Bijective Lattice Path Proof of the Equality of the Dual Jacobi-Trudy Determinants

Kazuo Ueno
University of Saga
(Communicated by N. Iwahori)

Abstract

We give a bijective lattice path proof of the equality of the dual Jacobi-Trudy determinant formulas for Schur polynomials. Related ideas have appeared in [1, pp. 304-306] and [2, p. 24]. We remark that the same bijection works for the case of flagged skew Schur polynomials [2, 8] and that a determinant for q-counting restricted lattice paths [7] follows from the bijection.

1. Let $A=\left(a_{1}, \cdots, a_{m}\right)$ and $B=\left(b_{1}, \cdots, b_{m}\right)$ be partitions, i.e. sequences of increasing positive integers, $0 \leq a_{1} \leq \cdots \leq a_{m}, 0 \leq b_{1} \leq \cdots \leq b_{m}$, and suppose that $a_{i} \geq b_{i}$ $(i=1, \cdots, m)$. Then the classical Jacobi-Trudy identities for Schur polynomials read:

$$
\begin{align*}
& S_{A / B}=\operatorname{det}\left(h_{a_{i}+i-b_{j}-j}\right)_{1 \leq i, j \leq m}, \tag{1}\\
& S_{A / B}=\operatorname{det}\left(e_{a_{i}^{\prime}+i-b_{j}^{\prime}-j}\right)_{1 \leq i, j \leq n} . \tag{2}
\end{align*}
$$

Here $S_{A / B}$ is the Schur polynomial for the skew diagram A / B, h 's are the complete homogeneous symmetric polynomials, e 's are the elementary symmetric polynomials, and $A^{\prime}=\left(a_{1}^{\prime}, \cdots, a_{n}^{\prime}\right)$ is the conjugate partition of A; for the terminology see $[3,4]$. Note that we use the French notation following [3]. Proofs of (1) and (2) using the Gessel-Viennot method are known [5,6]. In this note we give a straightforward combinatorial proof of the equality of the right-hand sides of (1) and (2).

As shown in [5, 6], the right-hand side of (1) is interpreted in terms of weighted lattice paths as follows. We consider lattice paths of \boldsymbol{N}^{2} taking horizontal and vertical steps. Let $\mathrm{NP}(B ; A)$ be the set of m-tuples of nonintersecting paths from $\left(b_{i}+i, 1\right)$ to $\left(a_{i}+i, p\right)(i=1, \cdots, m)$, where p is the number of indeterminates. Then we have

$$
\begin{equation*}
\operatorname{det}\left(h_{a_{i}+i-b_{j}-j}\left(u_{1}, \cdots, u_{p}\right)\right)_{1 \leq i, j \leq m}=\sum_{s \in \mathbb{N P}(\boldsymbol{B} ; \boldsymbol{A})} \mathrm{wt}(s), \tag{3}
\end{equation*}
$$

where, for $s=\left(s_{1}, \cdots, s_{m}\right)$ with s_{i} a path from $\left(b_{i}+i, 1\right)$ to $\left(a_{i}+i, p\right)$, we put $\mathrm{wt}(s):=\mathrm{wt}\left(s_{1}\right) \cdots \mathrm{wt}\left(s_{m}\right)$ and $\mathrm{wt}\left(s_{i}\right)$ is the product of the weights of the horizontal steps that s_{i} takes; a horizontal step of height k carries indeterminate weight u_{k}.

We now consider lattice paths of \boldsymbol{N}^{2} taking north-west and vertical steps. Let $\mathrm{NP}_{c}\left(B^{\prime} ; A^{\prime}\right)$ be the set of n-tuples of nonintersecting paths from $\left(n+m+1-i-b_{i}^{\prime}, 1\right)$ to $\left(n+m+1-i-a_{i}^{\prime}, p+1\right)(i=1, \cdots, n)$. To $t=\left(t_{1}, \cdots, t_{n}\right) \in \mathrm{NP}_{c}\left(B^{\prime}, A^{\prime}\right)$ with t_{i} a path from $\left(n+m+1-i-b_{i}^{\prime}, 1\right)$ to $\left(n+m+1-i-a_{i}^{\prime}, p+1\right)$, we assign $\mathrm{wt}_{c}(t)$ in the same way as in the case of $\operatorname{NP}(B, A)$ except that a north-west step starting from height k carries weight u_{k}.

We construct a weight-preserving bijection between $\mathrm{NP}(B ; A)$ and $\mathrm{NP}_{c}\left(B^{\prime} ; A^{\prime}\right)$ as follows: Take $s=\left(s_{1}, \cdots, s_{m}\right) \in \operatorname{NP}(B ; A)$ and pick up all the horizontal steps appearing in $s_{i}(i=1, \cdots, m)$. Replace the horizontal step from (c, k) to $(c+1, k)$ by a north-west step from $(c+1, k)$ to $(c, k+1)$. Fill out with necessary vertical steps to obtain $t \in \mathrm{NP}_{c}\left(B^{\prime} ; A^{\prime}\right)$ corresponding to s. For example, consider the skew tableau below with $m=4, n=6$, and $p=4$:

