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Introduction.

Let us denote the continued fraction expansion of an irrational number a (0 <a<1)
by

a=[0: el, ez, ° '] s

and its »n-th convergent by p,/q,. We call the sequence of partial quotients
{e;: i=1,2, - - -} the name of  associated with the simple continued fraction algorithm.
The following theorems are well known.

THEOREM A. (1) (Galois) « is a reduced quadratic irrational, that is, a quadratic
irrational whose algebraic conjugate & satisfies a< —1, iff the name of « is purely
periodic.

(2) (Lagrange) o is a quadratic irrational iff the name of « is eventually periodic.

(3) (Klein) Let I' s, be a polygon jointing the lattice points (qzn—1P2n-1)
n=1,2, "+ ((qan P24)sn=0,1, -+ for I'_) in this order, then the polygons are
approximating polygons of the line L:ax—y=0, that is, I';+, satisfies the following
propetrties: ' \

(1) T+, is a convex (concave) polygon, and

(ii) The domain D enclosed by I , and I _ in the first quadrant includes the half line
ax—y=0, x=0, and the domain D does not contain any lattice point.

(4) (Lévy) For almost all a, we have

.1 2
1) hm—logq,,:-———n and
n—oo N 1210g2
1 n?
2) lim{-——}1 —p, = .
) ..m< n>og|q,.a Dl T210g2

The purpose of this paper is to give an extension of above theorems to in-
homogeneous linear forms ax+ f—y. Morimoto ([4]) presented a generalized algo-
rithm of the simple continued fraction expansion, which induces vertex points (q,, p,)
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of the approximating polygon of an inhomogeneous line L: ax+ f—y=0. We call this
algorithm Morimoto algorithm. The first aim of this paper is to give the definition of
Morimoto algorithm in terms of a transformation (X, 7). Because, the original algorithm
was given geometrically as an analogy of Klein’s construction.

The algorithm is given as follows: Let X, X; and X, be subsets of R? such that

X:={(a,pB): 0Za+p=1,0=<a}—{(0, 1},
X,:={(x, p)eX: 0<p} and
X,:={(@ HeX: 024} .
For a positive integer ae N and e { —1, 1}, let us define a partition 4(a) and 4(a, ) of
X, and X, by
A(@):={(a, f)e X, : aa+ﬁ§1., (@+Ma+p>1},
A@, —1):={(a, p)eX,: an+B=1,a>1/a} and
Aa, 1):={(a, fe X, : (a+1a+p>1,a=<1/a}. (See Fig. 1)

Let us define a transformation T on X by

'(L_a, __ﬂ_) if (o, Bed(a) L Aa, 1),
o o
0.1 T(x, p):=1 (a—l, 1+£) if (a, Pped(a, —1),
o o
| (a, ﬁ) lf a=0.

Using integer valued functions a(x, ) and &, ) by

afa, ﬁ):=[l“ﬁ],
o

1 if (a, p)ed(a)v A(a, 1),
—1 if (x, p)ed(a, —1),

0.2)
&(a, B): ={

we define the sequence of integer vectors {(a,, ¢,): n=1,2, ---} by
a,:=a(T"" '(, B),
&,:=&(T"" Y, B)) -

This is essentially the same as ‘die Folge von den charakteristischen Zahlentripel’ in
Morimoto [4] and is called a name of (o, §) with respect to the transformation (X, T)
in this paper.

By Morimoto algorithm (X, T), we have the following main theorem as a
generalization of Theorem A. '

0.3)
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THEOREM. For each (a, B) (0<a, 0B, a+B=1),
(1) (a, B) has a finite name iff a € Q.
(2) - Be Za+Z iff there exists an n such that ay,=PB,, or P;,=0 where
(s Br)=T"(at, B)-
(3) The name of (a, P) is purely periodic iff (o, p) is reduced, that is,
(i) o« is a quadratic irrational,
(ii) BeQ(x) where Q) is the quadratic field generated by o, and
(iii) the pair of algebraic conjugates (d, B) satisfies the relation 1=f=<da or
a+1=<p=<0.
(4) The name of (x, P) is eventually periodic iff o is a quadratic irrational and f € ().

The main idea to prove the theorem is to determine the notion that (, B) is reduced,
and it is equivalent to determine the domain of a bijective lifting of the transformation
(X, T) which is called the natural extension in the ergodic theory.

By means of the natural extension and ergodic theorems, we have also the following
metrical theorem.

THEOREM. For almost all (x, B)€ X,, we have

. 1
lim (—'—)log 'aqn+ﬂ—pn|=
n

2

12log2

lim 1 1 ’
—_ o n= R
o BT 12 10g2

where (q,, p,) are vertices of the approximating polygons defined in (1.7).

Finally, we remark that analogous discussions on the relations between the algebraic

property of («, B) and periodicity of inhomogeneous diophantine algorithms are found
in Hara-Ito [1] and [2].

§1. Definition of Morimoto algorithm and its fundamental properties.

Let X, X,, X,, 4(a), 4(a, 1), 4(a, — 1), T(a, B), a(x, B), &(«, p) and (a,, g, be as in the
introduction. (See Fig. 1).
We see

X=XIUX2a X10X2=[0,1]><{0},

o0

X,= 4@ul, (disjoint sum) and

a=1

xX,= U O A(a, &)U {(0,0)} (disjoint sum),

ee{—1,1}a=1

where I,:={(a, e X : a=0}.
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4(2) A(1)
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4(,1)
FIGURE 1.

The transformation T satisfies the following relations:
T(A@)=X, n{a+B+#1},
T(A(a, 1)=X;n{a+B#1}, and
T(4A(a, —1)=X, n{a#0} .

REMARK 1.1. Let us observe the behavior of the transformation 7 on boundaries
of X, X, and X, and on invariant sets. Denote the pieces of boundaries by

I:=[0,1]1x{0}=X,nX,,
Jo:={(a, )X, : a+p=0},
Ji:={(a, p)eX,: a+p=1}, and
Jyi={(, PeX,: a+p=1}.
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Then we see the following properties hold:

(1) T(0A(a)<iX,, T(0A(a, e))<dX,, where 04 means the boundary of a set 4.
(See Fig. 2). ’

@ TU,—{1,0N=J;—{(1, 0} T(J,)=Jo and T(Jo)=1.

(3) T(I)=I—{(,0)} and the restriction T| ; of T on I coincides with the simple
continued fraction transformation S:

—1——|:l:| if O0<a=l,
S(a)::{ o o
0 if a=0.

(4) The set K={(a, f)e X : a=p} is T-invariant and the restriction T | is also
isomorphic to the simple continued fraction transformation S by the isomorphism

¢: (o, )—a/(l—a).

Aa)

N

A(a, 1) . Jy

Aa, —1)

FIGURE 2.

For each («, f)e X—1I,, we defined a finite or infinite sequence of integer vectors
{(@y &) :n=1,2,---} in (0.3), so called a name of (a, ) with respect to the
transformation (X, T). In particular, for («, 8)e X; — I, the name of (a, f) is given by

T o, f)e A(az+,) and )
T2k+1(“a B)EA(a2k+2’ 82k+2) (k=0’ 1927 -)

We say (a, B) has a finite name if there exists j such that T%(a, )€ I,
Let us denote
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(s Ba)=T(, B) -

REMARK 1.2. We see that (a, f) € X has a finite name iff the number « is a rational.
In fact, it is easy to see that ae Q if a,=0 for some n. Conversely, we assume « is a
rational. If a=1, then we have a, =0. So we put a=p/q, (p, g)=1, 0<p<gq. Then, from
the definition of T, we see a; =(¢ —ap)/p or (ap—q)/p and 0| g—ap|=<p. Therefore a,

is denoted by o, =p, /g4, (p1, ¢;)=1 and g, <q. Continuing this procedure, we obtain the
conclusion.

From now on, we assume that « is irrational. Let us define the affine transforma-
tion ¢, ., (or simply we write it by ¢, ), which is a map from (x,, y;)-plane to
(%k- 1> Y- 1)-plane, associated with the name {(a,, &): k=1,2, - - -} of (a, B) by

o *k-1 _ Q. & Xk Vi
(1.1) @uﬂr(h_)_(l 0)Q@)+(0>

where
1.2) W={° il &=1,
1 lf 8k= ‘_1 2
and (xo, yo) =(x, »).
We put
(1.3) o,=(—1)"¢;&," - "¢,

Let us denote lines associated with (a,, 8,) by L, : a,x,+ ,—y,=0 (Lo=L). Then
we have propositions:

PROPOSITION 1.1. For each (o, f)e X (a¢Q),
ocx+ﬂ—y=a,,oza1 T, l(anxn+ﬂn_yn) -
In particular, we have

a0 o, (L)=L.
PrROOF. From the definition of ¢,, and T, we see that

ax+p—y=a(a;x, +&y, +v)+p—x,

=(— l)a{<—l——a1)x1 +(—V1 —£>_51)’1}
o o

=(—Dae,(2;x; +B1—y1) -
Therefore, we obtain the conclusion by induction. g.e.d.

