# The Involutions of Compact Symmetric Spaces, II 

Tadashi NAGANO

Sophia University

Dedicated to Professor Ichiro Satake on his Sixtieth Birthday

Introduction. This is a part of our series on a geometric theory of the compact symmetric spaces $M$ ([CN-1], [CN-2], [CN-3], [NS-1], [NS-2], [N]); especially we will give proofs to certain statements in [N] (as was promised there). The theory features the subspaces, called the polars and the meridians ( 1.5 for both) of $M$, which are significant building blocks of maximal size (i.e. larger than the cells in any reasonable decomposition such as that of Bruhat). The polars are directly related to the space $M$ in topology; 1.11 is just one example. They are the critical submanifolds of a certain Bott-Morse function (at least if $M$ is an $R$-space; see [T-1]), and so forth. More strikingly, even the signature (or index) of $M$ equals the sum of that of the polars, of which we do not have a direct proof yet. We point out another intriguing fact about polars; Uhlenbeck [U] found that every harmonic map from the 2 -sphere into $U(n)$ is a product of those into polars. On the other hand, the meridians have equal rank to that of $M$ and their root systems are related to that of $M$ with a simple rule (2.15); therefore their curvature is related to that of $M$ in an equally simple way. The polars are paired with the meridians; they are the "orthogonal complements" to each other, while the polars are the connected components of the fixed points of any one of the involutions by which $M$ becomes a symmetric space (1.5). Their theoretical significance lies in the fact that $M$ is determined by a single pair of a polar and a meridian (1.15). Thus it is an easy corollary that a simple $M$ is hermitian if and only if a polar and a meridian in a pair are hermitian (2.30). Also the theory aims at studies of interrelationship between symmetric spaces or morphisms $f: B \rightarrow M$ between them. The case of $\operatorname{dim} B=0$ was studied in [CN-3] and [T-3]. The case of $B=$ sphere was done in [NS-1] fairly completely.

In section 1, we will explain basic concepts and facts about them as well as their relevance in our geometric theory. Theorem 1.8 gives the basic property of the meridian in connection with the maximal tori, whose proof includes a new proof of conjugacy

[^0]of the maximal tori. We begin Section 2 with formulating a variational problem to connect geometry with the root theory more directly; the roots describe the curvature and the root spaces describe certain elliptic subspaces. Thus Chow's arithmetic distance can be handled in a more general context (Section 11 of [N]; it was worked out by Takeuchi [T-2], of which he is proud). We will show how to determine the meridians (Theorem 2.15, which was Theorem 2.5 in [N]). In the second half of the section, we will look at the subspaces which any two roots define. An outcome is a more geometric classification of the symmetric spaces than those in [A] and [H]; it also explains the strong restrictions on the multiplicity of the root and its meaning. In Section 3, we will describe the involutions with emphasis on the interrelationship between involutions of different spaces; all the involutions will be defined with those of the orthogonal group (or its local isomorphism class).

In order to keep this paper short, we have to appeal to facts expounded in [B], [ H$]$ and [KN].

Notations. We use Cartan's notations for compact 1-connected symmetric spaces except that we use the symbol $G_{r}\left(K^{n}\right)$ to denote the Grassmann manifold of the $r$-dimensional linear subspaces of $K^{n}$ over $K=R, C$ or $H$ and GI for his $G=G_{2} / \mathbf{S O}(4)$. $\mathscr{L} G$ will denote the Lie algebra of a Lie group $G$. The symbol $\fallingdotseq$ means local isomorphism between symmetric spaces.

## § 1. Basics on symmetric spaces.

We will define the category of the compact symmetric spaces and discuss rudiments thereof.
1.1. Definition. A smooth manifold $M$ is called a symmetric space when $M$ admits an involutive smooth transformation $s_{o}: M \rightarrow M$ for every point $o$ of $M$ such that $o$ is an isolated fixed point of $s_{o}$ and there is a Riemannian metric which every symmetry $s_{o}$ leaves invariant. $M$ is called affine symmetric if $M$ satisfies the above conditions with the metric replaced with an affine connection.

