ 14
VGOt~ DRy ()= ‘< V(x)) ( W(x)) =H

1/p
) =0(x) and,
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Therefore, by the Case (i) (6 = 1) already established, for y such that p— 1 <y<p, we see
(4.58) A”(x) — 0({ V(x)1 —(p—1)/p W(x)(p— 1)/p}1 —(y—(p—1) W(x)v—(p— 1))
=o(V(x)! ~"PW(x)"'?) .

Let y=r+o0, r being the integral part of y. We have only to consider the case 0 <o <1.
By Lemma B, we obtain

I'(r+o)
r(»r(o)

_I(r+o) N o1 gr—1
_r(r)r(o)”o +L}(x AT
y.

=N;+N,, sa

(4.59) A7 Y(x)= r(x—z)a— L4r=Y(pdt
0

Replacing y (resp. 8) by r—1 (resp. p) in (4.26), we have

F(r+a) * A1 r—1
(4.60) IN;|= ) L(x AT () |dt
<F(r+0')8(r_1)/p Erjx(x_t)a—1V(t)l—(r—1)/pW(t)(r—1)/pdt .

I'(nr(o)

Since W(x) is non-decreasing, and the choice of x’ implies 0 <x— t<x—x'<nx so that
V(t)< HV(x), we have

-E,
I'(nri(o) '

N, |=

X V(x)! VP (x)r- 1”"[ (x—0°"dr

['(r+ 0-). Hi (- 1)/p. 8(r— 1)/p
= ° E
I'(rI(o)o ’

X V(x)1 —(r—1/p W(x)(" 1)/p(x_ xf)a .

From (4.2), we get
F(r+0')'H1 —r=1)/p,(r— 1)/p.E
I'(nr(o)e ’
X V)t~ DR (x)r = D0P x (e W () ¥ ()
=F(r+0')'H1 —r-1)/p,r— 1)/p.E
r(nl(o)o r

X V(X)l (- l)lpW(x)(v— n/p

(4.61) |N,|=
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Since ¢ is arbitrary, this implies
(4.62) Ny=o(V(x)! ~ 0~ VP (x)0—1ip)
As to N,, integrating by parts we have

=L(l:+—0') __AC—1 4, x’ _ x _ he—24r }
1 F(r)F(d)r{[(x N A()]G +(0—1) L (x—1) A(z)d; i
Writing

=20t (1) and T1,=TCFP=No=D
we have

N, = To(x—x'y" "1 A(x")

I(p+1)
I+ Dr(p—

j‘x' (x—0) P Y x—0P """ 1 4"(0)dt .
rJo

By the second mean-i/alue theorem, we have for some v,, 0 <v, <x’,
N, =Tg(x—x")""14"(x")
T(p+1)x—xy P!
I'r+1)Ir(p—r)
INy S To(x—x") 1A |+ Tolx—xY 27| g,y X', X)+1gp—,(va, X) |}
=Jyo+J11 say .

+ T

f (x—0?"""'4"(t)dt, and

Replacing 6 by p in (4.2) and y by r in (4.26), we have

4.63) x_x,=(sW(x))1/p
) V(x) ’
(4.64) | A") | <E, + 1PV (x)! ~"PW (x)'P .
From (4.63) and (4.64) we obtain
o (e-1)/p
Jio<TgE,, 1(%—;%2) EPV (X TP (xyIP .
X

By (2.1) (i) and (2.1) (ii)) we have

(4.65) J10STGE,, 1I.I(zi—r)/pﬁ(y— 1)/p V(x)!— 0 D)= Dip
From (4.63) and (4.1), we get

(4.66) . J11 <2Tge? VPP (x)t ~0- DIP gy ()= iP
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Combining (4.65) and (4.66) we confirm that
(4.67) | N, | < Const.g? = VPp(x)t ~0~ Dippy(x)r = Dip
where Const. is the abbreviation of the expression

TGE, . (HP P 42T,.

Since ¢ is arbitrary, (4.67) implies

(4.68) Ny =o(V(x)L 0~ Ve (x)~1iry
Combining (4.59), (4.62) and (4.68), we have finally
(4.69) A" Y (x)=o(V(x)} ~- VP W(x)7~Vrp)

Thus, Theorem I holds for such y>1 that §—1=<y<¢ and it holds also for y—1 in
place of y, so the theorem is proved for all y satisfying 0 <y<d by induction.

5. Proof of Theorem II.

From (2.5) (i) we get, for x=1, W(1)x *< W(x) (0=a<1). Therefore,

fx W(f)dt— o .

Using (2.6), it follows;

5.1 AT (x)=(6+ 1)rA"(z)dt=o( r W(t)dt)
0 0

= 0<x°‘ W(x) ‘[ ) t‘“dt) =o(xW(x)) .
0

Combining (1.1), (2.6) and (5.1) we have

5.2 . B(x)=xA%x)— A°* }(x) = o(x W(x)) .
From (2.7) we obtain : -
¢é3 xA(x)=O0(xV(x)) .

The "-hfu'nction xW(x)=x!"%x*W(x) is non-decreasing by (2.5) (i). From (2.5) (i) and
(2.5) (iii), we see

x'V(x')
xV(x)

<H for 0<x—x'<nx,
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(x W(x)>”" —0().
xV(x)

Thus, the hypotheses of Theorem I are satisfied with

A(x) replaced by xA(x)

A’(x) B(x)
W(x) : xW(x)
V(x) xV(x) .
Therefore, by Theorem I, for y satisfying 0 <y <&, we have
(5.4) B(x)=o((x V(x))' "% (x W(x))"?)
=o(x*V(x)' ""PW(x)""?), as x—o0 .

Now suppose that y>0 and 6—1=<y<4. If y>5—1, we have, by (2.6), Lemma B
and (2.5) (i)

ro+2)
rG+1)ry—o6+1)

= o( fx (x— t)”_"W(t)dt)
0

= o(x“ W(x) fx'(x —1) "% “dt)
0

=o(x? T W (x)).

(5.5) A" (x)=

fx (x—10""24%0)dt
0

(5.5) and (2.5) (iii), we have
(5.6) A7) =x~ Y Bx)+ A7 1(x)}
=o(x " H{xW(x)}' T"PW(x)"? + x? 70 (x))

; . — 1~-y/8 v/ y—246 @) - 7/6})
‘ o( V(x) W(x) { 1+x ( 70

= o(V(x)! ~ "W (x)"%) as x—00 .

Thus (2.8) holds for 6—1<y<$§.

Now, suppose 6 —2<y<d—1 so that 6—1<y+1<4. We have, by (2.5) (iii) and
(5.4),

|
\
1 Since (5.5) reduces to (2.6) for y=6—1, (5.5) does hold for § —1<y<3d. By (1.1), (5.4),
|
|
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5.7 A'(x)=x"1(B"(x)+ A" (%))
= o(x " H{(xV () TP W (x)" + V(x)' T DR () DY
= o(V(x)! "W (x)" + x "1V (x)L W X)W ()] V(x))11%)
=o( V(x)‘ —y/é W( x))y/é) )

Thus the validity of Theorem II for y+ 1 induces the validity for y, and the theorem is
proved completely by induction.
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