Let us introduce 2 x 2 matrices as follows:
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(11) (‘n Sn) (al 81), . ,<“n Sn) 1 (’o SO) ( 1 0 '
tn u, 1 0 1 0 to Ug 0 1
lhen we have formulae:

PROPOSITION 1.2. For each (o, f)e X (a¢Q),

1
1) ooy =—,
r,+s,0,
n—-1
X r, S X kZ'oVkHrk
@) ¢¢( )=( )( '-)+ =
) y tn un yn

-1
Z Vi1l
k=0

PROOF. Let us assume the formula (1) holds for n—1, then by a,=1/(a,+,+
€,41%,+1), WE have

1/(an+1 +8n+ lan+ 1)
rn+sn(1/(an+1 +£n+ lan+ 1))
1

aoy - Ty 10y =

Pat1tSn+10n+1 .
The statement (2) is also obtained by induction. q.e.d.

LEMMA 1.3. Letusassume(x, B)€ Xy, thenr,, s,, t, satisfy the following inequalities:
(D) 7r2ps1>0, 85,41 >0and 1y, 3>75p— 1. If 82,=1, then ry, s >73p 4.

() S2p41>S2n-1-
(3) r2n>r2n—1232n—3'
4 1,>0((n=4), uy,.1>0.

PrOOF. From the assumption («, )€ X,;, we know &,,,, =1 for all n. The proof
is obtained by induction. By the definition of r,and s,, we haver; =a; 21,5, =¢, =1,

Fan+1=02n+1 20+ 520=(A2n+ 1020+ E2p) 20— 1+ 3204+ 15201 > and
Son+1=Fan=0opl23p—1+S2p-1 -
Therefore we see
Fons1>0, 52,010, rpi12S2m-15 S2n+1>52n-1 and  $3,41="2n>"2n-1-

Also we have ry,,,>r;,—; if €;,=1. Thus we obtain (1), (2) and (3) from these
inequalities. We obtain (4) similarly. - q.e.d.

Define matrices A4, ., associated with the name of (a, B) by
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[/ an & O
(1.5) Ag.en:=( 1 0 0
—v, 0 —g,
and define the product of 4,,_.,, by
r. sp O
(1.6) tn U, O :=A(ah$l) ° 'A(a"’sn)
vll w'l on

LEMMA 1.4. The following formulae hold:

1 r, s, O
€)) o |=a0;- 0,4 t, u, O a, |,
ﬂ 'vn wn o-'l Bn

and in particular

@ a=t,,+u,,oc,, ’ ﬂ=v,,+w,,oz,,+a,,ﬂ,, ,
Vnt Spy rn+ 8,0,
and
- tn + e O-n(tnwn - unvn) - Gn(rnwn - S”U,,)CZ + ﬁ
Ay=—, ﬁn = .
u,—Ss,o U, —Ss,o

PrROOF. From the definition of 7, (1) is obtained by induction. (2) follows from

r, s, 0O\! u,o, — 8,0, 0
. U, O = —1,0, r.o, 0 . q.e.d.
v, W, 0, LW, — U, —FW,+S0, O

For (a, )€ X, let us define pairs of integers (g,, p,) as follows:

A 1
(1) om0 3)

Then we have the following proposition:

PROPOSITION 1.5. For (o, B)e X, (a¢ Q) and (q,, p,) defined by (1.7), we have

(1) g, monotonically tends to o as n— 0.

2) ag,+B—p, tends to 0 as n—oco. Furthermore, if n<m and 6,,_,=0,,,_,, then
| gy + B—Pul>|0Ggm+ B—pPm| holds.

(3) p./q, tends to o as n— 0.

PROOF. From Proposition 1.2 (2) and Lemma 1.3 (1), we see
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Gn+1—9n="2n+1 T Von+1T2n T Vanl2n—1—T2n-1
=Fop+1+Vanran—1—"2n-1>0.

Therefore we obtain (1).
From Proposition 1.1 and Proposition 1.2 (1), we have

| agn+ P —Pp=02,_ 1000 " "0pp_2(02n— 1+ Bon—1)

Oan—1+B2n-1

Pon—1+FS2n—1%2n—1

=03,-1

From Lemma 1.3 and 0<a, + B, <1 for all k, we see ag,+ f—p,—0 as n— 0.

Let us assume n<m and 0,,_,#0,,=0,42="""=02,-4703,—>. Then we see
€3p=—1, €3ps1="""=€m_3=1, €3y, =—1 and &,,_; =1. By Lemma 1.4, we have
1 rs O 1

Oop—1 J=%op—1"" "Aom-2 tug Xom—1 |>
Ban-1 ’ v w0/ \PBom-1
where
r s O a,, —1 0\ /azp+1 0
t u 0= 1 0 1 0 )
VWO —1 1 0 —1

0 0 —1 —1 0 0 —1
a,, —1 0\ /* * Aypm—n —1 1\ faym-1 1 O
=l 1 0 O] * = 1 0 0 1 0 O
-1 0 1/\00 —1 -1 0 1 0 0 -1
* * 0
= A B 0

—A+ay,.; —B+1 1

Therefore, we see

| ' Oap—1F Bon—1=02,— 102,
=03n—1%24
> sz,,_ 1a2n

and so

S Oy 2(EF Uy FVF WO+ OBy y)
U 2Aom—1F %om— 1+ Bam—1)

© O 2(Um -1t Bam—1)
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|ags+B—pPul=00; -0y, 2(02p— 1+ Ban-1)
> 0001 Upm—2(%2m— 1+ Bam—1)
=|tqm+B—DPm! .

In the case of ¢,,_,=0,, we can show |ag,+B—p,|>|0g,+,+B—pPn+.| in the same
way.
We obtain (3) immediately from

%Gn+Pp—Pp
&:—q—ﬁ__p___'.a-i-ﬁ q.e.d.
qn dn Gn

COROLLARY 1.6. If (o, B) and (o', B’) in X, have the same infinite name
{(a, &) : n=1,2, - - -}, then (a, B)=(a', B).

Proof. Using the name we obtain (g,, p,), and by Proposition 1.5(3), « is
determined. Then, from Proposition 1.5 (2), 8 is also determined. q.ed.

In the next section, we observe that the points (g,, p,) coincide with the vertices of
the approximating polygon of the line L: ax + f— y=0. Therefore, we call the algorithm
(X, T) or (X, T?) Morimoto algorithm.

§2. Geometry of Morimoto algorithm.*

In this section we give a geometrical characterization of points (g,, p,)-
For geometrical discussions, let us introduce some notations. For each (o, f)e X,

(x ¢ Q), we put

(Ve oo 1 (0 (0
(b () o) re(2)
P,:=¢a1°'”°¢azn—1(:>’

( 1
if e,,=1,
Pa, ¢>,.(0) 2

¢ﬂ1°“.°¢02n(i) if 82"-‘=—1,

!

P, .=

*) The reader who is not interested in geometrical discussions may prefer to skip this section except
Propositions 2.4 and 2.5.
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[ 1
¢a1°‘.'°¢azn(l) lf 82n=19

P/H.=4
n -

1
if e,=—1,
L¢al ¢2n<0) 2
k
Pn,k:=¢a,°"'°¢a2,,(1) (1§k§a2n+1—1)! (Pn,a2n+1=Pn+1)a

1— ﬂ?.n
oy

M}l+1:=¢alo.'.o¢¢12" 1 s

1’_ﬁZn+ 1

Oop+1
Nn+1'=¢alo.'.o¢a2n+1 1

Fn+1 :;¢alo T °¢az“<{(x12n) : O§x2n§.a2n+l}) H F1:={<)1C): Oéxéal}a
X

n,: {( ):xgo,ocx+ﬁ—y<0}, and
y

m_: {(;) x=0, cxx+ﬂ—y>0}.