A symmetric space is affine symmetric. Moreover the invariant connection of an affine symmetric space is unique and it has no torsion, since the involution $s_{o}$ leaves invariant no tensor $\neq 0$ of odd degree, in particular none of type (1,2), while the invariant Riemannian metrics are not quite unique.
1.2. Definition. A smooth map $f: M \rightarrow N$ between symmetric spaces $M$ and $N$ is called a morphism or a homomorphism if $f$ commutes with the symmetries; $f \circ s_{x}=s_{f(x)} \circ f$ for every point $x$ of $M$.
1.2a. A morphism $f$ is an affine map, as is known [KN]. In fact, the exponential map exp : $T_{o} M \rightarrow M$, restricted to any line $L \subset T_{o} M$ through 0 , is affine and a morphism at once; hence $f$ commutes with exp. Thus, in case $M$ is connected, $f$ is a morphism
if and only if $f$ is affine. In particular, the automorphism $\operatorname{group} \operatorname{Aut}(M)$ is a Lie group ([KN]).
1.2b. If $M$ is connected, then a morphism $f: M \rightarrow N$ gives rise to a Lie algebra homomorphism $\mathscr{L} f: \mathscr{L} \operatorname{Aut}(M) \rightarrow \mathscr{L} \operatorname{Aut}(N)$, since the composites $s_{o} \circ s_{p}$ for all the pairs of the points $o, p$ of $M$ generate the identity-component of $\operatorname{Aut}(M)$ (and hence one has a local homomorphism: $s_{o} \circ s_{p} \mapsto s_{f(o)} \circ s_{f(p)}$ of $\operatorname{Aut}(M)$ into $\operatorname{Aut}(N)$ ).
1.3. Remark. With these morphisms, the symmetric spaces make a category, on which we will work. For instance, $a$ subspace $B$ of $M$ means a symmetric space in $M$ such that the inclusion map is a morphism. In case $B$ is connected, this is equivalent to say that $B$ is a totally geodesic submanifold of $M$. We assume that $M$ is connected, generally. One easily sees that the intersection of two subspaces, the image and the inverse image under a homomorphism are all subspaces. Hence every homomorphism is the composite of a monomorphism and an epimorphism. The fixed point set of an automorphism $t$ of $M, F(t, M)$, is another subspace.
1.3a. Example and remark. Every compact Lie group $L$ is a symmetric space by the symmetry $s_{x}: y \mapsto x y^{-1} x$. Every automorphism of the group $L$ is that of the symmetric space $L$, but not vice versa. For this reason, we use the term group-automorphism to emphasize that the action preserve the group structure also.
1.3b. Example. Let $G$ be a compact Lie group and let $\sigma$ be a group involution of $G$. We then make $G$ act on $G$ itself by $c: x \mapsto c x \sigma(c)^{-1}$ for $c \in G$. We call it the $\sigma$-action. The orbit through the unit element 1 is a subspace of $G$. This subspace $\left\{c \sigma(c)^{-1} \mid c \in G\right\}$ is a homogeneous space $G / F(\sigma, G)$. Also it equals $F\left(s_{1} \circ \sigma, G\right)_{(1)}$ (if $G$ is connected); here and elsewhere the symbol $B_{(x)}$ for a topological space $B$ with a point $x$ on it denotes the connected component of $B$ through $x$.
1.4. Lemma. If $M$ is connected (which we usually assume), then every isometry $f$ of $M$ (in particular, every symmetry $s_{x}$ ) is an automorphism of $M$ and the identity component $G:=\operatorname{Aut}(M)_{(1)}$ of the automorphism group $\operatorname{Aut}(M)$ is transitive on $M$.

