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Abstract. The structure of the space of multipliers of the range of a composition operator $C_{t}$ on the

Hardy space is studied. We provide necessary $and/or$ sufficient conditions in terms of appropnate measure-
ments of the distance ofl $\phi|$ to 1 for the containment or the inclusion of the space of multipliers in standard

spaces.

1. Introduction.

Let $D$ denote the unit disc of the complex plane $C,$ $\partial D$ the unit circle and $ d\sigma$ the

normalized Lebesgue arc length measure on $\partial D$ . For $ 1\leq p\leq\infty$ , the Lebesgue spaces
$L^{p}(\partial D, d\sigma)$ are simply denoted by $L^{p}$ and the Hardy spaces of analytic functions on $D$

by $H^{p}$ . Each $f\in H^{p}$ has, for a.e. $\zeta\in\partial D$ , a radial limit

$f(\zeta)=\lim_{r\rightarrow 1-}f(r\zeta)$ ,

and for $ 1\leq p<\infty$ the p-norm of $f$ is given by

$\Vert f\Vert_{p}^{p}=_{0}\sup_{<r<}1\int|f(r\zeta)|^{p}d\sigma(\zeta)=\int|f|^{p}$ .

The unadomed integral sign always means that the integral is over $\partial D$ and all integrals

unless otherwise indicated are with respect to the measure $ d\sigma$ . The abbreviation $a.e$ .‘

always refers to $ d\sigma$ . We will use the same symbol to denote a holomorphic function on
$D$ in $H^{p}$ and its radial limit function; the precise meaning of this statement will be clear

from the context.
The letters $\phi$ and $\psi$ with or without subscripts are reserved to denote nontrivial

$ho1\dot{o}$morphic self-maps of $D$ . For $ 1\leq p<\infty$ , the composition operator $C_{\phi}$ : $H^{p}\rightarrow H^{p}$ is

defined by the equation

$ C_{\phi}(f)=f\circ\phi$ $(f\in H^{p})$ .

Let $T$ be an operator on a functional Hilbert space $H$. We say that $f\in H$ is a
multiplier of the range of $T$ if $fT(H)\subseteq H$. It is reasonable expect that some operator
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properties of $T$ should be reflected in the structure of the (Banach) space of multipliers
of $T(H)$ . This note provides some results of this type in the case of the composition
operator $C_{\phi}$ on the Hardy spaoe $H^{2}$ . The containment, respectively, inclusion of the
space ofmultipliers (of $C_{\phi}(H^{2})$) in standard spaces is either related to the (appropriately
taken) distance of $|\phi|$ to 1 or to an operator property of $C_{\phi}$ . The space of multipliers
is contained in BMOA if and only if it is contained in $H^{\infty}$ if and only if $\phi$ is a finite
Blaschke product (Proposition 12). This observation leads to the Cima-Thompson-
Wogen characterization of Fredholm composition operators on the Hardy space
(Proposition 18). If $\phi$ is locally well-behaved, in the sense ofhaving an angular derivative
at a point $\zeta\in\partial D$ , then the multipliers are also on their best behavior–they are bounded
on nontangential approach regions to $\zeta$ (Corollary 8). Proposition 14 notes that $\phi$ is not
an extreme point of the unit ball of $H^{\infty}$ if and only if $bH^{2}$ is contained in the space of
multipliers for some non-zero $b\in H^{\infty}$ . A related condition for $C_{\phi}$ to be Hilbert-Schmidt
is given in Corollary 15. Finally Proposition 16 tells when the multipliers are a Hilbert
space. In the proofs of some results de Branges spaces lurk around in the background
but their explicit role is not identified.

Throughout this paper, the letter $c$ will denote a constant, not necessarily of the
same value at each of it’s occurrences.

ACKNOWLEDGEMENT. The idea of considering the multipliers of the range of
operators was introduced to me by Professors Alan L. Lambert and Barnet M.
Weinstock.

2. Preliminaries and point estimates.

The Hardy space $H^{2}$ is of course a Hilbert space, with the inner product

$\langle f, g\rangle=\int f\overline{g}$ ($f$ and $g\in H^{2}$).

For each point in $w\in D$ , the reproducing kemel

$k_{w}(z)=(1-\overline{w}z)^{-1}$ $(z\in D)$ (1)

belongs to $H^{2}$ , and represents the linear functional of point evaluation at $w$ :
$ f(w)=\langle f, k_{w}\rangle$ $(f\in H^{2})$ . (2)

In particular

$\Vert k_{w}\Vert_{2}^{2}=\langle k_{w}, k_{w}\rangle=k_{w}(w)=(1-|w|^{2})^{-1}$ (3)

From (2) and (3) we can derive a standard point estimate for functions in $H^{2}$ ;

$|f(w)|\leq\Vert f\Vert_{2}\Vert k_{\nu}\Vert_{2}=(1-|\omega|^{2})^{-1/2}\Vert f\Vert^{2}$ (4)
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The Littlewood Subordination Principle [8] may be stated as, for $ 1\leq p<\infty$ ,

$\int|f\circ\phi|^{p}\leq\int|f|^{p}$ $(f\in H^{p})$ , (5)

provided $\phi(0)=0$ . In the language of operator theory this says that $C_{\phi}$ : $H^{p}\rightarrow H^{p}$ is
bounded; and the operator norm of $C_{\phi}$ is in fact 1 when $\phi(0)=0$ .