I

Il

Yan-2 Yan-1
d)azn—l L
L ’ " N
P, P,. Mn - Pn Pn / ,
1 / ‘?”M// 2n—2 1 M {Pu/ LZn—l
_ B | L — 1
- : Xon— + L . Xop—
01P, Ayp-y G- +1 m2 P P, ayn Az +1 .
Parn
82,,=.] ¢ﬂzn
Yan .?2" Eyp= —1
L L
P" P’/'// Pn+1MM Pl P,’,' P,.+1M '
1 * - on 1 * : P L,
/ P"+l / : n+l
—] : i Xa - . : i Xa
op, p; Ayn+1 A2ner+1 o|p, P, Azn+1 Azpr1t]
Here, (¢,,° " * - o ¢,) *(A) is denoted by A4.
FiGURe 3.
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LEMMA 2.1. For each n,

(1) the gradient of the image of the line y,=1by ¢, oo, is equal to t,/r,.

(2) For any x,, x, such that x,<x,, the images (x, y) and (x’, ) of (x,, 1) and
(xns 1) by @4, 0 - -+ o P, satisfy the inequality x <x'.

PrROOF. The image of the line y,=1 by ¢, oo @, is denoted by

n—1
x=rnxn+sn+ Z Vily 5
k=0

n—1
y=t,x,+u,+ Z Vily -
k=0

Therefore, we obtain (1) and (2) by r,>0. q.e.d.
LEMMA 2.2. We have

lan _lan+2 ;

ey if o,,=1, and
Fan Tap+2

Ion _lan+2 .

_2_2>—n__ !f' 62n=—1 .
r2n r2n+2

ProoF. From (1.4), we have

Lan+2 _t2n _ Q2n+2(F2ntlon—120520) _ G2n+202n

Fanv2 7T2q Tan+272n F2n+2"2n

By r,>0 and a,21 for all n, we obtain the conclusion. q.ed.

LEMMA 2.3. The points P,, P,, M, (n21) are rearranged with respect to their
x-coordinates as follows:

PlaMlsP’laPZ’Mzaplz’ ""PmMmP;nPn+1’Mn+1’P:|+1 s T

And P;=P”+1 Wa2n=a2"+l=l and 82"= —1.

PROOF. Let us consider the (x;,_;,y,,—;)-plane and the line L,,_,:
O2n—1X2p—1+ B2n—1—Y24—1=0. The line L,, , and the line y,,_, =1 intersect at a

point (¢,, © - - - o @,, )~ '(N,). From the definition of ¢,, and @,,, We see the two lattice
pOintS ([(1 _ﬁZn—l)/a2n—1]s 1) and ([(l —ﬂZu—-I)/aZn— 1] + 19 1) arce given by

1=Bau-1] )\ ([1=Bn=1 ], 1 1)) (¢(é>¢(:)) if ey,=1
(oS Dl ey RO S Al S

Xon—1 Xon—1
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=(Pa,° " 2 Puzo ) Py (Pay 0 0 Pay_ )T (P (See Fig. 3).

The point (¢, © - * © g, )" " (M)=(1—P2n-2)/0%2n-2, 1) 1s @ CrOSs point with the line
L,,_, and the line y,, ,=1. Two lattice points ([(1 —Ban—2)/%m-21,1) and
([ — B2n-2)/02,— 21+ 1, 1) are given by

] ([ o)) =(onn 6) (1)
___—519 '——‘—_‘”+131 = ayn-1 s Yaan-1 ’
(([ Oop—2 Oop—2 : P 0 P 1
= (Paro 0 Pagn ) Py (B0 0 bay ) TP -
Therefore, by Lemma 2.1 (2), the order of points is given by
PmMmP;nPZ’NmP;nNaPn+1’Mn+19P;a+1 if &,,=1,
PmMmP:vP;;stP;z”; P;:,P,,+1,M,,+1,P:,+1 if g=-1,

where we see

ay,=1 iff PL=P",
82)1:1 and dz,,+1=1 iﬁ. P;.”=Pn+1,
g,;,=—1 and ay,4+1=1 iff Po=P,.y. q.ed.

Let us denote the ordered set of points P, (n= —1) included in IT, (II _) by
{Pu(i): i=0, 1, 2, ° '} ({Pu('): i=0, 1, 2, ° '}). Then we see Pu(0)=P__1, Pu(1)=P1 and
P,0y=P,. Let us define segments Iy (I vy and polygons r, (r.)by

Fu(i)=Pu(i— I)Pu(i) > Fu(i)=Pu(i— 1)Pv(i) ’
Q0 o 0]

F+=<U r,; and F—-=Urv(i)'
i=1 i=1

Then we have the following geometrical theorem.

TueoREM 2.1 (Morimoto). Let us assume o is an irrational and the line
L: ax+B—y=0 does not pass through any lattice points Z?. Then the points P, have
following properties:

(1) PnEH+ l.ﬂ‘UZn—Z:l’
P,ell_ iffo,,_,=—1.

(2) The vertices of the polygon I .. coincide with the set {P,u: n=0,1,2, - -} and
the polygon I', is convex. The vertices of the polygon I - coincide with the set
{Pym:n=0,1,2, - -} and the polygon I' _ is concave.

(3) The domain D enclosed by I' . and I _ in the first quadrant does not include
any lattice point. All lattice points on the boundary are P,’s and P, s(1£k=az,+1—1,
n=0).
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Proor. The proof is given by induction and each step corresponds with the step
of the geometrical construction of polygons.

Oth step (setting): We know that M, =((1—f)/a, 1) is given as the cross point of
L with y=1. Since a, =[(1 —B)/a], points P, =(a,, 1) and P}, =(a, +1, 1) are given as
nearest lattice points of M, on the line y=1. And I',,, is constructed as a segment
P_,P,in II, and P, is in IT_. We see that the triangle AP, P_,P, does not include
any lattice point except on the boundary. (See Fig. 4).

Ist step (Ist construction): The point N, is given as a cross point with L and a
line- L} which passes through the point P’ and is parallel to P,P,, and the points P’,
PY' are given as nearest lattice points of N, on L.

y Pi” Lll V1 L
N, L
®a,
Py “
LTI sl B P L
" / Py
<] x 0, i Xy
0 Po Po Pl
/ ¢a1
=1
Y2 f2 Y2 £=—1 Ge .
L /
P, P P, M/L’ ] P, P! PzMz L
l M " 2 M ﬁ/ 2
/ P / 2
' — i x
- x nr 2
o[p, Pp; 2 olp, P;
FIGURE 4.

2nd step (2nd construction): We know the segment P,P’| and P, P’ are parallel.
Therefore one of the prolongation of PyP] and P, P’ (toward P or P’) intersects L,
but which one intersects L is decided by the sign of ¢,. M, is given as a cross point of
the prolongation L), and L, and points P,, P’ are given as nearest lattice points of M,
on L. (See Fig. 4). We have P,ell, if 6,=¢,=1 and P,ell_ if 6,=¢e,=—1. T, is
constructed as a segment P, P, if e, =1 and as a segment P,P, if ¢, = — 1. We see that
A PyP, P, does not include any lattice point except on the boundary.

(2n—2)th step (assumption of induction): Let us assume that the point P, on I',
satisfies the following properties:

(1) Iyyyv - Ul is convex and I'yyyu - Ul is concave (k+j=n) and
P, (k=n) are vertices of above polygons.

(i) APP,P, does not include any lattice point. except on boundary, where
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/=max{i<n: P;is on the opposite side of P, with respect to L},
m=max{i<n: P;is on the same side of P, with respect to L} .

Furthermore we assume

0 0
Pl=¢a1° e °¢a2n—z<0) and Pm=¢a1° e °¢a2n—2( 1 ) .

These assumptions are satisfied for n=1, 2. (See Fig. 4).

’
L2n—1

Yan-2

P, P, M, _—"
1 ¥ P’ L2n—2
[ 1Ly
PI / E
=] . . Xop—
/I ol2, Q34-3 G2n-2t1 2
FIGURE 5.

2nth step: Let us assume P,eIl,, thatis 0,,_,=1 and I',cIT,. (In the case of
P,eIl_, we can discuss in the same way.) Then we have u(k)=n, u(k—1)=m and v(j)=1.
The point N, is given as a cross point with L and a line L’,_,; which passes through
the point P, and is parallel to P,P,, and the points P, and P’ are given as nearest
lattice points of N, on L%,_,. (See Fig. 5 and Fig. 3).

