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Although the Sasaki metric [7] of tangent bundles is a ‘“‘naturally” defined
Riemannian metric, it is “extremely rigid” ([6]). For example, O. Kowalski has shown
that it is never locally symmetric unless the base metric is locally Euclidean. E. Musso
and F. Tricerri [6] have generalized this fact. They have shown that it has a constant
scalar curvature if and only if the base metric is flat.

O. Kowalski and the author have shown in [5] there are many other “naturally”
defined Riemannian metrics on tangent bundles over Riemannian manifolds. Among
the naturally lifted Riemannian metrics of tangent bundles, can we find nicely fitted
ones? Concerning this, E. Musso and F. Tricerri [6] have given an explicit expression
of a positive definite Riemannian metric of tangent bundles introduced by J. Cheeger
and D. Gromoll [3]. They called it the Cheeger-Gromoll metric. We can find this metric
in the file of a classification of the naturally lifted metrics given by O. Kowalski and
the author [5]. In this paper we shall study curvatures of the Cheeger-Gromoll metric
of the tangent bundle TM.

We shall give the Levi-Civita connection, the Riemannian curvature and the scalar
curvature of the Cheeger-Gromoll metric. Especially, we shall show in Theorem 6.3
that the scalar curvature is nonnegative if the original metric on the base manifold has
constant curvature ¢> — 3(n—2)/n, n=dim M. Since the value of the scalar curvature S
at (x, u)e TM depends on the norm of u, S is never constant if the original metric on
the base manifold has constant curvature.

1. Preliminaries.

First of all, we shall recall briefly lifts of vector fields on Riemannian manifolds
to their tangent bundles.

Let g be a Riemannian metric on a manifold M and V the Levi-Civita connection
of g. Then the tangent space of the tangent boundle TM at any point (x, u)e TM splits
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into the horizontal and vertical subspaces with respect to V:

(TM)(x,u) = H(x,u) @ V(x,ll) :

If X € M, the horizontal lift of X to a point (x, ) € TM is the unique vector X*e H,
such that p, X" = X, where p denotes the natural projection of TM to M. The horizontal
lift of a vector field Xe X(M) to TM is the vector field X* whose value at each point
(x, u) is the horizontal lift of X, to (x, ). The vertical lift of a vector Xe M, to (x, u)
is the unique vector Xe ¥V, ,, such that X°(df)= X/ for all functions f on M. Here
we consider a 1-form df on M as a function on TM, that is, df is a function defined
by (df)(x, uy=uf. The vertical lift of Xe X(M) to TM is the vector field X whose value
at each point (x, u) is the vertical lift of X to (x, u).

Note that the map X— X" is an isomorphism between the vector spaces M, and
H,, ., Also the map X— X" is an isomorphism between M, and V|, ,. Obviously each
tangent vector Ze(TM),,, can be written in the form Z=X"+Y", where X, Ye M,
are uniquely determined.

If ¢ be a smooth function on M then

(1.1) X"pop)=(Xp)op and X"(@op)=0
hold for all X' e ¥(M).
Let (U;x!, x%, ---, x") be a coordinate system in M, and (p~'U; x', x?, -,

x", ut,u?, ---,u") a coordinate system in 7M. Then the horizontal lift of
X=) ¢'0/0x' € X¥(U) is expressed as

(1.2) Y=gl oy,
where I',’s are the local components of V. The vertical lift of X is
(1.3) X”=Z£i—§—..
ou'

Now let r be the norm of a vector u. Then, for any function f of R to R,
(14). Xt f?)=0,
(1.5) Xl f ) =2f"(r")g.X, u) .
These follow from (1.1) and
(1.6) Xhi= Y EPri, and Xu'=¢'.

Next we shall introduce some notations which will be used describing vectors
getting from lifted vectors by basic operations on TM. Let T be a tensor of type (1, 5)
on M.IfX,, X,, -, X,_,eM,, then h{T(Xy, - -, u, -+, X,_,)} is a horizontal vector
at (x, u) which is introduced by the formula
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h{T(Xla T, U, "Xs—l)}:‘zua(T(Xla o .’(aa)x’ o .aXs—l))hs

where 9, stands for 0/6x®. Also v{T(Xy, - -, u, -, X;_,)} is a vertical vector at (x, u)
which is introduced by the formula

U{T(Xls T, U, T, Xs——l)}=zua(T(X1: . '9(aa)x9 o '9Xs—1))v .