Proof. We will show $s_{f(x)}=f \circ s_{x} \circ f^{-1}$ for every point $x$ of $M$. In fact, the transformations in the both hand sides are isometries and fix the point $f(x)$. They act on the tangent space $T_{f(x)} M$ accordingly, and we have only to show that they agree there. The left hand side $s_{f(x)}$ is -1 times the identity, while $f \circ s_{x} \circ f^{-1}$ is conjugate to $s_{x}$ acting on the tangent space $T_{x} M$ which is -1 times the identity on $T_{x} M$. So we obtain the equality. If $c$ is a geodesic segment joining a point $o$ to another point $p$, then the symmetry $s_{m}$ at the midpoint $m$ exchanges $o$ and $p$. Therefore $\operatorname{Aut}(M)$ is locally (hence globally) transitive on $M$, and so is $G$ (alternatively, one can prove the transitivity of $G$ by trisecting $c$ instead of bisecting it). (Of course $\operatorname{Aut}(M)$ is a Lie group. See [KN] quoted in 1.2a.) QED
1.5. Definition. Each connected component of the fixed point set $F\left(s_{o}, M\right)$ is called a polar of $o$ in $M$ and denoted by $M^{+}$or by $M^{+}(p)$ if it contains the point $p$. Through the point $p$, there is a unique connected subspace $F\left(s_{p} \circ s_{o}, M\right)_{(p)}$ whose tangent space at $p$ is the orthogonal complement of the tangent space $T_{p} M^{+}(p)$ in $T_{p} M$. We call $F\left(s_{p} \circ S_{o}, M\right)_{(p)}$ the meridian to $M^{+}(p)$ through $p$ and denote it by $M^{-}$or $M^{-}(p)$. More generally, if $t$ is an involution of $M$ which fixes a point $o$, the subspace $F\left(t \circ s_{o}, M\right)_{(o)}$ has the tangent space at $o$ which is the orthogonal complement of the tangent space to the subspace $F(t, M)_{(o)}$ at $o$ in $T_{o} M$. We call these subspaces complementally orthogonal or just $c$-orthogonal to each other at $o$. We call a polar $M^{+}(p) a$ pole of o in $M$ if it is a singleton $\{p\} .\{p\}$ is a pole $\Leftrightarrow s_{p}=s_{o}$. (The point $p$ is also called a pole if $\{p\}$ is. Usually, we do not mean that $o$ itself is a pole or polar.)
1.5a. Remarks. (i) A theoretical significance of the concepts of the polars and the meridians lies in the fact that $\boldsymbol{M}$ is (globally) determined by any one pair ( $M^{+}, M^{-}$) if $M$ is compact and connected; see Theorem 1.15 below. We assume $M$ is compact, hereafter.
(ii) Every polar of $o$ is a $K_{(1)}$-orbit, where $K$ is the isotropy subgroup of $G:=\operatorname{Aut}(M)_{(1)}$ at $o$. Indeed, every component of $F(t, M)$ is an orbit of the connected $\operatorname{group} F(\operatorname{ad}(t), G)_{(1)}$ for an automorphism $t$ of $M$, obviously. As a consequence, if $M$ is a group, then $F\left(s_{1}, M\right)$ is the set of the involutive members and the polars are their conjugate classes, since $K$ is the adjoint group, ad $(M)$. Another consequence is that the isomorphism class (or the $G$-congruence class, more precisely) of the meridian $M^{-}(q)$ to $M^{+}(p)$ at $q$ is independent of $q$ in $M^{+}(p)$. Also $\{p\}$ is a pole of $o$ in $M=G / K, K(o)=o$, if and only if $K_{(1)}$ fixes $p$.
(iii) The above subspace $F\left(t \circ s_{o}, M\right)_{(o)}$ meets every component of $F(t, M)$ for every involutive automorphism $t$ of $M$ which fixes the point $o$. In particular every meridian to a polar of $o$ meets every polar of $o$ (and $\{o\}$ ).