We know the segment P, P,’ and P,P, are parallel. Therefore one of the prolongation
of one of P, P, or PP, intersects L and which one intersects L is decided by the sign
of &,,. The point M, is given as a cross point of the prolongation L, and L, and
points P, and P,,, are given as nearest lattice points of M,,, on L’,. We have
P,,,ell, if ¢,,=1 (that is, 6,,=¢,,6,,_,=1) and P,,,€ll_ if ¢,,=—1. Thus we
obtain (1). ,

I',., is constructed as a segment P,P,,, if ¢,,=1 and as a segment PP, if
€,,=—1. From Lemma 2.1 the gradient of I',,, is given by ¢t,,/r,,, because
Fyi1S(@a,0 0@y, )” 1(y2n=1). We see that the new polygon added I', , , is also convex
(concave). In fact, in the case of I',,; <II,, from Lemma 2.2 and o,,_,=1, we see
2n—2/T2n—2 <l3n/T24 and so the gradient of I', is smaller than that of I, ,.

In the case of I',,, =IT_, M, is given as a cross point of the prolongation of I,
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and L, and M, ., is given as a cross point of prolongation of I',,, and L. From
I<n<n+1 and Lemma 2.1, we know the x-coordinate of M, is smaller than that of
M, , .. This means the gradient of I'; is greater than that of I',,;, and we have the
conclusion. '

The statement (3) is a consequence of the fact that AP,P,P,., does not include

any lattice point except on the boundary. The lattice points on the boundary are given by

(P, P,}={¢,,, SRRRYN ) TR ¢(g)} Prvymthy - od,%(az;n),

k
and Pn,k=¢a|°“'°¢a2,.(l) k=1,2, "',a2n+1_1)' ' q'e'd'

We call I', approximating polygons of L: ax+ f—y=0, and call P, principally
approximate points and P, , (1 <k =<a,,,, — 1) intermediately approximate points of L.
We discuss the necessary and sufficient conditions of T™(e, )€ I for some n.

PROPOSITION 2.4. Let us assume that a ¢ Q and (o, B)€ X,. Then following conditions
are equivalent:

(1) there exists ny such that T*"(a, B)e I, that is, B,,=0 for n=n,,

(2) there exists n, such that €,,=1 for all n=n;,

(3) there exists a lattice point (k, l)e Z* such that ak+ B=1and k=0.

REMARK 2.1. In case that («, f) satisfies the above conditions, we see that one of
approximating polygons I' , consists of finite segments and ends at (k, /), which is a
principally approximate point P, (for some n).

ProoF. Since I—{(0, 0)} = )., 4(a, 1) and the set I is T-invariant, we obtain (2)
from (1). Conversely, let us assume (2). From the assumption &,,,,=1, the point
(d2"+2, 62n+2)= Tz(“zm BZn) iS written as

L2) B2
(%204 25 ﬂ2n+2)=(—‘—n—“azn+2a ‘-n—) .

1 —a,, 1%, 1—ay,4,0,,

Therefore, considering (a,,, B,) € 4(az,+1), that is, B, <1 —a,, 4 10,5, <Ay, + B, =1, we
see that

ﬂ2n1

1—az,410,) - (1 —dan, + 1“2,.,)

B2n+2=(

Suppose fB,, #0, the sequence {B,,.,} is monotonically increasing and bounded.
Therefore we have [, (1 —@z,41%2,)<c0 and Y a5, ,0,,<00. Thus we see a,,
tends to 0, and so B,,,;= — B./%2, tends to — co. Therefore (3,4, B2,+1)€4(1, —1)
for sufficiently large n. This contradicts the assumption ¢,,,,=1 for all n2n,.

Next, assume that §,, -,#0 and f,,,=0. From the relation
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ﬁ2no—2 . _
if &5,,=1,
B 1 —a3n,— 1% -2
2n0 =
l— .BZno—Z lf 82,'0:_1 s
1 —a3p5-1%2n,-2
we see that &,,,= —1 and B,, _,=1—a,, - 1%,,,— 2. Therefore a lattice point (a,,,—;, 1)

belongs to the line L,, _5: %5p0 - 2X250— 2+ Bang—2 —V2n,—2 =0, and so the lattice point

cee o A2no-1 — 6o 1 =qno
b b (e ot )= (5)

belongs to L: ax+f—y=0 and by Lemma 1.3 and (1.7) we see g,,>0.
k
Conversely we assume (3). Let us denote <l”> by

n

k k,
(5)=tme ().

then the lattice points (k,, /,) satisfy o,k,+ B,=1,. From the definition of ¢, we have
Kont2=Kon—a3,+1l5,. Assume k,,>0. Then f,,#0 holds because a,,¢ Q. We see
Lp=03,K2,+P2,>0 and k,,, ,<k,,. If I,,>1, we have

1-58,, l,—1
k2n+2=k2n_a2n+112n;k2n—'12n 2 =ﬁ2n 2 >0
aZn (in
and so k,,>k,,.,=1. Thus there exists an m such that k,,=/,,=1. We obtain
Kom=(—=PB2,)/%m=0a2m+1, and O 05, +1+ B2m+1=0. Hence, by Remark 1.1 (2) we
have f,,,+,=0. q.e.d.

Next, we discuss the necessary and sufficient conditions of T2%%(«a, f)eK
(={(a, pe X : a«=p}) for some n.

, PROPOSITION 2.5. Let us assume a ¢ Q and (o, B)€ X ;. Then the following conditions
are equivalent:

(1) there exists ny such that o,,,=pB,,,, that is, a,,=f,, for all n=n,,

(2) there exists n, such that a,,=1, ¢;,=—1 for allnzn,,

(3) there exists a lattice point (k, Iy Z* such that ok+ B=1 and k<0.

PROOF. Assume that «,,=f8,,. Then, from the definition of 7T, we have ,,,,=—1
and so (0t24+1, B2n+1) € A(1, —1). Therefore, &,,,,= —1 and a,,,,=1. Moreover, from
€y,+2= —1, we have

oy

n 1_ ﬁZn )
b 2
1 —a5,4 1%, 1 —as, 10,

Tz(a2m ﬂZn) = (aZn +2
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and we see from a,,,,=1 that a,,,,=f>,+,.
Conversely, let us assume a,,=1, ¢,,= —1 for all n=n,. Then from the definition
of T we have

Tz(aZn’ B2n)=(1 - %2n 1— ﬂZn ) s

2
—Arp+1%2p l—ay, . 109;,

and dyp 42— Ban+2= —(@2n— B2a)/(1 —A2p4+1%2,)-

Suppose that a,, —B,, #0. Then the sequence {|a,,—p,|} is monotonously
increasing and tends to some non-zero constant c¢. The sign of the sequence «,,— 8,
is alternative. With a similar discussion in the proof of Proposition 2.4, we see a,,
converges to 0. Therefore, f,, tends to c or — ¢, alternatively. This contradicts §,,=0.

Let us assume there exists n such that a«,,#8,, and «,,,,=PB,,+,. Therefore we
see that

o B2 .
P — Gy = if &3,42=1,
1 —az,4 1%, 1—a5,,10,,
o ]
azn+2““—2n—‘=l—L if ey,42=-—1,
l—ay, 1%, l—ay,. 00,
that is,
{ —(1 4+ @304 19204+ 2)%2n + B2n= —02p+2 if e342=1,
(—a2n+1(a2n+2—1)_ 1)a2n+52n= _aZn+2_"1 if Eap+2= —-1.

This means the line L,, passes through a lattice point and so L passes through a lattice
point. By Proposition 2.4 the first coordinate of the lattice point is negative.

Let us assume (3) and denote (k,, /,) similarly in the proof of Proposition 2.4. Then
we have ankn + ﬁn = ln and k2n+ 2= k2n—' Azp+ 1121!' If k2n é - 19 then ﬁzn 7&0’ k2n é 12n éo
and k,,<k,,,,<—1.If I,,<0, we have k,,<kj,+3=05,+,=0. Therefore there exists
an n, such that /,,=0 for all n=n,. For this n, we see that a,,k,,+ B,,=0. Thus we
have k,,= —B,/02,=B2ns1€ Z—{0}, and 50 (¥zn+1, B2n+1)€4(1, —1). This means
a,+2=1and g,,,,=—1. q.e.d.

§3. Natural extension of Morimoto algorithm.