In particular U= u%(0,) =2 U (0/0u),, is the canonical vertical vector at (x, u).
Moreover A{T(Xy, -, u, =, u, "+, Xs_p)}and o{T(Xy, -, u, ", u, -, X,_,)} are
introduced by the similar way.

The bracket operation of vector fields on the tangent bundle is given by

(1 '7) [Xh’ Yh](x,u) = [Xa Y] ?x,u) - U{R(X, Y)u} H
(1 8) [Xha Yv](x,u) = (VX Y);’x,u) s
(1.9) [X°, Y]y =0

for all X, Ye X(M), where R is the Riemannian curvature of g defined by
R(X, Y)=[Vy, Vyl— V[x, Y] -

The Cheeger-Gromoll metric is a positive definite metric on T'M which is described
in terms of lifted vectors as follows.

DEerINITION 1.1. Let g be a Riemannian metric on a manifold M. Then the
Cheeger-Gromoll metric is a Riemannian metric g on the tangent bundle 7TM such that

g—(x,u)(Xha Yh) = gx(Xa Y) s g(x,u)(Xh9 YU) = 0 s
1

—xu Xua Y")=
G ) 1472

(9:X, V) +g(X, wg.(Y, u))

for all X, Ye X(M). Here r is the norm of u as above.

2. The Levi-Civita connection,

We shall calculate the Levi-Civita connection V of TM with Cheeger-Gromoll
metric §. This connection is characterized by the Koszul formula:

26(V2Y, 2)=X@G(Y, 2)+ Y(§(Z, X)) — Z(§(X, Y))
for any X, Y, Ze X(TM).

PROPOSITION 2.1. LetV be the Levi-Civita connection of TM with Cheeger-Gromoll
metric §. If X, Ye X(M), then
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_ 1
(2 1) (VX" Yh)(x,u) = (VX Y)?x,u) - ? U{R(X, Y)u} >

1
(2-2) (vxh Yv)(x,u) = 2) h{R(u’ Y)X } +(VX Y)gx.u) >

2(1+r

1
(2.3) (Vo Yh)(x,u) = —2_(T+—r2) h{R(u, X)Y} ,

| 1
(2‘4) (VX" Yu)(x,u) =—- 1

+ I'z (g(Xv, U) Yv + g( Yva U)Xv)(af,u)

2+r2 ~ v v
+i__;__r§g(x,u)(X ’ Y )U
1

14r?

g-(x,u)(Xva U)g—(x,u)( Yva U)U .

PrOOF. Let X, Y and Z be any vector fields on the base manifold M. We calculate
V using the Koszul formulas for g and for g.
(1) Direct calculations using (1.7) and (1.8) give

g-(x,u)(vx" Y, z* )= g(x,u)((vx Y)h, z )
1
g(x,u)(VX" Yh’ Z") = _2_ g—(x,u)(v{R(Xa Y)u} ’ Zv) s

which imply (2.'1).
(2) Calculations like above give
Zg-(x,u)(vx'l Yh’ Zh)= —g_(x,u)( Yv’ U{R(Z’ X)u}) .
Now we claim that

1

+r?

G(h{R@, Y)X}, Z").

(25) g_(x,u)( Yva U{R(Z’ X)u})= - 1

In fact, by definitions and the skew-symmetry of R,

1
1412

=- ! 9-(R(u, Y)X, Z)

1472

1
= —1—_|__r—zg_(x,u)(h{R(u9 Y)X}5 Zh) .

g(x,u)( Yv, U{R(Z’ X)u}) = z ua(gx( Y’ R(Z’ X)aa) + gx( Y’ u)gx(R(Za X)am u))
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Thus

(2.6) GV Y?, Z%) = g(h{R(u, )X}, Z") .