Proof of (iii). Let $M^{t}(q)$ denote the component of $F(t, M)$ through the point $q$. Let $\gamma$ be a shortest geodesic arc joining $M^{t}(o)$ to $M^{t}(q) . \gamma$ is orthogonal to $M^{t}(o)$ at a point $p$. Some member $b$ of $F(\operatorname{ad}(t), G)_{(1)}$ carries $p$ into $o . b$ then carries $\gamma$ into a geodesic $b \gamma$ which is orthogonal to $M^{t}(o)$ at $o$. This means $b \gamma$ is entirely contained in the orthogonal space $F\left(t \circ s_{o}, M\right)_{(o)}$; the other end of $b \gamma$ still lies on $M^{t}(q)$. QED
1.5b. Remark. We like to review a few more concepts and facts from [CN-3] and $[\mathrm{N}]$ for later use. Every covering epimorphism $\pi: M \rightarrow M^{\prime \prime}$ carries the polars of $o$ in $M$ and their meridians onto those of $\pi(o)$ in $M^{\prime \prime}$ and the meridians except that some poles in $M$ may fall onto the point $\pi(o)$. More specifically, if a point $p$ is a pole of a point $o$ in $M$, then there is a double covering epimorphism $\pi: M \rightarrow M^{\prime \prime}$ which carries $o$ and $p$ into a single point. Those polars of $\pi(o)$ in $M^{\prime \prime}$ which are not the $\pi$-images of polars in $M$ are the projections of the connected components of what we call the centrosome $C(o, p) ; C(o, p)$ is a subspace consisting of the midpoints of the geodesic
arcs from $o$ to $p$ by definition. Next we recall the polars of the dot product $M \cdot N$ of two spaces $M$ and $N$, where $M \cdot N$ denotes the orbit space $(M \times N) / \boldsymbol{Z}_{k}$ for the (obvious from the context) cyclic group $\boldsymbol{Z}_{k}$ of order $k$ acting freely on $M$ and $N$ hence on the product $M \times N$ accordingly as an automorphism group. When $k$ equals 2, the $\boldsymbol{Z}_{k}$-orbit through a point ( $o_{M}, o_{N}$ ) has another point ( $p_{M}, p_{N}$ ) in it. Let $\pi$ denote the projection : $M \times N \rightarrow M \cdot N$. Then the polars of the point $z:=\pi\left(o_{M}, o_{N}\right)$ is described by the formula: $F\left(s_{z}, M \cdot N\right)=F\left(s_{o_{M}}, M\right) \cdot F\left(s_{o_{N}}, N\right) \cup C\left(o_{M}, p_{M}\right) \cdot C\left(o_{N}, p_{N}\right)$. Typically, the dot product appears in connection with a tensor product; thus, $\mathrm{SO}(4)$ is isomorphic with the dot product $\mathrm{Sp}(1) \cdot \mathrm{Sp}(1)$, since $\mathrm{SO}(4)$ may be interpreted as the group $\mathrm{Sp}(1) \times \mathrm{Sp}(1)$, made effective, acting on $C^{2} \otimes C^{2}$ in the natural fashion. Similarly, $U(n)$ is the dot product of $\mathrm{U}(1)$ and $\mathrm{SU}(n)$.
1.6. Notations and definition. We denote $\operatorname{Aut}(M)_{(1)}$ by $G$ or $G_{M}$. Let $\mathscr{L} G$ or $g$ denote its Lie algebra, which is thought of as a linear space of vector fields on $M$. Given a point $o$ of $M$, we have an involution $\operatorname{ad}\left(s_{o}\right)$ of $\mathfrak{g}$. Its eigenspace decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ is called the symmetry decomposition at o for $M$. $\mathfrak{f}$ is the Lie algebra of the isotropy subgroup $K$ of $G$ at $o . m$ is linearly isomorphic with the tangent space $T_{o} M$ to $M$ at $o$ by the evaluation map: $v \mapsto v(o)$.
1.6a. One knows [ $m, m$ ] $=f$ and $[f, m] \subset \mathfrak{m}$.
1.6b. Definitions. Given a point $o$ in $M$, we call the map $Q: M \rightarrow G: x \mapsto s_{x} \circ s_{o}$ the quadratic transformation (of $\mathrm{E} . \mathrm{Cartan}$ ).
$Q$ is a $G$-equivariant morphism, as is easily seen, if one chooses the $\sigma$-action of $G$ on itself (1.3b). $Q$ is a covering morphism of $M$ onto the subspace $Q(M)=$ $\left\{b \sigma(b)^{-1} \mid b \in G\right\}$; thus one has an "exact" sequence of morphisms of spaces: $\{o\} \rightarrow P \rightarrow M \rightarrow Q(M) \rightarrow\{1\}$, where $P$ denotes $Q^{-1}(1)$. $P$ consists of all the poles of $o$ in $M$. Hence $Q$ is a monomorphism if and only if $M$ has no pole. One notes (1.14) that $P$ has the structure of an abelian group.
1.7. Definition. A space $M$ is called semisimple if $G$ is so. $M$ is called simple if $M$ is semisimple but not a local product of two spaces of positive dimensions. The bottom (space) (or the adjoint space [H]) $M^{*}$ of a connected semisimple space $M$ is the space such that every connected space which is locally isomorphic with $M$ is a covering space of $M^{*} . G^{*}$ is the adjoint group of $G$. And one sees the unique existence of $M^{*}$; in fact $M^{*}=F\left(s_{1} \circ \operatorname{ad}\left(s_{o}\right), G^{*}\right)_{(1)}=G^{*} / F\left(\operatorname{ad}\left(s_{o}\right), G^{*}\right)$. Also $M^{*} \cong Q\left(M^{*}\right)$.
1.8. Theorem. Let $M$ be a compact connected symmetric space. Then
(i) every meridian $M^{-}(p)$ contains a maximal torus of $M$, that is, a maximal subspace of $M$ which is isomorphic with a torus.
(ii) Every maximal torus $\ni \circ$ meets every polar of o.
(iii) The maximal tori are $G$-congruent with each other; furthermore, if two maximal tori $A$ and $B$ contain a point $o$, then some member of $K_{(1)}$ at o carries $A$ into $B$.