Let us consider a so called natural extension of Morimoto algorithm for the sake
of later discussions. Put

Xt:={(y0):(1S6=y) or y+1=0=0)}—{(1, 1)} and
X3:={(y,6): —128<0,y+6=—1}—{(0, —1)},

%

(3.1)

N¥*

and define a domain X by
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X=X, xX¥)U(X,x X%)

and define a transformation T on X by

[ /1 1 0
<'_—a9 —_B_a_—a, ——_)
o o’y y

if (a,B,7,0)ed@)xXTuda, 1)x X%,

1 0
(a——l—, 1+£, a——, 1+~—>
o o Y Y

L if (a, B,v,0)ed(a, —1)x X% .

(3.2) T(a, B, 7, 0)=1

It is easy to see that
TA@x X=X, —J))x 4¥a), T(d(a, 1)xX$)=(X,—J,)x4*@a, 1) and
T(A(a, —1)x X3)=(X,—Io) x 4*(a, —1),

where
AN a)=43—(a,0),
4*a, )=41—(a,0),
A*@a, —1)=—A4%+(@, 1),
with

A*¥={(y,0): 6<0,0<6—y=<1,y#0}.  (see Fig. 6).
We call (X, T) a natural extension of Morimoto algorithm.

REMARK 3.1. We have

e

OA*(a)=X3‘m{y;é—l, —2,--+} and U U 4*a@ e=Xrn{y#—-1}.
a=1

ee{l,—1}a=1

REMARK 3.2. Let us denote (&, Bu Y 00):=T1"(a, B, 7, 8). Then we have the
following formulae similar to those in Lemma 1.4:

1 ros, 0\/1
AN e PR PR BEAIR T U | M
o v, W, 06,/ \O,
and
_ L,+r,y 5 = an(tnwn - unun) - an(rnwn - S"Un)')) +0
o U, —SyY ’ ! Uy—Sn¥ '
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aGn

1 s Aé‘f
(7, E)H(—, ——) ]
1 Yoy

\’4

—1 -1
) )
X;\QNI) 0 (1 5) 0
56 s T
N » =y ar

FIGURE 6.

SUBLEMMA. - The following relation holds:
n—1
an(rnwn —Snvn) =—- z Ve+ 17k -
k=0
PrOOF. The proof is obtained by induction. The case n=1 is an easy consequence
from the definitions. Assume the case it is true for n. Then we see
L 1(rn+ Wht1—Sp+1Up+ 1)
=—&,4 10’,,{((1,, +1rnt+ sn)8n+ 10n— &+ lrn(an+ 10+ Wy—0uVp+ 1)}
= - O',,(S,,U,, - rnwn) —TpVn+1
n—1
= Z Ve+ 1"k~ Vn+17n - q.e.d.

k=0

FUNDAMENTAL LEMMA. For each (a, f)e X,, we have

n—1

, P Vi+1Tk
T’l(a, ﬁ) _w: 0)=(an’ Bnﬂ '——"-s _;()—"_—)GA_,.
S

n Sn

Proor. From Remark 3.2, T"(a, B, y, 8) is denoted by
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Fon - tn + r,y an(tnwn - unvn) - O-n(rnwn - Snvn)y + o
T (OC, Ba % 6)=<am ﬁns *

Uy —S8yY ’ Up— S,V
Take (y,6)—(—o0,0). Since T(a, f, — o0, 0)=(zy, B1, —a;,0)€ X, x X%, we have
T, B, — o0, 0)e X. From the Sublemma we have the conclusion. g.e.d.

Using the idea of natural extension and the Fundamental lemma, we have a
proposition.

PrOPOSITION 3.1. For each (o, f)e X, and its principally approximate points
P, =(qn, Prn), we have

1) glgux+B—psl<i iff T>" a, p, —0,0)€D,

—(+0)a+ ) <A} |
—y+o

where Dl:={(a, B,y,0)eX, x X% :

(2) Let us denote principally and intermediately approximate points by P, ;=
(k> Uni) 0=k =ay,.,—1). We have
un,k' un,ka+ﬁ_vn,k | <’1 lﬁ TZn(a’ ﬁ: — 00, O)EDS‘lk) ’
—ky+1—-98)1—ka—
(—ky+1-05)1 —ka—p) </1}».
ProOOF. By the definition of the nth principally approximate point (g,, p,) and
Propositions 1.1 and 1.2, we have

where D&")={(d, B,y,0)eX, xX¥:

—y+o

2n—2
(an—l + Z Vi+ 1rk)(°‘2n—1 +Bon-1)

k=0

qnl qna+ﬁ—pnl=
Fan-1t8S2n-1%2,—1

2n—2

, Z Vie+ 17k ,

_{"2n—-1 k=0 2n—1

—< + )(“2n—1+ﬁzn—1)/( +oop-q ) -
San—-1 San—-1 San—1

Therefore from (aZn-la ﬁ2n—1a—r2n—1/‘s2n—1’ —(Zilz)z Vi + lrk)/SZn—l)eXZ XX; and the

definition of D,, we have (1). Similarly we can obtain (2). q.e.d.

COROLLARY 3.2. For each (a, B)e X,, we have

qul g2+ B—p.l<1 forall n.

Proor. For any (a, 5, y, 6)€ X, x X%, we see
(—y+a)—(—=y=)a+p)=—y(1—a—p)+a(l+d)+p6>0,

which shows
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0+Hath)_ |
a—7y

0= -

q.e.d.

§4. Quadratic fields and periodic points of 7.
Let us consider the map T2 on X,. We define a map T2 on X, x R? by

'(—a2+(a1a2+l)oz B —a,+(a,a,+ 1)y 0 )
l—aa 1—a,o l—ayy 1—ayy)’

lf (a9 ﬁ)eaal(a29 1) s

(az—(a1a2+l)a 1—a,a—p a,—(aya,+ 1)y l—aly—é)
l—a,a ~ l—aya ’ l—ayy ~ l—ay /)’

L if (a, p)ed, (az, —1),
where §,(k, + 1) is a refinement of 4(a) given by

@) (T« 8,7, 0)= 1

o041, —1):={(o¢, p)e A(a) : a<;—j_—l} ,

o.(k, 1):={(a, Bed@): a= , (atk+ l)+1)oz+ﬂ<k+l} ,

a+1/k

o4k, ——1):={(cx, Peda): a< ll/k’ (ak+1)oc+ﬂgk} ,

a+
and therefore the following relations hold:
Tk, e)=A(k,e) and T?@,(k,e)=X, (except on boundaries).

The restriction T2|p, on X; =X, x X% is the natural extension on X, of (X, T?)
and coincides with 72|, , and so we denote it by T2.

Let us assume in this section that o is quadratic irrational and («, f) € X;. We denote
the simple continued fraction expansion of « by

a=[0: el, ez, DR eN, eN+1, v .’eN+k]

where N +1 is the first index of the periodicity of digits {¢;} and k is the length of the
period. We introduce a set of numbers =(x) associated with « as follows:
Let us denote

. 1 .
a®:=a, a('+1)3=a—(5—ei+x (=[0:€;42, €43, -1 (20),
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aD ;=1 —g®=(e,+1)— @i=zn,

AR ) -

- 1
GJ) . — <i<e.
ol =2 D 2=j<e;.1).

A set of numbers Z(x) associated with a quadratic number « is defined by
Ew):={a?, a®? (i20,15j<e;44)} -
Then Z(x) is a finite set because o is quadratic.

LEMMA 4.1. We have a following property:

1

— i1 —jt1) 1
; = (1=sjse41).
a(l+1)+j !

ab ; )
PrROOF. Let us use w=< d)z to denote the linear transformation w=
c

(c+dz)/(a+ bz). We know that

I (A P
—Ci+1 — €

L T e
0 —1 2 —1 e+1
(1 )(0 l)e"“_la(i,n

0 -1 2

1 )( 0 1>j—1aki,ei+1—f+1)_
1 2

. 1 . ‘
<’J D = glibeir1—j+1) for 1<j<e;,,.

o

Therefore we have

i—1 1

Thus we have the conclusion, that is,

(i (i+1)
(G 1)+.oc _ 1 gleri=it) (1 <j<e. ).
j+a(1+l) ]+a('+1)

q.e.d.

We sometimes use the following formulae which are equivalent to Lemma 4.1.
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COROLLARY 4.2.

