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Abstract. We give a bijective lattice path proof of the equality of the dual Jacobi-Trudy determinant
formulas for Schur polynomials. Related ideas have appeared in [1, pp. $30\not\subset- 306$] and [2, p. 24]. We remark
that the same bijection works for the case of flagged skew Schur polynomials $[2, 8]$ and that a determinant
for q-counting restricted lattice paths [7] follows from the bijection.

1. Let $A=(a_{1}, \cdots, a_{m})$ and $B=(b_{1}, \cdots, b_{m})$ be partitions, i.e. sequences of
increasing positive integers, $0\leq a_{1}\leq\cdots\leq a_{m},$ $0\leq b_{1}\leq\cdots\leq b_{m}$ , and suppose that $a_{i}\geq b_{i}$

$(i=1, \cdots, m)$ . Then the classical Jacobi-Trudy identities for Schur polynomials read:

$S_{A/B}=\det(h_{a_{i}+i-b_{j}-j})_{1\leq i,j\leq m}$ , (1)

$S_{A/B}=\det(’$ . (2)

Here $S_{A/B}$ is the Schur polynomial for the skew diagram $A/B,$ $h’ s$ are the complete
homogeneous symmetric polynomials, $e’ s$ are the elementary symmetric polynomials,
and $A^{\prime}=(a_{1}^{\prime}, \cdots, a_{n}^{\prime})$ is the conjugate partition of $A$ ; for the terminology see $[3, 4]$ .
Note that we use the French notation following [3]. Proofs of (1) and (2) using the
Gessel-Viennot method are known $[5, 6]$ . In this note we give a straightforward
combinatorial proof of the equality of the right-hand sides of (1) and (2).

As shown in $[5, 6]$ , the right-hand side of (1) is interpreted in terms of weighted
lattice paths as follows. We consider lattice paths of $N^{2}$ taking horizontal and vertical
steps. Let $NP(B;A)$ be the set of m-tuples of nonintersecting paths from $(b_{i}+i, 1)$ to
$(a_{i}+i, p)(i=1, \cdots, m)$ , where $p$ is the number of indeterminates. Then we have

$\det(h_{a_{i}+i-b_{j}-J}\langle u_{1}, \cdots, u_{p}))_{1\leq i,j\leq m}=\sum_{s\in NP\langle B;A)}wt(s)$ , (3)

where, for $s=(s_{1}, \cdots, s_{m})$ with $s_{i}$ a path from $(b_{i}+i, 1)$ to $(a_{i}+l, p)$ , we put
$wt(s):=wt(s_{1})\cdots wt(s_{m})$ and $wt(s_{i})$ is the product of the weights of the horizontal steps
that $s_{i}$ takes; a horizontal step of height $k$ carries indeterminate weight $u_{k}$ .
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We now consider lattice paths of $N^{2}$ taking north-west and vertical steps. $Le|$

$NP_{c}(B^{\prime};A^{\prime})$ be the set of n-tuples of nonintersecting paths from $(n+m+1-i-b_{i}^{\prime}, 1)$ tc
$(n+m+1-i-a_{i}^{\prime},p+1)(i=1, \cdots, n)$ . To $t=(t_{1}, \cdots, t_{n})\in NP_{c}(B^{\prime}, A^{\prime})$ with $t_{i}$ a path frorr
$(n+m+1-i-b_{i}^{\prime}, 1)$ to $(n+m+1-i-a_{i}^{\prime},p+1)$, we assign $wt_{c}(t)$ in the same way as in
the case of $NP(B, A)$ except that a north-west step starting from height $k$ carries weigh)
$u_{k}$ .

We construct a weight-preserving bijection between $NP(B;A)$ and $NP_{c}(B^{\prime};A^{\prime})a^{t}\iota$

follows: Take $s=(s_{1}, \cdots, s_{m})\in NP(B;A)$ and pick up all the horizontal steps appearing
in $s_{i}(i=1, \cdots, m)$ . Replace the horizontal step from $(c, k)$ to $(c+1, k)$ by a north-wes)

step from $(c+1, k)$ to $(c, k+1)$ . Fill out with necessary vertical steps to obtair
$t\in NP_{c}(B^{\prime};A^{\prime})$ corresponding to $s$ . For example, consider the skew tableau below with
$m=4,$ $n=6$ , and $p=4$ :