The dimension of a maximal torus in $M$ is called the rank of $M$, denoted by $r(M)$. Thus every meridian $M^{-}(p)$ has an equal rank to $M$.

Proof. (i) Consider a geodesic $\gamma$ through $o$ and $p$. Then there is a member $H$ of $\mathfrak{m}$ such that $\gamma$ is the orbit $\{\exp (t H)(o) \mid t \in \boldsymbol{R}\}$ of the 1 dimensional group. If a denotes a maximal abelian subalgebra in $\mathfrak{m}$ which contains $\gamma$, the orbit $\exp (\mathfrak{a})(o)$ is a maximal torus $A$ in $M$ which contains $\gamma$. Equivalently $Q(A)$ is a maximal abelian subgroup (maximal in $Q(M)$ ) that contains the abelian subgroup $Q(\gamma)$ of $G$ (and $A$ is connected). $\{p\}$ is a pole of $o$ in $A$, since every polar in a torus is a pole. Hence $s_{p}$ acts on the tangent space $T_{p} A$ as -1 times the identity. Therefore $A$ is contained in the meridian $M^{-}(p)$. We prove (ii) and (iii) simultaneously, although (iii) is well known. We may assume $M$ is semisimple and further that $M$ is the bottom $M^{*}$; thus $M$ has no pole. We induct on the dimension of $M$; the case of $\operatorname{dim} M=0$ is trivial (and so is the case of $\operatorname{dim} M=2$ ). Also we may assume by 1.4 that $A$ and $B$ share the point $o$. Let $p$ be a pole of $o$ in $A$. Then $A$ is a subspace of the meridian $M^{-}(p)$. Similarly, $B$ is a subspace of another meridian $M^{-}(q) . M^{+}(q) \cap M^{-}(p)$ is not empty by 1.5 (iii). Every connected component $M^{-+}(q)$ of $M^{+}(q) \cap M^{-}(p)$ is a polar of $o$ in $M^{-}(p)$. Hence $A$ meets $M^{-+}(q)$ by the induction assumption on (ii). Hence some member $b$ of $K_{(1)}$ carries $A$ into a torus $b A$ that contains the point $q$ (and $o$ ) by 1.5 a (ii). $M^{-}(q)$ contains $b A$ by (i). Again by the induction assumption (this time on (iii)), another member $c$ of $K_{(1)}$ carries $b A$ into $B$. QED
1.8a. Corollary. A connected $M$ is 1 -connected if some meridian is.

Proof. This follows from 1.8 (i), since every member of the fundamental group $\pi_{1}(M)$ contains a closed geodesic. QED
1.9. Theorem. Every compact connected symmetric space $M$ is a subspace of a canonical finite covering group $G^{\wedge}$ of $G=\operatorname{Aut}(M)_{(1)}$ such that one has $M=$ $F\left(s_{1} \circ \sigma, G^{\wedge}\right)_{(1)}=\left\{b \sigma(b)^{-1} \mid b \in G^{\wedge}\right\}, \sigma:=\operatorname{ad}\left(s_{o}\right)$, and the inclusion induces an isomorphism of the fundamental group $\pi_{1}(M)$ onto $\pi_{1}\left(G^{\wedge}\right)$. This way, $Q$ lifts to a monomorphism $Q^{\wedge}: M \rightarrow G^{\wedge}$ (see 1.13). (The group $G^{\wedge}$ is not unique with the above condition; "canonical" means that 1.12 below obtains.)