4
344
234 $1 \quad 23$

The corresponding $s \in \operatorname{NP}(B ; A)$ and $t \in \mathrm{NP}_{c}\left(B^{\prime} ; A^{\prime}\right)$ are:

where s connects endpoints marked \circ with horizontal steps and vertical ones, and t connects endpoints marked \times with north-west steps and vertical ones. The above procedure of obtaining t from s is reversible. Actually $s \in \operatorname{NP}(B ; A)$ can be obtained by reading the tableau from left to right and $t \in \mathrm{NP}_{c}\left(B^{\prime} ; A^{\prime}\right)$ by reading it from bottom to top. Note that the set of integers $\left\{a_{i}+i(i=1, \cdots, m), n+m+1-j-a_{j}^{\prime}(j=1, \cdots, n)\right\}$ is equal to $\{1,2, \cdots, n+m\}$; see $[4, \mathrm{p} .3,(1.7)]$. Clearly this bijection between $\operatorname{NP}(B ; A)$ and $\mathrm{NP}_{c}\left(B^{\prime} ; \boldsymbol{A}^{\prime}\right)$ is weight-preserving. Thus we have

$$
\begin{equation*}
\sum_{s \in \operatorname{NP}(B ; \boldsymbol{B})} \mathrm{wt}(s)=\sum_{t \in \mathrm{NP}_{c}\left(\boldsymbol{B}^{\prime} ; \boldsymbol{A}^{\prime}\right)} \mathrm{wt}_{\mathrm{c}}(t) . \tag{4}
\end{equation*}
$$

As the counterpart to (3), we have by using the Gessel-Viennot method that

$$
\begin{equation*}
\operatorname{det}\left(e_{a_{i}^{\prime}+i-b_{j}^{\prime}-j}\left(u_{1}, \cdots, u_{p}\right)\right)_{1 \leq i, j \leq n}=\sum_{t \in \mathbf{N P}_{c}\left(B^{\prime} ; A^{\prime}\right)} \mathrm{wt}_{c}(t) \tag{5}
\end{equation*}
$$

For details we refer to [5]; note that $e_{a_{i}+i-b_{j}^{\prime}-j}\left(u_{1}, \cdots, u_{p}\right)$ is the sum of the weights of all the paths from $\left(n+m+1-j-b_{j}^{\prime}, 1\right)$ to $\left(n+m+1-i-a_{i}^{\prime}, p+1\right)$ and [5] uses north-east steps instead of north-west steps. Combining (3), (4), and (5) gives the desired proof.

Note that the number p of indeterminates can be taken to be countable infinity; we simply let the second coordinates of the upper endpoints tend to countable infinity.
2. Remarks about the flagged skew Schur polynomials [2, 8]. We can apply the above bijection construction to the flagged case by adjusting the second coordinates of the endpoints according to the row resp. column flags. Given row flags (β_{i}, α_{i}) $(i=1, \cdots, m)$, i.e. the integers in the i th row being greater than or equal to β_{i} and less than or equal to α_{i}, we take $\left(b_{i}+i, \beta_{i}\right)$ and $\left(a_{i}+i, \alpha_{i}\right)(i=1, \cdots, m)$ as endpoints. Similarly, given column flags $\left(\delta_{i}, \gamma_{i}\right)(i=1, \cdots, n)$, i.e. the integers in the i th column (numbered from right to left) being greater than or equal to δ_{i} and less than or equal to γ_{i}, we take $\left(n+m+1-i-b_{i}^{\prime}, \delta_{i}\right)$ and $\left(n+m+1-i-a_{i}^{\prime}, \gamma_{i}\right)(i=1, \cdots, n)$ as endpoints. Then we easily see that to a skew tableau with given row and column flags correspond the dual pair of paths that are obtained by the same procedure as in the proof of the equality of the right-hand sides of (1) and (2).

In the case of a one row partition with column flags, where $m=1, a_{1}=n$, $b_{1}=0, a_{i}^{\prime}=1(i=1, \cdots, n), b_{i}^{\prime}=0(i=1, \cdots, n)$, we obtain the expression

$$
\begin{equation*}
\operatorname{det}\left(e_{1+i-j}\left(\delta_{i}, \gamma_{j} ; u\right)\right)_{1 \leq i, j \leq n} \tag{6}
\end{equation*}
$$

for the generating polynomial; $e_{d}(f, g ; u)$ is the d th elementary symmetric polynomial in $u_{f}, u_{f+1}, \cdots, u_{g}$. In particular (6) with specialization $u_{i}:=q^{i}(i \in N)$ gives a determinant for q-counting restricted lattice paths [7, p. 136]:

$$
\operatorname{det}\left(q^{(1+i-j)\left(i-j+2 \delta_{i}\right) / 2} \cdot\left[\begin{array}{c}
\gamma_{j}-\delta_{i}+1 \\
1+i-j
\end{array}\right]_{q}\right)_{1 \leq i, j \leq n}
$$

where $[\cdots]_{q}$ denotes the q-binomial coefficient.

References

[1] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math., 58 (1985), 300-321.
[2] I. Gessel and G. Viennot, Determinants, paths, and plane partitions, preprint, July 1989.
[3] A. Lascoux and P. Pragacz, Ribbon Schur functions, Europ. J. Combinatorics, 9 (1988), 561-574.
[4] I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Univ. Press, 1979.
[5] S. Okada, Lattice path method and characters of classical groups, preprint, 1988.
[6] D. Stanton and D. White, Constructive Combinatorics, Springer, 1986.
[7] R. A. Sulanke, q-Counting n-dimensional lattice paths, J. Combin. Th. Ser. A, 33 (1982), 135-146.
[8] M. Wachs, Flagged Schur functions, Schubert polynomials, and symmetrizing operators, J. Combin. Th. Ser. A, 40 (1985), 276-289.