1

1D 1—a®d=_
al* Ve, —j+1

( Siseiy),

1

2 m—ei+l—l+j=a(i+1) (1=sj=seisq)-

LEMMA 4.3. For a’eZ(«) and (o', B)e X, T? is denoted by

( a(i+2) ﬂ
? gD+ D)

if @'=a® and (@, P)ed,,, (€12 1),

itz 1 B
P gt D)

if a'=a(i) and (alaﬂ)eaei+l(ei+2+1’_l)3

(a(i,ei+l_j+1)’ 1 —— —__ﬁ )
a(l)(a(l+1)+j)

if «'=a® and (@,P)€d,,,-;(1, —1) (1SjSen,—1),

’ i ﬂ

if a'=a®? and (a',B)edi(€i41—J 1) (15jse4,—1),

B
(i+1, 1)
(a 1- l—a(' 5 J)

if a/'=a®? and (,P)ed (e;—j+1, —1) (15jZe1—1),

a(l+3)
a(l e¢+ ‘)d('+ (e 1)y +2)

if a'=abe+)  and (a,sﬁ)55e,~+z+1(‘3i+3s 1),

a(i+3,1) 1— ﬁ
2T e )i+ 2)

l:f a’=a(i,e'+l) and (a,’ ﬂ)eaei+z+l(ei+3+1’ —1),

glitleira—j+l) | __ ﬁ
> oliei+ 1)(a(i+2) +j)

S if a'=a®e+? and («,P)€d,,,,-j+1(l, —1) (15j=ei4s).
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PrROOF. (1) Assume that a’=a®. Since

1 N
<a®W<
€1+1 €i+1

(@, B) belongs to
ei+1—1

5e.~+1(ei+2’ 1) ’ 5ei+1(ei+2+l’ —1) or U 5e,-+1—j(1’ —1) .
ji=1

Thus, we see

(a(i+2) _ﬂ—w“ﬁ) on 5&.”(8“—2, 1),

7 VONG
@, )T (o, -5

a®

(a‘i+1)+j,—ﬁ.) ';(1— LS P )
a® al D17 Ol 4 )
on &, (1, 1),

(1_“(i+2), l—zu‘(l)aﬁ(ﬁ)'> on 6ei+1(ei+2+19 —1),

and so from Lemma 4.1 we have the conclusion in the case of o’ =a®.
(2) Assume that a’=a®) (1<j<e;,,—1). Then from the definition of a and
o) we know

, e;.1—1 . e;
<oV < and 1 " gV TIHL
e+1+1 €41 €41 ev1+1
By induction, we have
<a(i,j)< 1
1

1+ - +—

€iv1—J e+1—Jj+1

Therefore (a’, f) belongs to d,(e; 4, —J, 1) or d,(e;+;—j+1, —1). Thus, from Corollary
4.2, we see
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- T (1 B
@i.J) , — -
(a ’ B ) (a(i’j) 1’ oc(i’j’)

T 1 .
— | ——e€;+1+], A ={af*h, b 7
1 . ( 1 ) 1 — &
—1 a“'” 1 .

o) oon)

on d,(e;+1—Jj, 1),

1 .
(e,-+1—j+1— ,1— P )=(a““’”, 1——'3—)
1 1 1—alD
—1 a(tﬁ( 1) :

a(i.j) a(i,i)

on d,(e;4+;—j+1, —1).

(3) Assume that o’ =a¢+?9, From Corollary 4.2, we know
a(i’ei +1)

a““’=——-. .
1— a(l,eu 1)

Therefore, we see 1/a€+V=141/a*D and so o’ belongs to
6eg+2+1(ei+3a 1), ée‘+z+1(ei+3+1’ —1) or 5e,+z—j+1(1, 1) (15j=e;4)) -

Thus, we see

oli+3) B
i o(bei+1)yi+2)

on 5e1+z+l(ei+3, 1) ’

T . B ; B
’ i+2) __ R (@+3,1) ¢___ ¥~
(a ’ ﬂ) CU (a 2 a(i,eu— l)) (a ’ 1 a(i‘ei* l)a(i+2)

on J,,,+1(e;+3+1, —1),

airvgg P Y (1-_ 1 B
Js a(i.ei +1) a(l'+ 2) +]) a(i,et + ')((X(i+ 2) +j)

on d, . ,_;j+1(1, —1).

q.e.d.

REMARK 4.1. Let us define ind(a’)=i if a’'=a® or a®? then we have
ind(a’) <ind(a”) if T*’, B)=(a", B”).

COROLLARY 4.4. Under the same assumptions and notations, the set E(a) is
T-invariant, that is, for any (o', f)e X and o’ € Z(x), the first component of T*(a’, B)
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belongs to E(a).

We say (a, B) is reduced if it has the following properties:

(1) (o P)eX;,

(ii) o is a quadratic irrational,

(iii) Be a), where Q(x) is the quadratic field generated by «, and

iv) (o, B, &, B)e X, :=X, x X*, where & means the algebraic conjugate of a.

PROPOSITION 4.5. If (a, P) is reduced, then
(1) (&3, B2) (= T*(a, P)) is reduced, and
(2) there exists unique (x*, B*) such that (o*, B*) is reduced and T*(a*, B*)=(a, p).

PrROOF. From the definition of 7 and the concept ‘“reduced”, we have
O(a, f)= O(a)=0(,) and so B, € @Q(a,). From the definition of the natural extension T,
we see T2(a, B, &, B)e X, x X*. If we put T?(«, B, &, B)=(x3, B2, 72, 05) and use (4.1), we
know (y,, 6,)=(d,, B,). Thus, we obtain (1).

From the definition of 7 and Remark 3.1, there exists (a*, f*, y*, 0*)e X; x X¥
such that T*(a*, B*, y*, 6*)=(«, B, &, B) because a ¢ Q.

Suppose that there exist («', ', 7', 0)# (", f”,7",6") in X, x X% such that
T, p,y,6)=T@", B",v",6"=(a, B, & B). Let us assume (a', f’)ed(a, &) and
(a”, B")e A(ay, €,), then from the definition of T we know e=¢g;,.

In case that e=¢; =1, we see 1/y'=(1/y")+1, —8'/y'=—06"/y" and a=a, + 1. Let
us assume 1/y’=(1/y”)—1, then we have a=a,—1, y’+8'=—1 and 6"=—1. We see
&=(1/y")—a—1 and B=1/y”. We obtain &a=f—a—1, that is, a=f—a—1. This
contradicts («, f) e X,.

In case that e=¢, = — 1, we can discuss similarly. Thus, we succeeded in showing
there exists unique (a’, 8’,7',0")eX, x X% such that T(a', B’,7y’, 6")=(a, B, @, B).
Furthermore, from this equality, we can show (y’, 6')=(&’, B’) easily.

Suppose that there exist (a*, 8*, y*, 6*)#(a*, B*,y*, 6*) in X; x X¥ such that
T(a*, B*,v*, 6*)=T@>, p*,y*,6*)=(', B’, &', B"). Then we can assume that
(a*, p*¥)e d(a), (a¥, f*)ed(a+1),6*=y*+1 and 6*=1. Hence we have a'=
(1/y*¥)—a—1, B’=—1/y* and so @’ +pB'= —a—1, that is, a'+ p’'= —a—1. This con-
tradicts (a’, )€ X,. Thus, we showed there exists unique (a*, B*, y*, 6*)eX; x X¥
such that T(a*, B*, y*, 6%)=(o, ', @', B’). Furthermore, from this equality, we can
show (y*, 6*)=(a*, B*) easily. q.e.d.

LEMMA 4.6. If (a, P) is reduced, then {(a5,, B2s): n=0,1,2, -+ -} is a finite set.

PROOF. Since Z(a) is finite, the set {a,,} is finite. From the definition of T, for
(o, B)e X we have "

ﬂn-l

Oly—1

Bn=_8n +vn=
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and'so B, is denoted by

A4
b= (= eyt g b (1P ey e
Op—10p—2" " Q% Op—q° "0y
(= Deynipy, .
n—1

Using Proposition 1.2 (1) for «; instead of a, we see that there exist integers m(i) and
n(?) such that

1

Olp—10y—2" " "0

=m(i) + n(i)e,, .

Therefore, there exist some integers p, ¢, r and s such that B, is denoted by

Bn=(p+qon)B +(r+s0,) . (*)

Thus, if we denote f=(r+s,/ D)/t and B,=(b,+c,/ D)/d, (r, s, t, b,, c,, d, Z), where D
is the discriminant of the quadratic number a, then denominators d, of B, are bounded
because from Corollary 4.4 the number of a,’s is finite and the form (*) holds.