Proof. In case $M$ is a torus, one takes the identity map $1_{M}$ as $Q^{\wedge} ; M=G^{\wedge}$. We assume that $M=G / K$ is semisimple. The subspace $\left\{b \sigma(b)^{-1} \mid b \in G^{\sim}\right\}$ of the universal covering group $G^{\sim}$ is a homogeneous space $G^{\sim} / F\left(\sigma, G^{\sim}\right)$ and $F\left(\sigma, G^{\sim}\right)$ is connected (Theorem 8.2, [H], p. 320). Thus the subspace $M^{\sim}:=\left\{b \sigma(b)^{-1} \mid b \in G^{\sim}\right\}$ is 1-connected. On the other hand the projection $\pi$ of $G^{\sim}$ onto the adjoint group $G^{*}$ carries $M^{\sim}$ onto the bottom space $M^{*}=Q\left(M^{*}\right)$. Therefore the fundamental group $\pi_{1}\left(M^{*}\right)$ is a subgroup of $\pi_{1}\left(G^{*}\right)$ which is the center $C\left(G^{\sim}\right)$ of $G^{\sim}$. Hence $\pi_{1}(M)$ is also a subgroup of $C\left(G^{\sim}\right)$; moreover $\pi_{1}(M) \subset \pi_{1}\left(M^{*}\right)=C\left(G^{\sim}\right) \cap M^{\sim}$. Thus $M$ is a subspace of $G^{\wedge}:=G^{\sim} / \pi_{1}(M)$; one has $M=\left\{b \sigma(b)^{-1} \mid b \in G^{\wedge}\right\}$. The construction of $G^{\wedge}$ is now obvious in the general
case. QED
1.10. Corollary. If $G^{\sim}$ is a compact 1 -connected Lie group, then the subspace $M=\left\{b \sigma(b)^{-1} \mid b \in G^{\sim}\right\}$ is 1-connected for every group involution $\sigma$. Its bottom space $M^{*}$ is $\left\{b \sigma(b)^{-1} \mid b \in G^{*}\right\}$. In particular, the fundamental group $\pi_{1}\left(M^{*}\right)$ is a subgroup of $\pi_{1}\left(G^{*}\right)$ which is the center $C\left(G^{\sim}\right)$ of $G^{\sim}$ for every compact connected semisimple space $M$.
1.11. COROLLARY. The polars in a compact 1-connected Lie group are all 1-connected. In particular they are semisimple.
1.12. Corollary. The monomorphism $Q^{\wedge}: M \mapsto G^{\wedge}\left(\operatorname{or}\right.$ rather $\left.(M, o) \mapsto\left(G^{\wedge}, 1\right)\right)$ given in the theorem extends to a functor of the category of the compact connected symmetric spaces into that of the compact connected Lie groups. That is, a homomorphism $f: M=G_{M} / K_{M} \rightarrow N$ extends to a homomorphism $G^{\wedge} f: G_{\hat{M}} \rightarrow G_{\hat{N}}$.

Proof. The given homomorphism $f$ gives rise to a homomorphism $\mathscr{L} f: \mathrm{g}_{M} \rightarrow \mathrm{~g}_{N}$ on the Lie algebra level by $1.6 \mathrm{a} ; \mathrm{m}$ generates g . (Of course we use the symmetry decomposition of $\mathfrak{g}_{N}$ at $f(o)$.) $\mathscr{L} f$ lifts to a homomorphism $G^{\sim} f: G_{\mathcal{M}}^{\sim} \rightarrow G_{\hat{N}}$ of the 1 -connected group. Since the kernel of the projection of $G_{M}^{\sim}$ onto $G_{\hat{M}}$ is contained in $M^{\sim}$ as in the proof of the theorem, one obtains the desired $G^{\wedge} f$. The rest is obvious. QED
1.13. Remark. The significance of 1.12 or the concept of $G^{\wedge}$ lies in the fact that a morphism $f: M \rightarrow N$ does not necessarily give rise to a homomorphism of $\operatorname{Aut}(M)_{(1)} \rightarrow \operatorname{Aut}(N)_{(1)}$. If one writes $Q^{\wedge}$ for the monomorphism: $M \rightarrow G^{\wedge}$ in the theorem, then one has $Q=\pi \circ Q^{\wedge}$, where $\pi$ is the projection: $G^{\wedge} \rightarrow G$. Theoretical importance of $Q^{\wedge}$ lies in that, in a way, $Q^{\wedge}$ replaces the projection : $G \rightarrow M=G / K$, which is not a homomorphism in our sense.
1.13a. Remark. If $f$ is an epimorphism, then so is $G^{\wedge} f$. The analog is false for a monomorphism. Every automorphism $t$ of $M$, however, extends to that of $G^{\wedge}$.
1.14. Corollary. For a covering morphism $\pi: M \rightarrow M$ ", one has an "exact" sequence: $\{o\} \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow\left\{o^{\prime \prime}\right\}$ and the "kernel" $M^{\prime}:=\pi^{-1}\left(o^{\prime \prime}\right), o^{\prime \prime}:=\pi(o)$, has the structure of an abelian group with the unit element $1=0$ which is a subgroup of the center of $G^{\wedge}$. We call $M^{\prime}$ the center (through $o$ ) of $M$ if $M^{\prime \prime}=M^{*}$, the bottom.