Let $S$ be a subspacce of $H^{2}$ . A function $f\in H^{2}$ is said to be a multiplier of $S$ if
$fS\subseteq H^{2}$ , i.e., $fg\in H^{2}$ for every $g\in S$ . The following lemma is well-known [13],

Lemma 3, page 782.

LEMMA 1. Let $f$ be a multiplier of $H^{2}$ . Then $f$ is bounded.

For a composition operator $C_{\phi}$ : $H^{2}\rightarrow H^{2}$ , consider $M(\phi)$ , the vector space of all
multipliers of the range of $C_{\phi}$ . For $f\in M(\phi)$ define the operator map $T_{f}$ : $H^{2}\rightarrow H^{2}$ by

$ T_{f}(g)=fg\circ\phi$ $(g\in H^{2})$ . (6)

An application of the Closed Graph Theorem shows that $T_{f}$ is bounded; so there
exists a constant $c=c(f)$ such that

$\Vert fg\circ\phi\Vert_{2}\leq c\Vert g\Vert_{2}$ $(g\in H^{2})$ . (7)

We define a norm on $M(\phi)$ by

$\Vert f\Vert_{M\langle\phi)}=\Vert T_{f}\Vert$ $(f\in M(\phi))$ ,

where $\Vert T_{f}\Vert$ is the operator norm of $T_{f}$ . When there is no risk ofconfusion, the multiplier
norm of$f$will be written without the subscript $M(\phi)$ . The following lemma shows that
$M(\phi)$ with this norm is a Banach space. As usual $\mathscr{L}(H^{2})$ denotes the space of bounded
operators on $H^{2}$ , endowed with the operator norm.

LEMMA 2. The set $\{T_{f} : f\in M(\phi)\}$ is a closed subspace of $\mathscr{L}(H^{2})$ .
$PR\infty F$ . To prove the closedness, suppose $\{f_{n}\}$ is a sequence in $M(\phi)$ and that

$T_{f_{n}}\rightarrow T$ as $ n\rightarrow\infty$ for some $T$ in $\mathcal{L}(H^{2})$ . (Each $f_{n}$ is viewed as a function defined $d\sigma-$

almost everywhere on $\partial D$). Write $f=T(1)$ . Note that $f_{n}=T_{f_{n}}(1)$ converges to $f$ in
$H^{2}$ , hence $\{f_{n}\}$ has a subsequence which converges to $f$ a.e. Moreover,

$\int|f_{n}|^{2}|g\circ\phi|^{2}\leq c\int|g|^{2}$ $(g\in H^{2})$ ,

where $ c=\sup_{n}\Vert T_{f_{n}}\Vert<\infty$ . Passing into subsequential limits and applying Fatou’s
lemma,

$\int|f|^{2}|g\circ\phi|^{2}\leq c\int|g|^{2}$ $(g\in H^{2})$ ,

so $f\in M(\phi)$ .
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Fix $g\in H^{\infty}$ . Then

$|IT_{f_{n}}(g)-T_{f}(g)\Vert_{2}=\Vert(f_{n}-f)g\circ\phi\Vert_{2}\leq\Vert g\Vert_{\infty}\Vert(f_{n}-f)\Vert_{2}$ ,

so $T_{f_{n}}(g)\rightarrow T_{f}(g)$ as $ n\rightarrow\infty$ . Thus $T$ and $T_{f}$ agree on a dense subspace of $H^{2}$ (namely
$H^{\infty})$ . Since both $T$ and $T_{f}$ are bounded, it follows that $T=T_{f}$ . $\square $

Since convergence in $H^{2}$ implies pointwise convergence on $D$ , it is worthwhile to
single out the following observation made during the proof as a corollary;

COROLLARY 3. If as $n\rightarrow\infty,f_{n}\rightarrow f$ in $M(\phi)$ then $f_{n}\rightarrow f$pointwise on $D$ .

Let $w\in D$ . The M\"obius map $\psi_{w}$ is defined by,

$\psi_{w}(z)=\frac{w-z}{1-\overline{w}z}$ $(z\in D)$ . (8)

It is easy to verify that $\psi_{w}$ is its own inverse map and that $\psi_{w}^{\prime}=(1-|w|^{2})k_{w}^{2}$ .
LEMMA 4. Let $\psi_{w}$ be a Mobius map. Then as vector spaces $M(\psi_{w}\circ\phi)=M(\phi)$ .
$PR\infty F$ . Suppose $f\in M(\phi)$ and let $g\in H^{2}$ . Then

$\int|f|^{2}|g\circ\psi_{w}\circ\phi|^{2}\leq\Vert f\Vert_{M\langle\phi)}^{2}\int|g\circ\psi_{w}|^{2}=\Vert f\Vert_{M\langle\phi)}^{2}\int|g|^{2}|\psi_{w}^{\prime}|$ .

Since $\psi_{w}^{\prime}$ is bounded, we have that $f\in M(\psi_{w}\circ\phi)$ . Thus $M(\phi)\subseteq M(\psi.\circ\phi)$ . Now replacing
$\phi$ by $\psi_{w}\circ\phi$ we get the reverse inclusion. $\square $

The usual pointwise estimate (4) for functions in the Hardy spaoe can be improved
for functions in $M(\phi)$ to provide a useful inequality.

LEMMA 5. Let $f\in M(\phi)$ and $w\in D$ . Then

$|f(w)|\leq\Vert f\Vert\sqrt{\frac{1-|\phi(w)|^{2}}{1-|w|^{2}}}$ .