By Proposition 4.5, we see (¢, B2n> @24 B2s) € X,. Therefore we have

OéﬂZuél—’aer: and
1<B-2n a2n or 1+&2n§32n§0-

Thus, b,, and c,, are estimated by d,,, «,, and &,, and accordingly the set
{(b2ns C2m» d2y) : =1, 2, - - -} is finite. q.ed.

REMARK 4.2. From Corollary 1.6, for («, )€ X, the sequence {(o,, f,)} is (purely)
periodic iff its name is so.

ProPOSITION 4.7.  If(a, B)is reduced, then the name (a,, ¢,) of (x, ) is purely periodic.

ProOOF. From finiteness of {(a,,, B2,): n=0,1,2, - - -}, there exist kK and N such
that

(T*)(22ns Bans Gans Ban) =2y, Bans Gan, Ban) -
Therefore, by Proposition 4.5 (2), we have
(T»a, B, &, B)=(, B, &, B) .
This means the name of («, B) is purely periodic. q.e.d.

A quadratic number « is called reduced if 0<a <1 and @< — 1. Then this is well-
known that a is quadratic and reduced iff its continued fraction expansmn is purely
periodic. Hence we have
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LEMMA 4.8. Let a be areduced quadratic irrational number and its continued fraction
expansion be denoted by

a=[0:e, ", e].
Then, for all i=1, we have the following:
(1) aP+j<-1 (0sjse—1),
@) 1<a®<2  @25j=en),
(3) 2<a®D,
@ 1<(1—a®™)a™D  (1gj<e,—1).
PrOOF. Since «® is also reduced, we know a®< —1. Then, we see —1<

1 /a("l’;&—(ﬁ+ei<0, and so we obtain (1). From the definition, we see

—_—_ 1
atD=e+1——"=>e;+122
a(i_l)

and inductively

2>a@it D=2 !
R

>1 (1sj=e+1—1).

From (1) and (2), we remark 1—a®? <0 and «®* D <0. By Corollary 4.2 (1), we have

i+ 1 i+1
—AHoEED —gUtD — gt )
1—a"“Na = g >———=1 for 1<j<e;+,—1.
__a(1+1)___ei+1+j_1 _a(1+1)

q.e.d.

LEMMA 4.9. Let us assume that («, B, &, 9), (&, B, &, 6')€ X X R? and a is a reduced
quadratic irrational. Then, there exists a constant ¢, (0<c¢; < 1) such that the inequality

either
|O2n+2—0%0+21<C1]02,— 0%, oOF | Oan+a—02n+4l<C1]02n—0%,]
holds for all n, where (0.3, Bans ®ans 02,) means (T?)(a, B, &, J).

PROOF. Weput152n+2—5,2n+2|=A|52n’._ '2n|and|62n+4— 12n+4|=BI52n'— ’2n|'
By (4.1) and Lemma 4.3, in case that a,,=a”, we have
1 1

a(l) a(i+ 1) or d(i) (a(i+ 1)+j) ( -—.]— +1 )

From Lemma 4.8 (1), we see 4 <1. In case that a,,=a®*+", we have

1 1 .
A= ——v—— or A= —— — (15j<eiv2)-
a(l,enx) a(l+2) d("e”l) (a(l+2) +j)




-

386 SHUNIJI ITO AND KENKITI KASAHARA

Also we see 4 <1 except the case j=e¢;, ,.
If a,,=a®) and a,,,, =0, we have
1

B=—_— _ —  or
o+ D 0¥ 2| _ @)

1
B=— 1<j<e 1 —1,1<k=<e,,,—1).
T GED ) | s eanThIskSan D

From Lemma 4.8 (1) (4), we see B<1.
If a,=a®) and a,,,,=a*1V, we have from Lemma 4.8 (4)

1 _ 1
(1— @ LY ] _q@D) HGF D] _ Gy

In case that a,,=a®*+*" and (a,,, B,,)€5,(1, —1), we have

B= <l1.

1 - - : - 1 -
_=(1 —qlt 1’1))(a(‘+2’+e,-+2)oc("e‘“)=a“+ _—  glhes)s ] |
B a(i+ 1)

Since Z(x) is a finite set, we have the conclusion. q.ed.
Let us consider the boundary of X¥. We put

01:=0Xtn{6=y}, 0,=0Xtn{6=1}, 03:=0Xtn{é=y+1}
and 0,:=0Xtn{6=0}. .

Then we have the following lemma.

LEMMA 4.10. Let us assume 0<a<1 and &< —1 or &> 1. Then there exists a
constant c, which satisfies the following:

For any B,y and 6 such that (o, B, &, y)¢ X, («, B, &, 5)e X, and |y—J|<c,, we have
@) (TP, B, & y)e Xy, (i) ay=a,=1, e;=e,= —1 or (iii) e, =g, =1.

Furthermore, if the case (ii) happens, then (a, B, &, ), (&, B, &, 6) and their images
by T? and (T?)? are very near o,. If the case (iii) happens, then they are very near o,.

PROOF. From the definition of T2 (see Fig. 6), we see

(o2, B2) X 0, if ay=1,¢e,=-1,
Tz((a, P)xo)=q (a3, B2)x0;3 if a,=1,¢e,=1,
(a2, B2) x(XT)°  otherwise,
- (a5, B2) X G4 if e=1,
2
T““’ﬂ)"""c{(az,ﬂz)xaz it o= -1,

T(@, B) x 62)= (a2, B2) x (X)° and  T?((a, B) x 73)=(az, B5) X (XT)°,
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where A° means the interior of a set A. If T%((a, f) x ¢;) is contained in (a,, ) x (X¥)°,
then (T%)?((«, B) x 6;) is contained in (g, B4) X (X *)° also.

If (&, y)and (&, 8) are near 6, or o3 and |y — & | < ¢ for small ¢, we see T?(a, B, &, y) € X;.
We can discuss other cases similarly, and we have the conclusion. q.e.d.

PROPOSITION 4.11. For (x, f)€ X, let a be a quadratic irrational and € Xa). Then
the name of (a, p) is periodic. '

PrOOF. Let us denote the continued fraction expansion of a by a=[0:e,, - - -,
en> en+1> " "»en+r]. From Remark 4.1, for large n we see a,eZ :={a®, a®):
N+1=<iSN+k, 15j<e;,,} =E(). Therefore, for simplicity, we may assume a€=’,
and then from Lemma 4.8 we see &,< —1 or &,>1 for all n. Then we can choose é
such that (a, B, &, 8)e X,, and we put (2, Bzns Ezm 02n): =(T?)(a, B, &, 8)€ X,. If there
exists some n such that (%5, Ban 2. Ban) € X; then by Proposition 4.7 we have the
conclusion. :

Let us assume (&3, Ban @2n P2n) € X, for all n, then the distance d, between
Az Bans zns Ban) and (dzp Bans %ams 02, is €qual to | B, — 5, |. From Lemma 4.9, the:
subsequence {d, } (n;+;=n;+1 or n;+2) tends to 0. Since Z(a) is finite, by Lemma 4.10
there exists n, such that a,, =1, g;,= —1, &,,>1 forall n=n, or ¢,,=1, &,,< — 1 for all
n=n, holds. From Proposition 2.5 or 2.4, we have d,,=f,, or B,,=0, and so
(%25 Ban> 2> B2n) € X,. Thus, (xs,, B, is also reduced for large n and we have the
conclusion. ' q.e.d.

Now, we have the following theorem.

THEOREM 4.1. Let us consider (a, B)€ X, and Morimoto algorithm (X, T) or (X1, T?).
Then, we have the following: ‘

(1) (o, B) has a finite name iff o€ Q,

(2) the name of (a, B) is purely periodic iff (o, B) is reduced,

(3) thename of (o, P) is eventually periodic iff o is a quadratic irrational and § € (o),

(4) there exists a (k, ) € Z? satisfying B=ko+l iff there exists an n, such that ¢,,=1
hold for all n=nq or there exists an n, such that ¢,,= — 1 and a,,=1 hold for all n=n;,.

PROOF. Let us assume that the name is eventually periodic. Then, by Remark 4.2
there exist n and m such that (o,, 8,) =(%, Bm) and n<m. From Lemma 1.4, we have

1 r s O\/1.
la, oty r 0yl t u O] |,
B./. v w o/ \Bnm
and ‘
1 r s 0 1
o |=aayc o, 4|t uw O a,l,
B v w o'/ \B,
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where r, s, ---,r’,s’, --- are all in Z.
Hence, we see

t+uo, v+wa,+0p,,
o,= , py=———""=
r+ sa,, r+ so,,
t'+u'a v'+wo +0o’
o= ", and B= n+ b .
r'+s'a, r'+s'a,

From these equalities, we see that a, is a quadratic irrational, and so is a. (Since
the name is infinite, ¢ Q.) And we have fe Q(a) easily.