21+7)
Next the Koszul formula 23(V4. Y?, Z”) reduces to
XMg(Y®, Z°)—g(Y*, (VxZ2))+4(Z*, (Vx Y)") -
We calculate the ﬁrsf term. Firstly (1.4) implies X*(1/(1+r?))=0. Secondly
X'g(Y, wop)=X"Q u’g(Y, 8,) o p)=9g(VxY, U)o p
by (1.6). Hence

2.7 XHg(Y®, Z)=4((Vx Y)Y, Z°)+4(Y", (VxZ)") ,
which implies that
(2.8) gVxnY?, Z%)=4((VxY)", Z°) .

The formula (2.2) follows from (2.6) and (2.8).
(3) Calculations similar to those in (2) give the formula (2.3).
(4) Using (1.8), (1.9) and (2.7), it is easily seen that

(2.9) GVxY®, Z"=0.

Because of (1.9), the Koszul formula 2g§(V.Y", Z*) reduces to
XG(Y", Z°)+ Y(G(Z", X))~ Z(G(X", Y*)) .

Since, by (1.1),

sz,u)(g( Y5 u) op) = X?x,u)(zuag( Ys aa) op) = gx(X’ Y) ’
it follows that

Xieung(Y®, Z°) = —T:_Z—r—zgx(X , WgL(Y, Z)+ (Y, u)g(Z; )

+— L (GX, VguUZ, w)+ g:x(X, 209V, )

1472
by (1.5). Hence, by g, (X", U)=g(X, u),
1

r2

(2 10) g—(x,u)(VX" Yv’_ Zv) = - 1

24r% _

+ (X, YOFZ%, U
1+r29(,)( )9( )

@Xx", U)g(Y*, Z°)+g(Y*, U)GX", Y*))ix .y

411
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1 oo S
- 1 +r2 g(x,,,)(X ’ U)g(X.u)(Y , U )g(x,u)(Z U ) .

The equations (2.9) and (2.10) give the required formula (2.4). \ q.e.d.

3. The Riemannian curvature.

We shall calculate the Riemannian curvature tensor of TM with Cheeger-Gromoll
metric g.

PROPOSITION 3.1. Let R be the Riemannian curvature tensor of TM with
Cheeger-Gromoll metric §. If X, Y, Ze M, then

3.1)  RX*, YHZ'"=(R(X, Y)2)*

T h{R(u, R(Y, Z)u)X — R(u, R(X, Z)0)Y —2R(u, R(X, Y)u)Z}

+5 o{(V,RK, Vi)

1
21+r?)

(B2 RX", YNhZ'= h{(VxR)u, Z)Y —(VyR)u, Z)X} +(R(X, Y)Z)’

—4(1 g (v{R(X, R(u, Z)Y)u— R(Y, R(u, Z)X)u} +45(Z", U{R(X, Y)u})

24r?

+ IR, Y, 290U

D h v h__ 1 _1__ v
(33) R(X', YY)Z =20+ +r2)h{(VxR)(u, )Z} + 3 (R(X, Z2)Y)

1 — 1 v
_4(1 +r2) (U{R(X, R(u’ Y)Z)u} +29(Y s U)U{R(X, Z)u})
2+r?

+mg'(v{R(X, Zyu}, YOU,

B4 R, Y)Z'=— (R(Y, 2)xy

2(1+r?)

1 =(yv .

1
—mh{R(u, Y)R(u, Z)X}
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— n_ 1
(3.5 R(X*, Y")Z'= g
+— @Y, DR )Z} (X", Uh{R, Y)Z))
(1+r9)
1
4(T+—2)Eh{R(u, X)R(u, Y)Z— R(u, Y)R(u, X)Z} ,
R 343r2 414
. v v U=__________~_ v Zv XU v Y”
(.6 R, YZ == (Y, 20X~ g(X", Z9)Y)
2
—~3ir2—5(§(Y v, D)g(Z°, U)X*—g(x°, U)g(z*, U)Y")
(I+7r%)
2
kil +r2 5 @(Y°, ZY)g(X?, U)~g(X*, Z")§(Y", UYU .
(1479

PrOOF. Let X, Y and Z be any vector fields on M.

(1) Direct calculations using Proposition 2.1, (1.6), (1.7) and the second Bianchi
identity give the required formula (3.1).