$PR\infty F$ . Let $g\in H^{2}$ . Then $fg\circ\phi\in H^{2}$ so by (4)

1 $f(w)g(\phi(w))|\leq\Vert fg\circ\phi\Vert_{2}(1-|\omega|^{2})^{-1/2}\leq\Vert f\Vert\Vert g\Vert_{2}(1-|w|^{2})^{-1/2}$

Put $g=k_{\phi\langle w)}$ to deduce the lemma. $\square $

Let $k_{w}^{\phi}=(1-\phi(w)\phi)k_{w}$ . These are the reproducing kemels in the de Brange space
$\ovalbox{\tt\small REJECT}(\phi)[9]$ . In the next lemma we will evaluate the multiplier norm of $k_{w}^{\phi}$ , which tum
out to be the same as the norm of $k_{w}^{\phi}$ in $\ovalbox{\tt\small REJECT}(\phi)[9]$ .

LEMMA 6. Let $\omega\in D$ . Then
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$PR\infty F$ . The domination of the right-hand side by the left-hand side is an immedi-

ate consequence of the pointwise estimate of Lemma 5 applied to $k_{w}^{\phi}$ . To establish

the reverse inequality, fix $g\in H^{2}$ and notice that

$\int|1-\phi(w)\phi|^{2}|\psi_{w}^{\prime}||g\circ\phi|^{2}=\int|1-\phi(w)\phi\circ\psi_{w}|^{2}|g\circ\phi\circ\psi_{w}|^{2}$ , (9)

where $\psi_{w}$ is the M\"obius map defined in (8). Since $\psi_{\phi(w)}\circ\psi_{\phi(w)}$ is the identity map and
$\psi_{\phi\langle w)}\circ\phi\circ\psi_{w}(0)=0$ , by the Littlewood Subordination Principle (5) the integral on the

right-hand side of (9) is

$\leq\int|1-\phi(w)\psi_{\phi\langle w)}|^{2}|g\circ\psi_{\phi\langle w)}|^{2}$ (10)

By a change of variable (10) is easily seen to be equal to

$(1-|\phi(w)|^{2})\int|g|^{2}$

Thus

$\int|k_{w}^{\phi}|^{2}|g\circ\phi|^{2}\leq(\frac{1-|\phi(w)|^{2}}{1-|w|^{2}})\int|g|^{2}$ ,

which establishes the upper estimate for $\Vert k_{w}^{\phi}\Vert$ asserted in the lemma. $\square $

Note that $|k_{w}|\leq(1-|\phi(w)|)^{-1}|k_{w}^{\phi}|$ . Then from Lemma 5 and Lemma 6 we can
easily estimate the multiplier norm of the reproducing kernels:

COROLLARY 7. Let $w\in D$ . Then

$\frac{1}{\sqrt{1-|\phi(w)|^{2}}}\frac{1}{\sqrt{1-|w|^{2}}}\leq\Vert k_{w}\Vert\leq\sqrt{}\frac{1+|\phi(w)|1}{1-|\phi(w)|\sqrt{1-|w|^{2}}}$ .

We omit the proof.
We say that $\phi$ has a finite angular derivative at $\zeta\in\partial D$ if here exists $\lambda$ with $|\lambda|=1$

such that the difference quotient $(\phi(z)-\lambda)/(z-\zeta)$ has a finite limit as $z$ tends non-
tangentially to $\zeta$ . A theorem of C. Carath\’eodory provides a necessary and sufficient
condition for a function to have a finite angular derivative. Carath\’eodory [1], section
298, Theorem 2.1, gives a proof of the theorem which highlights its geometric nature;

for a proof using Hilbert space techniques, see Sarason [10]. Part of Carath\’eodory’s

theorem which will be used in Corollary 8 is presented below.
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THEOREM $C$ (Carath\’eodory). For $\zeta\in\partial D,$ $\phi$ has afinite angular derivative at $\zeta$ if $an_{(}$

only if

$\lim\inf\{\frac{1-|\phi(z)|^{2}}{1-|z|^{2}}$ : $ z\rightarrow\zeta$ unrestrictedly in $ D\}<\infty$ .

Moreover, if $\phi$ has a finite angular derivative at $\zeta\in\partial D$ then the nontangential limit

$\lim_{z\rightarrow\zeta}\frac{1-|\phi(z)|^{2}}{1-|z|^{2}}$

exists.

COROLLARY 8. The function $\phi$ has a finite angular derivative at a point $\zeta\in\partial D$ ,
and only if there exists $M>0$ and a sequence $ w_{n}\rightarrow\zeta$ such that lim supl $f(w_{n})|\leq M\Vert f\Vert fo$

every $f\in M(\phi)$ . Thus in the case $\phi$ has afinite angular derivative at $\zeta\in\partial D$ each multiplie
is bounded on nontangential approach regions to $\zeta$ .

$PR\infty F$ . If $\phi$ has an angular derivative at $\zeta$ then the corresponding implication $c$

the corollary is a trivial consequence of the estimate in Lemma 5 and Theorem C. $T$

prove the converse, suppose there exists a constant $M>0$ and a sequence $w_{n}$ in $\rfloor$

tending to $\zeta\in\partial D$ such that for every $f\in M(\phi)$ and for every $n$

$|f(w_{n})|\leq M\Vert f\Vert$ .
Put $f=k_{w_{n}}^{\phi}$ . Then applying Lemma 6 we have

$\frac{1-|\phi(w_{n})|^{2}}{1-|w_{n}|^{2}}\leq M^{2}$ .