Proof. The group homomorphism $G^{\wedge} \pi: G^{\sim} / \pi_{1}(M) \rightarrow G^{\sim} / \pi_{1}\left(M^{\prime \prime}\right)$ has the kernel $N \cong \pi_{1}\left(M^{\prime \prime}\right) / \pi_{1}(M)$, which is abelian as a quotient group of a subgroup $\pi_{1}\left(M^{\prime \prime}\right)$ of the center of $G^{\sim} . N$ may be identified with $M^{\prime}$ by the theorem. QED
1.14a. Corollary. Every meridian through o contains the kernel $M^{\prime}$ in the above.

Proof. This is immediate from 1.8 (i) and the fact that the center of a connected compact Lie group is contained in every maximal torus (which is a subgroup). QED
1.14b. Remark. Homomorphisms between symmetric spaces are not too much involved; that is, if $f: M \rightarrow N$ is a homomorphism, then $M$ is a local product $M^{\prime} \times M^{\prime \prime}$ of subspaces such that $f\left(M^{\prime}\right)$ is a single point and the restriction of $f$ to $M^{\prime \prime}$ is a covering map onto $f(M)$, a subspace of $N$. This is immediate from the fact that the compact connected group $G_{\hat{M}}$ is the local direct product of the kernel of $G^{\wedge} f$ and its image.
1.15. Theorem. A compact connected simple symmetric space $M$ is determined by any one pair $\left(M^{+}, M^{-}\right)$of a polar $M^{+}$and a meridian $M^{-}$to $M^{+}$. More precisely, another such space $N$ is isomorphic with $M$ if a pair $\left(N^{+}, N^{-}\right)$of a polar in $N$ and a meridian to it is isomorphic with $\left(M^{+}, M^{-}\right)$in the following strong sense; $M^{+}$is isomorphic with $N^{+}$and $M^{-}$is isometric with $N^{-}$up to a constant multiple of the metric.

Proof. One could verify this case by case, since those pairs are all known for all the spaces. The corresponding local isomorphism theorem will be proven later (2.28). We assume 2.28 and will prove the theorem. If $M$ and $N$ satisfy the hypothesis for the pairs ( $M^{+}, M^{-}$) and ( $N^{+}, N^{-}$), then the bottoms do locally by 1.5 b . Hence we have the isomorphism $M^{\sim} \cong N^{\sim}$ for the universal covering spaces by 2.28. The kernel (1.14) for the projection $\pi: M^{\sim} \rightarrow M$ lies within the corresponding meridian (1.14a), which can be compared with the counterpart for $N$ by the isometry assumption. QED
1.15a. Remark. Some comment may be due for the isomorphism in the stronger sense. For most spaces it is sufficient to assume that $M^{+}$is isomorphic with $N^{+}$and $M^{-}$with $N^{-}$, but, when $M^{-}$is a local product of a circle $T$ and a semisimple space, the ratio of the diameter of $T$ to that of $M^{-}$counts in locating $M$ within its local isomorphism class, just as the groups in the local isomorphism class of the Lie group $\operatorname{SL}(2, R)$ are distinguished by the diameter of the maximal subgroup $\cong \mathrm{SO}(2) \cong T$ with respect to the standard pseudo-Riemannian metric (defined by the Killing form). One of the very few counterexamples is $\left(M^{+}, M^{-}\right)=\left(\mathrm{EIII}, T \cdot \mathrm{SO}(10)^{\sim}\right)$ for $M=\mathrm{E}_{6}$ and $M^{*}=\mathrm{E}_{6} / \boldsymbol{Z}_{3}$.

## § 2. Observations of the root systems.

We will study subspaces which are the fixed point sets of involutions of compact symmetric spaces as Riemannian manifolds. The root systems will come up as ingredients of the curvature; the roots in our sense are called the restricted roots in the literature including [H]. In terms of the root system, we will describe the meridians in particular, which will allow us to determine them locally. The second half of the section will be devoted to detailed studies of the root systems; an introduction for them will be given between 2.24 and 2.25 .

Let $t$ be an involution of $M$ which fixes a point $o$. We write $M^{t}$ for $F(t, M)_{(o)}$, the connected component through $o$ of the fixed point set of $t$ acting on $M$. Let $M^{-t}$ denote $F\left(t \circ s_{o}, M\right)_{(o)}$, the c-orthogonal space to $M^{t}$ at $o$.