(2) Direct calculations also give the formula (3.2). Note that, since

g(x.u)(Xva U) = gx(Xa u)a
e u(V{RX, Yu}, Uy=g(R(X, Y)u, u)=0.

(3) Calculations similar to those in (2) give the formula (3.3).

(4) To calculate R(X™*, Y")Z®, note that (1.5) and (VXhU)(x » =0 which follows
from (1.6) and (2.2).

(5) Since [X*, Y*]=0, calculations to get the formula (3.5) reduce to those of
ViVy. Z"

(6) To calculate R(X*, Y°)Z", note that

g{U,U)=r? and V,.U=

+9(x*, U)U),

which follow easily. q.e.d.

4. Sectional curvatures.

Hereafter (-, ) stands for the metric g on M, also |+| denotes the norm of vectors
with respect to g. For the tangent vectors X, Ye M, let Q(X, Y) be the square of the
area of the parallelogram with sides X and Y. If X and Y are linearly independent,
K(X, Y)=<{R(X, Y)Y, X>/Q(X, Y) is the sectional curvature of the plane spanned by X
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and Y. A bar is used to distinguish objects in TM from the corresponding objects in M.

ProrosiTiON 4.1. If X, Ye M, then

o o 3R, Vul?
4.1) RO, P)=K (X, V= o s
(4.2) R(X*, Y°)= | R, N)X|*

AL+ XP( Y P +CY, up?)’

2r? 3+r2 QX,Y)
1+r2  (1+r)3Q(x°, Y
Here assume that X and Y are linearly independent in (4.1) and (4.3).

4.3) R(X*, Y")=

ProoF. Direct calculations give

@4) O YH=0(X, Y),
'Y h vy . 1 2 2 2
@5 OO Y= LI XPOYPHCY, ),
@6 o Y")=(—1—+1—r2)—2(Q(X, Y)+1 XY, ud2+] YIECX, u?

—2{X, Y )<XX, u){Y,uw)) .
(1) By the first Bianchi identity and the skew-symmetry of R, it follows from

THEOREM 4.2. Let (M, g) be a space of constant curvature c, and K the sectional
curvature function of the tangent bundle TM with Cheeger-Gromoll metric §. Then

(3.1) that
| — 3
| GR(X®, YHY", XM =(R(X, Y)Y, XD — R(X, Y)u|*.
] g(R( ) )((Y)X>4(1+r2)I(Y)I
| This together with (4.4) gives (4.1).
| (2) The equation (4.2) follows from (4.5) and
| — 1
| G(R(X*, Y)Y®, X")=———— | R(u, Y)X|?,
‘ gR( ) ) 4(1+r2)2| (u, Y)X|
i which follows from (3.2) and (4.2).
i (3) Calculations using (3.3) show that
| 2 2

- 2re  _ 34r

| g(R(X", Y°)Y"’, X")= X% YY)+ ——0(X, >
{ IR, YT, XY= O, Y+ s 0K, )
} hence (4.3) follows from (4.6). q.e.d.
|
|
|
|
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K(X*, Y") is nonnegative if 0 <c<4/3, K(X"*, Y°) and K(X", Y") are nonnegative if c=0.
Here, assume, for K(X", Y") and K(X*, Y*), that X and Y are linearly independent.

Proor. (1) Let {X, Y} be an orthonormal basis for a tangent plane to M at x.
Then, since M has constant curvature c,

Q(Xa Y)=1 > K(Xa Y)=C, R(Xs Y)u=c(<Y, u>X—<X5 u>Y) .
If u#0, then, by (4.1),

_3cKY, u? + <X, u)?)
41+r?) '

Let{E,, E,, - - -, E,} be an orthonormal basis for M, such that E; = Xand E, = Y. Then

K(X* Yn=c

<X9 u>2+<Y9 u>ZSZ<Eia u>2=|u|2’

which together with | # |2 =r? < 1 +r? implies that K(X™*, Y")is nonnegativeif 0 <c<4/3.
If u=0, then clearly K(X*, Y*)=c>0 at (x, 0).
(2) The assertion for K(X™*, Y*) and for K(X*, Y") is clear by (4.2) and (4.3).
q.e.d.