Hence by Carath\’eodory’s theorem $\phi$ has a finite angular derivative at $\zeta$ . $[$

3. Inclusion of multipliers in standard spaces.

We say that $\phi$ is an inner function if it has radial limits of modulus 1 a.e.

LEMMA 9. Suppose $M(\phi)\subseteq H^{p}$ for some $p>2$ . Then $\phi$ is an inner function.
$PR\infty F$ . Suppose $\phi$ is not an inner function, then there exist $E\subseteq\partial D$ with $\sigma(E)>|$

and $\beta<r<1$ such that $|\phi|<r$ . Let $\lambda$ be a Lebesgue point of $E$ and define $h\in L^{2}(\partial D, \sigma)b$

$h(\zeta)=\{(\zeta-\lambda)^{-1/p}1$ $ifif$ $\zeta\in E\zeta\not\in E$

and $\zeta\neq\lambda$ .
Then $\log|h|$ is integrable, so there exists $f\in H^{2}$ such that $|f|=|h|,$ $[6]$ , page $5^{\underline{7}}$

Clearly $f\not\in H^{p}$ . However, for $g\in H^{2},$ $ g\circ\phi$ is essentially bounded on $E$, thus $f\in M(\phi),$ $s($

$M(\phi)$ is not contained in $H^{p}$ . $[$
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Let $d\sigma\circ\phi^{-1}$ denote the regular measure of the Borel sets of $\partial D$ defined by
$d\sigma\circ\phi^{-1}(E)=d\sigma(\phi^{-1}(E))$ . Then we have the standard change of variable formula:

$\int h\circ\phi d\sigma=\int hd\sigma\circ\phi^{-1}$ , (11)

where $h$ is a measurable function and $h\geq 0$ a.e. The measure $d\sigma\circ\phi^{-1}$ is absolutely
continuous with respect to $ d\sigma$ and in the case $\phi(0)=0$ ,

$ d\sigma^{\circ}\phi^{-1}=d\sigma$ . (12)

(This well known result (12) is seen by applying the change of variable formula (11) to
the integrals $\int\phi^{n}\phi^{m}d\sigma=0,$ $n\neq m,$ $\int|\phi|d\sigma=1$ and then using the F. and M. Riesz theorem).

PROPOSITION 10. Let $ 2<p<\infty$ . Then there does not exist $\phi$ such that $M(\phi)=H^{p}$ .

PROOF. Suppose there exists $\phi$ such that $M(\phi)=H^{p}$ for some $ 2<p<\infty$ . By Lemma
9, $\phi$ is an inner function and by Lemma 4 we can assume that $\phi(0)=0$ . Fix $g\in H^{2}$ .
Then $g\circ\phi H^{p}\subseteq H^{2}$ , so $g\circ\phi H^{p}H^{2}\subseteq H^{1}$ . By the factorization theorems for functions in
Hardy spaces (actually all we need is the weak factorization theorems in [3]) we have
that $H^{p}H^{2}\supseteq H^{q}$ where $p^{-1}+2^{-1}=q^{-1}$ and $ 1<q<\infty$ . Thus $g\circ\phi H^{q}\subseteq H^{1}$ . Recalling
that the dual of $H^{q}$ is $H^{r}$ where $q^{-1}+r^{-1}=1,$ $[5]$ , Chapter IV, Theorem 4.2, pp. 242-
243, we deduce that $g\circ\phi\in H$‘. Thus we have the following: if $g\in H^{2}$ then $g\circ\phi\in H$‘

where $p^{-1}+r^{-1}=2^{-1}$ . An application of the Closed Graph Theorem shows that

$\Vert g\circ\phi\Vert\leq c\Vert g\Vert_{2}$ $(g\in H^{2})$ . (13)

Note that $r>2$ . Applying the change of variable formula (11) to the integral on the
left-hand side of (13) and using (12) we have,

$(\int|g|^{r}d\sigma)^{1/r}\leq c(\int|g|^{2}d\sigma)^{1/2}$ $(g\in H^{2})$ ,

which is clearly impossible. $\square $

The space of BMO functions with its applications to univalent function theory,
quasiconformal mappings, partial differential equations and probability theory is one
of the most well-studied spaces of functions. There is now a fairly rich literature on
$BMO$ , see [5], Chapter 6, and the references therein, for a good discussion of many of
the now classical properties ofBMO functions. The space ofBMOA functions is defined
by $BMOA=H^{2}\cap BMO$ and for $f\in H^{2}$ the BMOA norm of $f$ may be defined by

$\Vert f\Vert_{BMOA}^{2}=|f(0)|^{2}+\sup_{w\in D}\Vert f\circ\psi_{w}-f(w)\Vert_{2}^{2}$ .
The estimate of $\Vert k_{w}\Vert_{BMOA}$ given in Lemma 11 will be used in the proof of Proposition
12. But first we recall the Littlewood-Paley identity.

Let dm denote the normalized Lebesgue area measure on D. (So $dm=rdrd\theta/\pi.$)
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The Littlewood-Paley identity relates the Hardy space norm to that of a weighted
Bergman space:

$\int_{\partial D}|f|^{2}d\sigma=|f(0)|^{2}+2\int_{D}|f^{\prime}|^{2}(-\log|\cdot|)dm$ $(f\in H^{2})$ .