Next, let us assume the name is purely periodic. We know « is a quadratic irra-
tional and fe (o). Then we showed (a,,, B,,) were reduced for some n in the proof

“of Proposition 4.11. From the pure periodicity, there exists an m such that

(T?*)™(0tzp B2n)=1(a, B). Then, by Proposition 4.5 (a, f) is reduced.
The other conclusions have been shown in earlier discussions. q.ed.

REMARK 4.3. We can apply Morimoto algorithm for any (a, f) in R2. Taking
a—[a], B—[B] instead of a, B, wecan assume 0<a<land 0= f<1.Ifa+ > 1, we take
a, =0and we put «, = 1/a and B, = — B/a. Then, we see («,, B,) € X, and we can continue
the algorithm.

§5. Ergodicity and metrical theorems.

Let us define a function K(«, B, 7, ) on X by

K(e, B, v, 9):=

la—y|>
Then we have the following lemmas.
LEMMA 5.1. The function K satisfies an equality except on boundary:
K(T(, B, v, W(TX, B, 7, )=K(x, B, 7, ) ,
where J(T) is the Jacobian of T.
The proof follows from the fact that the Jacobian J(T) is calculated by
1

a3,y3

J(T)=

LEMMA 5.2. The function K is integrable and

J“”‘f K(x, B, y, 6)dadBdydo =2log?2 .
X
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From the above lemmas, we have the following theorem.
THEOREM 5.1. Let us define a measure ji on X by

dodBdyds
(log2)|a—y|*’

dii=

then the measure ji is invariant with respect to T and the dynamical system (X, T, fi) is
ergodic.

COROLLARY 5.2. (1) Let us define a measure u on X by
dodp j‘ J dydo 1 dudp
2log2 ) Jxsla—y|* 2log2 1—a?

dodp j f dydd 1 dudp
2l0g2 J Jxsla—y® 2log2 20(1+a)

if (aa B)GX19

l..f (d, B)GXZa

then the measure u is invariant with respect to T and the dynamical system (X, T, p) is
ergodic.
(2) Let us define a measure u; on X; by

1 dudp 1 doudp

duy=— 298 = ,
t log2 1—a? H2 log2 2a(1 +a)

then the measure u; is invariant with respect to T? and the dynamical system (X;, T?, u,)
is weak Bernoulli, respectively.

PrOOF of the theorem and corollaries. From Lemma 5.1 and 5.2, the measure j
on X is an invariant measure with respect to T. From the commutative relation

- I =

X— X

I =

T

X— X
where 7 is a projection such that n(e, B, y, 6)=(a, ), we see that u=m_(j) and that u
is invariant with respect to 7. From T?(X,) = X,, the measure y; is invariant with respect
to T2.

On the other hand, we see the dynamical system (X;, T2, u;) satisfies Schweiger’s
condition (see Schweiger [6], Ito-Yuri [3], Yuri [7]). Therefore, the dynamical system
(X;, T?, u,) satisfies weak Bernoulli condition. Hence, the dynamical system (X, T, u) is
ergodic, and so is the natural extension (X, T, i) (Rohlin [5]). q.e.d.

We obtain some metrical theorems by using the individual ergodic theorem.
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THEOREM 5.3. For almost all (a, f)€ X, we have

. 1
lim (—’;l_) logl aqn+ﬂ_pn|=

n— oo

2

12log2

PrOOF. From Proposition 1.1 and the definition (1.7) of (g,, p,), we know
|0gn+B—pal=00ty " =~ 03y 20201+ B2n-1) -

Therefore, we have

1 1 2n—2 1
—loglag,+B—p.l=— Y logoy+—logloz,_1+B2n-1]-
n n k=o0 n

We show that

.1
lim —log|a,u— 1+ Ban—11=0 for almost all (a, B) .

n—o N

Since

1 1
Po(Aop— 1+ Pan—1 <) =pz(a+p<n)= (108('1+ 1)+nlog(l +—)) R
2log2 n
we see

‘_4:1 U221+ Pon_1 <€ ™)<o00.
Thus, by the Borel-Cantelli lemma, we obtain
#{n : —llogl Oop—1+Ban-1| >e} < oo for almost all (a, f) .
n

Therefore, by ergodic theorem, we have

L1
11m—10g|ocq,,+ﬁ—p,,|=2f loga du
X

n—o N
=2(J logcxd,u+J. logadu)
X1 X2

1 . 1 + o
_ 1 (J' logada+J' logoc_ doH_J' loga
log2\ Jo 1+« o 2(1+a) 'J1 20(l+a)

1!2

_12log2'

)

q.e.d.
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LEMMA 5.3. There exists a constant A such that A>1 and s,,,,> A" for n23.

Proor. From (1.4) we have
Fan+3=Q2n+372n+2 1 S2n+2

=0a3p+3(A2n+2T2n+1F S2n+1) T E2n+272n+1
=(A2n+302n+2FE2n+2) 2n+1F A2n+352n+1
=(Aan+302n+2+F €2n+2) 20+ 1+ B2+ 3(@2n2n—1 +S20-1)
20a35+320 2011 A2n+352n-1
=dyu+302n 2n-1 1 G2n+372n-2
>0354+302n 2n-1F G2n+3"20-3

and SO 73, 4+3>"2,— 1+ 2n-3-

We choose A such that A>1, 23— 1—1<0, A <2and A°<3. Let us assume ry; -4 >
for all kK <n, then we have

Fome1>Tan—3+Ton-s>A""" FAT2= 0T 2(A 4+ D) S AT 3=

From Lemma 1.3, we see

Son+1=Fan>Ton-1>4". q.e.d.
.1 .1
LEMMA 5.4. If lim —logs,,+;=A4, then lim —logg,=4.
n—+o N n-o N

ProorF. From Lemma 1.3, we see
2n—2
Son-3<{qn=rap-1t+ Z Vie+ 1Tk
k=0
<FPopp—1+rytra+ - +ra-s
<Syp+1+S3+Ss+ " +S2m-1

<NS2p+1 5

and so
1 1 1
— logs,,_3<—logg,<—logn+—10gs3,+1 -
n n n n

Thus we have the conclusion. q.ed.

THEOREM 5.4. For almost all (o, f)€ X, we have

.1 n?
lim —log g,=———-
nso N 121log2
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PROOF. From Lemma 1.2, we see

1 1 1
ooty + op, = = .

bl
Ton+1tS2n+1%20+1  S2n+1 [T2n+1
+“2n+1

Sap+1

and we have

1

n

1 2 1 T2n+1
l0g 53441 =—— 2, loga,——log +0ozp41 ) -
n k=0 n S2"+1

In the proof of Theorem 5.3, we showed

1 2n 2
lim — logo, = — .
n—o N k;O 8 % 1210g2

Hence we prove

lim ilog (r2"+ L 1) =0 for almost all (o, B).

San+1

We take (y, 6)e X¥T such that y<0 and put
T2"+1(as ﬁ: ')’, 5)=(a2n+ 1 ﬁ2n+ 1s 72n+ 1 62n+ 1) .
Then we know

_ —lans1 720417
'YZn+1_ ’
Uspn+1—S2n+17

and so we have

1 1
= < <A™,
Son+1lUzne1—=S2p417]  Som+1

Fan+1

+Vap+1

San+1

Let us assume |[7,,,1/Ssp+1+0%2,+11<e ™™ for small £é>0, then we have
| 0ton+1—72n+11<2e” ™. In fact, we see

2n+1 Pap+1

r
a2n+1+ +

,s2n+l

ée—na_'_'l—néze—mz .

|a2n+1—'}’2n+1|§ +V2n+1

San+1

We have easily fi,(«—y<c)=c/(6log?2) for small ¢c>0 and we see
2
n=1

‘ Thus, by Borel-Cantelli lemma, we obtain

=]

z(r2"+1+°‘2n+1<e—n)§ Y Ala—y<2e ™)<+,
S2n+1 n=1 ‘

k3
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1 r
#{n : ———log( 2”+1+<x2,,+1)>8}< + 00
n Son+1

for almost all (a, ). q.e.d.
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