REMARK. I would like to thank Professor K. Ogiue for some discussions concern-
ing the above proof.

COROLLARY 4.3. If the base manifold(M, g) is flat, then the Cheeger-Gromoll metric
of the tangent bundle TM has the nonnegative sectional curvatures, which are never constant.

Proor. Let {X, Z} and {Y, W} be two pairs of linearly independent vector fields
on M. Then Propositions 3.1 and 4.1 imply that K(X"+ Y*, Z*+ W") is non-negative
if the base manifold is flat. . - q.e.d.

REMARK. Musso-Tricerri [6] have shown that the Cheeger-Gromoll metric § on
TM has the nonnegative sectional curvatures if the base manifold is the sphere with
standard metric. Does the metric § have nonnegative sectional curvatures when the
base manifold is a space of constant curvature ¢ with 0<c<4/3?

5. The scalar curvature.

Let (x, «) be a point of TM which is not in the zerosection, and {E;, E,, - - -, E,}
an orthonormal basis for M, such that E; =u/r. Here r is the norm of u as before.
Then, putting

Fi=Eih (l=192, o -,n), F1‘=Elv’ Ep*=\/ 1+r2Epu (P=29 3: ©e .sn),

we get an orthonormal basis {F,, F,, - - -, F,, Fy., F., * -+, F,} for the tangent space
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(TM),.., Let
K|J=K(Ei, Ej) (l,.]= L2, ,n l5é.])
K—'AB=K—'(FA’ FB) (A’ B= 19 2, T, A, 1*’ 2*3 Y n*; A¢B) .
Then the following proposition is a direct consequence of Proposition 5.1.
PROPOSITION 5.1. Under the notations above,
K=K 3 | R(E,, E;)u|?
ij ij 4(1 +r2) i =il
K51.=0 s

_ 1
Kip‘ =I I R(u9 Ep)Ei '2 ’

_ 3+43r2+2r*
Riop="——""_
v 1472

Rop=3(1+r%?.

Here i and j run over {1,2, - - -, n}; p and q run over {2, 3, - - -, n}.
ReEMARK. For any orthonormal basis {E,, E,, ---, E,} for M, putting

Fi=EMx,0), F.=E®(x,0) (i=1,2, -+, n) we get an orthonormal basis {F,, F,, - - -,
F,, Fys, Fye, -+, Fp} for (TM) 0 Although the equations in Proposition 5.1 are

obtained at a point (x, u), u#0, these still hold for the above basis at a point in the
zerosection.

PROPOSITION 5.2. Let S and S be the scalar curvatures of (M, g) and (TM 9),
respectively. Then

_ 1
3=5 Yu|2+—3 | R(u, E)E;|?
2(1+r2)§,I R(E, Ejul 2?;' w, EJE)|

+ n=l B +3r*+2rY+3(1+r?)3(n—2)).
1+r?

PrOOF. Since S=2) ,_.K;; and

i<j

5=2% K,,+22K,f.+2 Y Kip,

i<j i<j
the assertion can be easily obtained from Proposition 5.1. q.e.d.

THEOREM 5.3. If the base manifold M has constant curvature ¢ > —3(n—2)/n, then
its tangent bundle TM with Cheeger-Gromoll metric has nonnegative scalar curvature.
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Proor. Let {E,, E,, - - -, E,} be an orthonormal basis for M, as above. If M has
constant curvature c, then

| R(E;, Ej)u|*=c*r*(8;; + ;1) for i#j,
and
| R(u, E)E;|* = c2r¥(8;;—26:10;,+8;1) -
Hence, by Proposition 5.2,

(n—1)c?r?

5.1) S=nn—1)c+ 2 +77)

—1 ‘
@2r? + 1)+%’+—5(2(3 +3r2 42/ 4301 +r)n—2)),
r

from which the assertion follows since the minimal value of (5.1) attains on the
zerosection. q.e.d.

COROLLARY 5.4. Ifthe base manifold has constant curvature, then its tangent bundle
TM with Cheeger-Gromoll metric is not (curvature) homogeneous.

Proor. The equation (5.1) implies that the scalar curvature S is never constant
if ¢ is a constant. Hence the assertion follows. q.ed.
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