LEMMA 11. Let $w\in D$ . Then
$\Vert k_{w}\Vert_{BM0A}\geq|w|(1-|w|^{2})^{-1}$

$PR\infty F$ . By the definition of the BMOA norm
$\Vert k_{w}\Vert_{BMO_{4}4}^{2}\geq\Vert k_{w}\circ\psi_{w}-k_{w}(w)\Vert_{2}^{2}$ . (14)

By the Littlewood-Paley identity the right-hand side of inequality (14) is

$=2\int|k_{w}^{\prime}\circ\psi_{w}|^{2}|\psi_{\nu}^{\prime}|^{2}(-\log|\cdot|)dm$

$=2\int|k_{w}^{\prime}|^{2}(-\log|\psi_{w}|)dm$

$=2|w|^{2}(1-|w|^{2})^{-2}\int|\psi_{w}^{\prime}|^{2}(-\log|\psi_{w}|)dm$

$=2|w|^{2}(1-|w|^{2})^{-2}\int(-\log|\cdot|)dm=|w|^{2}(1-|w|^{2})^{-2}$ ,

from which the lemma follows. $\subset$

Let $\phi$ be an inner function and let $\mathscr{A}$ denote the $\sigma$-algebra

$d=$ { $\phi^{-1}(E):E$ is a Borel set of $\partial D$}. (15

For $f\geq 0$ a.e. the conditional expectation, $E(f|d)$ , with respect to $d$ is defined to $b($

the unique $d$ measurable function for which

$\int_{A}E(f|\mathscr{A})d\sigma=\int_{A}fd\sigma$ $(A\in \mathscr{A})$ . (16

When there is no confusion to the $\sigma$-algebra being referred we will simply denot $($

$E(f|\mathscr{A})$ by $E(f)$ . See [7] for a briefdiscussion ofconditional expectation. The followin $\{$

change of variable formula (17) is adopted from [7], lines 1-4, page 227:

Iff is a measurable function on $\partial D$ and $g\in L^{2}$ then

$\int|f|^{2}|g\circ\phi|^{2}d\sigma=\int E(|f|^{2})\circ\phi^{-1}|g|^{2}d\sigma\circ\phi^{-1}$ (17

(Even though $\phi^{-1}$ may not be a function a known property is that $E(|f|^{2})\circ\phi^{-}$
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is well-defined). Since $L^{2}=H^{2}+\overline{H^{2}}$ from (7) and (17) we deduce the following:

Let $f\in H^{2}$ . Then $f\in M(\phi)$ if and only if

$\int E(|f|^{2})\circ\phi^{-1}|g|^{2}d\sigma\circ\phi^{-1}\leq c\int|g|^{2}$ $(g\in L^{2})$ .

Thus an equivalent condition for $f\in M(\phi)$ may be stated in the language of conditional
expectation operators: for every $f\in H^{2}$ ,

$f\in M(\phi)=E(|f|^{2})\circ\phi^{-1}\in L^{\infty}$ (18)

We will see that in order $E(|f|^{2})\circ\phi^{-1}\in L^{\infty}$ it is not necessary that $f\in H^{\infty}$ (Proposition

12).
Clearly $M(\phi)$ is closed under multiplication by $H^{\infty}$ functions; so it is impossible

for $M(\phi)=BMOA$ . Proposition 12 shows that even the inclusion $M(\phi)\subseteq BMOA$ occurs
only under very special circumstances.

PROPOSITION 12. The following are equivalent.
1. $M(\phi)\subseteq BMOA$ .
2. $\phi$ is a finite Blaschke product.
3. $\phi$ is an inner function andfor every $f\in H^{2}$

$E(|f|^{2}|\mathscr{A})\circ\phi^{-1}\in L^{\infty}\Rightarrow f\in H^{\infty}$ ,

where $\mathscr{A}$ is the $\sigma$-algebra defined in (15).

4. $M(\phi)\subseteq H^{\infty}$ .
$PR\infty F$ . We will prove the implications $1\Rightarrow 2\Rightarrow 3\Rightarrow 4$ .
Proof of $1\Rightarrow 2$ : Suppose $M(\phi)\subseteq BMOA$ . By Lemma 9, $\phi$ is an inner function. By

a theorem of Frostman [6], page 176, there exists a M\"obius map $\psi_{w}$ such that $ b=\psi_{w}\circ\phi$

is a Blaschke product. Then by Lemma 4, $M(b)\subseteq BMOA$ . Consider the inclusion map
$i;M(b)\rightarrow BMOA$ . Since convergence in $M(b)$ implies pointwise convergence (Corol-

lary 3), an application of the Closed Graph Theorem shows that $i:M(b)\rightarrow BMOA$ is
bounded, i.e.,

$\Vert f\Vert_{BMOA}\leq c\Vert f\Vert_{M\langle b)}$ $(f\in M(b))$ (19)

for some constant $c$ .
Letw beazero of b. Apply (19) $tothekerne1k_{w}^{b}=k_{w}$ . By Lemma6and Lemma11

$\frac{|w|}{\sqrt{1-|w|^{2}}}\leq c$ .