4
3 4 4

2 3 4
1 2 3

The corresponding $s\in NP(B;A)$ and $t\in NP_{c}(B^{\prime};A^{\prime})$ are:

where $s$ connects endpoints marked $0$ with horizontal steps and vertical ones, and
connects endpoints marked $\times$ with north-west steps and vertical ones. The $abov|$

procedure of obtaining $t$ from $s$ is reversible. Actually $s\in NP(B;A)$ can be obtained by
reading the tableau from left to right and $t\in NP_{c}(B^{\prime};A^{\prime})$ by reading it from bottom $tt$

top. Note that the set of integers $\{a_{i}+i(i=1, \cdots, m),$ $n+m+1-j-a_{j}^{\prime}[j=1,$ $\cdots,$ $n$)
is equal to $\{1, 2, \cdots, n+m\}$ ; see [4, p. 3, (1.7)]. Clearly this bijection between $NP(B;A$

and $NP_{c}(B^{\prime};A^{\prime})$ is weight-preserving. Thus we have

$\sum_{s\in NP\langle B;A)}wt(s)=\sum_{t\in NP_{c}(B^{i};A’)}wt_{c}(t)$ . (4

As the counterpart to (3), we have by using the Gessel-Viennot method that

$\det(’, \cdots, u_{p}))_{1\leq i.j\leq n}=\sum_{teNP_{c}\langle B^{\prime};A^{\prime})}wt_{c}(t)$ . (5

For details we refer to [5]; note that $e_{a_{i}+i-b_{j}^{\prime}-f}’(u_{1}, \cdots, u_{p})$ is the sum of the weight
of all the paths from $(n+m+1-j-b_{j}^{\prime}, 1)$ to $(n+m+1-i-a_{i}^{\prime},p+1)$ and [5] use
north-east steps instead of north-west steps. Combining (3), (4), and (5) gives the desiret
proof.
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Note that the number $p$ of indeterminates can be taken to be countable infinity;
we simply let the second coordinates of the upper endpoints tend to countable infinity.

2. Remarks about the flagged skew Schur polynomials $[2, 8]$ . We can apply the
above bijection construction to the flagged case by adjusting the second coordinates of
the endpoints according to the row resp. column flags. Given row flags $(\beta_{i}, \alpha_{i})$

$(i=1, \cdots, m)$ , i.e. the integers in the $j$th row being greater than or equal to $\beta_{i}$ and less
than or equal to $\alpha_{i}$ , we take $(b_{i}+i, \beta_{i})$ and $(a_{i}+i, \alpha_{i})(i=1, \cdots, m)$ as endpoints. Similarly,
given column flags $(\delta_{i}, \gamma_{i})(i=1, \cdots, n)$ , i.e. the integers in the ith column (numbered
from right to left) being greater than or equal to $\delta_{i}$ and less than or equal to $\gamma_{i}$ , we
take $(n+m+1-i-b_{i}^{\prime}, \delta_{i})$ and $(n+m+1-i-a_{i}^{\prime}, \gamma_{i})(i=1, \cdots, n)$ as endpoints. Then we
easily see that to a skew tableau with given row and column flags correspond the dual
pair of paths that are obtained by the same procedure as in the proof of the equality
of the right-hand sides of (1) and (2).

In the case of a one row partition with column flags, where $m=1,$ $a_{1}=n$ ,
$b_{1}=0,$ $a_{i}^{\prime}=1(i=1, \cdots, n),$ $b_{i}^{\prime}=0(i=1, \cdots, n)$ , we obtain the expression

$\det(e_{1+i-j}(\delta_{i}, \gamma_{j};u))_{1\leq i,j\leq n}$ (6)

for the generating polynomial; $e_{d}(f, g;u)$ is the dth elementary symmetric polynomial
in $u_{f},$ $u_{f+1},$ $\cdots,$ $u_{g}$ . In particular (6) with specialization $u_{i}:=q^{i}(i\in N)$ gives a determinant
for q-counting restricted lattice paths [7, p. 136]:

$\det(q^{\langle 1+t-J)\langle t-j+2\delta_{i})/2.\left\{\begin{array}{l}\gamma_{j}-\delta_{i}+1\\1+i-j\end{array}\right\})_{1\leq i,j\leq n}}$

where $[\cdots]_{q}$ denotes the q-binomial coefficient.
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