It follows that the number of zeros of $b$ must be finite. Hence $b$ is continuous across
$\partial D$ . However $\phi_{w}\circ b=\phi$ , so $\phi$ is an inner function which is continuous across $\partial D$ . Thus
$\phi$ is a finite Blaschke product.
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Proof of $2\Rightarrow 3$ : Suppose $\phi$ is a finite Blaschke product. Let the number of zeros of
$\phi$ , counting multiplicity, be $n$ . Then $\phi:\partial D\rightarrow\partial D$ is an $n$ to 1, onto function. Let $f\geq($

a.e. Define $\tilde{E}(f)$ by

$\tilde{E}(f)(\xi)=\frac{1}{n}\sum_{\phi\langle\zeta)=\xi}f(\zeta)$ (a.e. $\xi\in\partial D$).

Let $g\in L^{2}$ . Then by a change of variable

$\int f|g\circ\phi|^{2}d\sigma=\int\tilde{E}(f)|g|^{2}d\sigma\circ\phi^{-1}$

Comparing this equation with (17), we have
$\tilde{E}(f)=E(f)\circ\phi^{-1}$ a.e.

Now clearly if $f\in H^{2}$ and $E(|f|^{2})\circ\phi^{-1}$ is essentially bounded then $f\in H^{\infty}$ .
Proof of $3\Rightarrow 4$ : Follows from (18). $\subset$

Proposition 12 shows that it is hard for $M(\phi)=H^{\infty}$ ; however $C_{\phi}(H^{2})\cap M(\phi)\subseteq H$ ’

for functions $\phi$ which need not be even inner (Proposition 13 and [2], page 219).

PROPOSITION 13. Suppose $C_{\phi}$ : $H^{2}\rightarrow H^{2}$ has closed range, $f\in H^{2}$ and $f\circ\phi\in M(\phi)$

Then $f$ is bounded.
$PR\infty F$ . Note that $C_{\phi}$ is 1-1, therefore, $C_{\phi}^{*}:$

$H^{2}\rightarrow H^{2}$ has dense range. Suppost
$C_{\phi}:H^{2}\rightarrow H^{2}$ has closed range. Then $C_{\phi}^{*}$ has closed range, so it is onto, thut
$C_{\phi}^{*}C_{\phi}$ : $H^{2}\rightarrow H^{2}$ is invertible. Let $f\circ\phi\in M(\phi)$ , fix $g\in H^{\infty}$ and $h\in H^{2}$ . Then

$|\langle C_{\phi}(f)C_{\phi}(g), C_{\phi}(C_{\phi}^{*}C_{\phi})^{-1}(h)\rangle|\leq c||g\Vert_{2}\Vert h\Vert_{2}$ ,

so
$|\langle fg,h\rangle|\leq c\Vert g\Vert_{2}\Vert h\Vert_{2}$ .

Whence
$\Vert fg\Vert_{2}\leq c\Vert g\Vert_{2}\Vert h\Vert_{2}$ $(g\in H^{\infty}, h\in H^{2})$ .

Now after a standard application of Fatou’ Lemma, we get $f$ to be bounded
$b\subset!$

Lemma 1.

If $f\in H^{2}$ and $f\circ\phi\in H^{\infty}$ then of course $f\circ\phi\in M(\phi)$ . Now from Proposition 13 $w($

can note that if $C_{\phi}$ has closed range then functions in $H^{2}$ which are bounded on tht
range of $\phi:D\rightarrow D$ are also in $H^{\infty}$ . Converse is false; for example, if $\phi$ is a conforma
map from $D$ onto the region $\Omega$ obtained from $D$ by deleting an internally tangent $dis($

then every $f\in H^{2}$ bounded on $\Omega$ is of course bounded on $D$ , but $C_{\phi}$ does not havt
closed range [2], page 219.
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PROPOSITION 14. Let $b\neq 0$ be in $H^{\infty}$ . Then $bH^{2}\subseteq M(\phi)$ if and only if $|b(z)|\leq$

$c\sqrt{}\overline{1-|\phi(z)|^{2}}$ .

REMARK. Recall that $\phi$ is an extreme point of the unit ball of $H^{\infty}$ if and only if
$\log(1-|\phi|^{2})$ is not integrable [6], Chapter 9, page 138. Thus before proceeding with
the proof of the proposition we may note an equivalent form of it.

There exists $b\neq 0$ in the unit ball of $H^{\infty}$ such that $bH^{2}\subseteq M(\phi)$ if and only if $\phi$ is

not an extreme point of the unit ball of $H^{\infty}$ .
$PR\infty F$ . Now to prove Proposition 14, suppose $|b(z)|\leq c\sqrt{}\overline{1-|\phi(z)|^{2}}$ and let

$g\in H^{2}$ . Then by (4) $ bg\circ\phi$ is bounded, so $bH^{2}\subset M(\phi)$ .
Conversely suppose for some non-zero $b\in H^{\infty},$ $bH^{2}\subset M(\phi)$ . Applying the Closed

Graph Theorem to the map (from $H^{2}$ to $M(\phi)$)

$f\rightarrow bf$ $(f\in H^{2})$ ,

we have
$\Vert bf\Vert\leq c\Vert f\Vert_{2}$ $(f\in H^{2})$ .

Then by Lemma 5

$|b(w)f(w)|\leq c\Vert f\Vert_{2}\sqrt{\frac{1-|\phi(w)|^{2}}{1-|w|^{2}}}$ $(w\in D)$ .

Put $f=k_{w}$ to deduce the desired inequality. $\square $

COROLLARY 15. Suppose $H^{\infty}\subseteq bH^{2}\subseteq M(\phi)$ . Then $C_{\phi}$ is Hilbert-Schmidt.

$PR\infty F$ . Since $H^{\infty}\subseteq bH^{2},$ $b^{-1}\in H^{2}$ . Hence $(1-|\phi|^{2})^{-1}$ is integrable, so the
$\epsilon orollaryfollowsfrom[11]$ , Theorem3.1. $\square $

PROPOSITION 16. Suppose $M(\phi)$ is a Hilbert space. Then there exists $b$ in the unit
ball of $H^{\infty}$ such that $M(\phi)=bH^{2}$ , where $|b|^{2}+|\phi|^{2}=1$ and if $f\in M(\phi)$ then $\Vert f\Vert=$

$\Vert fb^{-1}\Vert_{2}$ .
$PR\infty F$ . Suppose $M(\phi)$ is a Hilbert space. Clearly multiplication by $z$ acts as an

isometry in $M(\phi)$ , so by de Branges extension of Beurling’s theorem [6], $M(\phi)=bH^{2}$

and if$f\in M(\phi)$ then $\Vert f\Vert=\Vert fb^{-1}\Vert_{2}$ . By applying Lemma 5 to $bk_{w}$ we get the inequality
of Proposition 14 with $c=1$ , i.e.,

$|b(z)|\leq\sqrt{1-|\phi(z)|^{2}}$ $(z\in D)$ . (20)

Let $f\in M(\phi)$ . Then

$\Vert f\Vert^{2}=\sup_{||g||_{2}=1}\int|f|^{2}|g\circ\phi|^{2}\leq\int|f|^{2}(1-|\phi|^{2})^{-1}\leq\int|f|^{2}|b|^{-2}=\Vert f\Vert^{2}$ .
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Thus equality holds throughout and in view of (20), $|b|^{2}=1-|\phi|^{2}$ . $[$

REMARK. In particular suppose $M(\phi)=H^{2}$ . Then $bH^{2}=H^{2}$ , so $b^{-1}H^{2}=H^{2}$

Therefore by Lemma 1, $b^{-1}\in H^{\infty}$ , i.e., $|b|>c>0$ for some $c$ . Thus we may note tha
$M(\phi)=H^{2}$ if and only $if|\phi|<r<1$ for some $r>0$ .

4. Fredholm composition operators.

An operator $T$ on a Hilbert space $H$ is called Fredholm if the range of $T$ is closee
and the dimension of th$e$ kemel and the co-kernel of $T$ are finite. In case of the
composition operator $C_{\phi}$ on $H^{2}$ the kemel is trivial, so $C_{\phi}$ is Fredholm if and only $i1$

the range is closed and has finite co-dimension.
In a 1976 paper Cima, Thompson and Wogen [2] investigated among other things

Fredholm composition operators on $H^{2}$ . They proved that $C_{\phi}$ is Fredholm if and onl)
if $\phi$ is a conformal automorphism of the disc. We can now prove the same result b3
taking a quite different viewpoint from theirs; namely, we will consider the multipliers
of the range of $C_{\phi}$ . If $C_{\phi}$ is Fredholm, then it’s range is “very large” therefore we woulc
expect it to be hard for a function $f\in H^{2}$ to be in $M(\phi)$ . Lemma 17 states this fact ir
more precise language.

LEMMA 17. The multipliers of closed subspaces of $H^{2}$ offinite co-dimension $ar$

bounded.
$PR\infty F$ . Let $M\subseteq H^{2}$ be any closed subspace of finite co-dimension. We prove tht

lemma by induction on $n$ , the co-dimension of $M$. When $n=0$ , we are looking at the
multipliers of $H^{2}$ , so they are bounded (Lemma 1). Suppose the conclusion of the
Lemma holds for all closed subspaces of co-dimension $n$ , and now let $M$ be a closec
subspace of $H^{2}$ of co-dimension $n+1$ . If $M$ is closed under multiplication by $\zeta$ , ther
by a theorem of Beurling [6], Chapter 7, pp 99-100, $M=\phi H^{2}$ for some inner function
$\phi$ . Then the multipliers of $M$ are also multipliers of $H^{2}$ , hence are bounded (Lemma
1). So now suppose there exists $f\in M$ such that $\zeta f\not\in M$. Then

$M^{\prime}=\{M+a\zeta f:a\in C\}$

is a closed subspace of co-dimension $n$ , hence by the induction hypothesis, multipliers
of $M^{\prime}$ are bounded. However, a multiplier of $M$ is also a multiplier of $M^{\prime}$ , so the result
follows. $H$

We are ready to classify Fredholm composition operators on $H^{2}$ .
PROPOSITION 18 (Cima, Thompson and Wogen). The composition operato’

$C_{\phi}$ : $H^{2}\rightarrow H^{2}$ is Fredholm if and only $ lf\phi$ is a conformal automorphism of the disc.

$PR\infty F$ . If $\phi$ is a conformal automorphism of the disc, then as noted by SchwarL
[12], $C_{\phi}$ : $H^{2}\rightarrow H^{2}$ is invertible, so is trivially Fredholm. To prove the converse, suppos $($
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$C_{\phi}$ is Fredholm. Then the range of $C_{\phi}$ is a closed subspace of finite co-dimension, so
by Lemma 17, $M(\phi)=H^{\infty}$ . Thus by Proposition 12, $\phi$ is a finite Blaschke product. Let
us assume for the moment that $\phi(0)=0$ . Then $d\sigma\circ\phi^{-1}=d\sigma(12)$ and therefore $C_{\phi}^{*}C_{\phi}=I$

where $I$ is the identity operator on $H^{2}$ . However, $C_{\phi}$ is invertible in the Calkin algebra
[4], Chapter 5, 5.13 Definition and 5.17 Theorem, pp 127-129, so

$C_{\phi}C_{\phi}^{*}=I+K$ (21)

for some compact operator $K:H^{2}\rightarrow H^{2}$ .
Let $w\in D$ and $k_{w}$ be the reproducing kemel at $w$ . Then $\Vert k_{w}\Vert_{2}^{-1}k_{w}$ are of unit

norm and tend to zero weakly in the Hilbert space $H^{2}$ as $|w|\rightarrow 1$ . Whence
$\Vert k_{w}\Vert_{2}^{-1}K(k_{w})\rightarrow 0$ as $|w|\rightarrow 1$ in the $H^{2}$ norm, [4], Chapter 5, 5.6 Proposition, page
123. Then from (21)

$\Vert k_{w}\Vert_{2}^{-2}\langle C_{\phi}C_{\phi}^{*}(k_{w}), k_{w}\rangle-\Vert k_{w}\Vert_{2}^{-2}\langle k_{w}, k_{w}\rangle\rightarrow 0$

as $|w|\rightarrow 1$ . Thus,

$\Vert k_{w}\Vert_{2}^{-2}\langle C_{\phi}^{*}(k_{w}), C_{\phi}^{*}(k_{w})\rangle-\Vert k_{w}\Vert_{2}^{-2}k_{w}(w)\rightarrow 0$ (22)

as $|w|\rightarrow 1$ . Using the well known fact $C_{\phi}^{*}(k_{w})=k_{\phi\langle w)},$ (3) and (22), we have that

$\frac{1-|w|^{2}}{1-|\phi(w)|^{2}}\rightarrow 1$ as $|w|\rightarrow 1$ .

By Schwarz-Pick lemma

$|\phi^{\prime}(w)|(1-|w|^{2})\leq 1-|\phi(w)|^{2}$ ,

hence $|\phi^{\prime}(\zeta)|\leq 1$ for all $\zeta\in\partial D$ ( $\phi^{\prime}$ exists on $\partial D$ because $\phi$ is a finite Blaschke product).
Recall the usual formula for the number of zeros of $\phi$ in $D$ :

$\frac{1}{2\pi\iota}\int_{\partial D}\frac{\phi^{\prime}(\zeta)}{\phi(\zeta)}d\zeta$ .

Since $|\phi^{\prime}|\leq 1$ on $\partial D$ and $|\phi|=1$ on $\partial D$, we deduce that $\phi$ has at most one zero inside
$D$ ; but $\phi(0)$ was assumed to be $0$ , so $\phi$ has exactly one zero in $D$ . Hence $\phi(z)=\lambda z(z\in D)$

for some $\lambda\in\partial D$ . To handle the general case, write $w=\phi(0)$ and as usual consider

$C_{\psi_{w}\circ\phi}=C_{\phi}C_{\psi_{w}}$ .
Since $C_{\psi_{w}}$ is an invertible operator on $H^{2},$ $C_{\psi_{w}\circ\phi}$ is also Fredholm with $\psi_{w}\circ\phi(0)=0$ ,
from which the desired result follows. $\square $

References

[1] C. CARATH\’EODORY, Theory of Functions, Vol. II, Chelsea, 1960.
[2] J. A. CIMA, J. THOMPSON and W. WOGEN, On some properties of composition operators, Indiana Univ.



198 K. R. M. ATTELE

Math. J., y (1974), 215-220.
[3] R. R. COIFMAN, R. ROCHBERG and G. WEISS, Factorization theorems for Hardy spaces in severa

variables, Ann. of Math., 103 (1976), 611-635.
[4] R. DOUGLAS, Banach Algebra Techniques in Operator Theory, Academic Press, 1972.
[5] J. B. GARNETT, Bounded Analytic Functions, Academic Press, 1981.
[6] K. HOFFMAN, Banach Spaces ofAnalytic Functions, Prentice Hall, 1962.
[7] T. $H\infty VER$ , A. LAMBERT and J. QUINN, The Markov process determined by a weighted compositio

operator, Studia Math. (Poland), 72 (1982), 225-235.
[8] J. E. $LIT\Gamma LEW\infty D$ , On inequalities in the theory of functions, Proc. London Math. Soc., 23 (1925

481-519.
[9] D. SARASON, Shift-invariant spaces from the Brangisian point of view, The Bieberbach Conjecture-

Proceedings of the Symposium on the Occasion of the Proof, Amer. Math. Soc., 1986, pp 153-165
[10] –, Angular derivatives via Hilbert space, Complex Variables, 10 (1988), 1-10.
[11] J. H. SHAPIRO and P. D. TAYLOR, Compact, nuclear and Hilbert-Schmidt composition operators $0$

$H^{2}$ , Indiana Univ. Math. J., 23 (1973), 471-496.
[12] H. J. SCHWARTZ, Composition operators on $H^{p}$, Thesis, Univ. of Toledo, 1969.
[13] A. L. SHIELDS and L. J. WALLEN, The commutants of certain Hilbert space operators, Indiana Unil

Math. J., 20 (1971), 777-788.

DEPARTMENT OF MATHEMATIOS, $UNlVERS\Pi Y$ OF NORTH CAROLINA AT $CHARLOT\Gamma E$

CHARLorrE, NC 28223, USA

Current Mailing Address:
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO
CHICAGO, IL 60637, USA