Consider a geodesic $c$ in $M^{-t}$ starting at $c(0)=o$. Let $J F^{t}$ denote the space of the Jacobi fields $v$ on $c\left([\mathrm{KN}]\right.$ vol. 2, p. 63) which are tangent to $M^{t}$ at $o$ and whose covariant derivatives $\nabla_{c^{\prime}(0)} v$ at $o$ are tangent to $M^{-t}$. A point $c(u)$ is called a focal point (with respect to $J F^{t}$ ) if there is a nonzero Jacobi field $v=v \circ c$ in $J F^{t}$ which vanishes at $c(u)$, while the point $c(u)$ is called a conjugate point of $o$ along $c$ if there is a nonzero Jacobi field in $J F^{t}$ which vanishes at $c(u)$ and at $o$. It is a known important fact that there is no focal point $c(u)$ on the $\operatorname{arc} c \mid\left[0, u_{o}\right], 0<u<u_{o}$, if the arc is weakly stable (that is, it is not longer than any nearby curves from $M^{t}$ to the point $\left.c\left(u_{o}\right)\right)$. The Jacobi fields are exactly the solutions of the following Jacobi equation, an ordinary linear differential equation of the second order:

## 2.1.

$$
\nabla_{H} \nabla_{H} v+K(v, H) H=0,
$$

where $H$ denotes the tangent vector $c^{\prime}(u)$ and $K$ is the curvature tensor. To solve this equation, one notes that the linear operator: $v \mapsto K(v, H) H$ is symmetric and constant in the sense $\nabla K=0$, which follows from the fact that every point symmetry fixes $K$.

Now the action of $\operatorname{Aut}(M)$ makes its Lie algebra $\mathfrak{g}$ a linear space of vector fields $v$ on $M$. If one embeds $M$ into $G^{\wedge}$ as the subspace $F\left(s_{1} \circ \mathrm{ad}\left(s_{o}\right), G^{\wedge}\right)_{(1)}$ by 1.9 , then a member $b$ of $G^{\wedge}$ (or $G$ ) carries a point $x$ of $M$ into $b x\left(\operatorname{ad}\left(s_{o}\right) b\right)^{-1}$. This convention has technical advantages; it frees us from distinction between the group manifolds and the other spaces in proving some theorems, for instance.

Since every $v \in \mathfrak{g}$ is a Killing vector field, the restriction $v \circ c$ to $c$ is a Jacobi field. We employ the symmetry decomposition $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ at $o$ and the one $\mathfrak{g}=\mathfrak{f}_{c(u)}+\mathfrak{m}_{c(u)}$ at every point $c(u)$ of $c$. We choose $H$ in $m$ so that $H(o)=c^{\prime}(0)$. Then we have $H(c(u)) \in \mathfrak{m}_{c(u)}$; and hence $H(c(u))=c^{\prime}(u)$ at every point. One recalls $K(v, H)=-[[v, H], H]$ at $o$ and for every $v \in \mathfrak{m}([\mathrm{H}], \mathrm{p}$. 215) and hence for every $v \in \mathrm{~g}$; therefore one has $K(v, H) H=-[[v, H], H]$ everywhere on $c$ for every $v \in \mathfrak{g}$. Thus 2.1 reads: $\nabla_{H} \nabla_{H} v-\operatorname{ad}(H)^{2} v=0$ for every $v \in \mathfrak{g}$. In terms of the Fermi coordinates, or equivalently, by identifying the tangent space $T_{c(u)} M$ with $T_{o} M$ or $m$ by the transformation $\exp (u H)$ (which is a parallel displacement along $c$ ), this is converted to the equation
2.1a.

$$
\left(\frac{d}{d u}\right)^{2} v-\operatorname{ad}(H)^{2} v=0 \quad \text { for a curve } v \text { on } T_{o} M
$$

To go further, we decompose $\mathfrak{f}$ and $\mathfrak{m}$ by means of $\operatorname{ad}(t) ; \mathfrak{f}^{\mathfrak{f}} \mathfrak{f}^{-t}+\mathfrak{f}^{t}$, and $\mathfrak{m}=\mathfrak{m}^{-t}+\mathfrak{m}^{t}$, where $\mathfrak{f}^{t}=F(\operatorname{ad}(t), \mathfrak{f}), \mathfrak{f}^{-t}=F(-\operatorname{ad}(t), \mathfrak{f}), \mathfrak{m}^{t}=F(\operatorname{ad}(t), \mathfrak{m}) \quad$ and $\quad \mathfrak{m}^{-t}=$ $F(-\operatorname{ad}(t), \mathfrak{m})$. We can do this since $\operatorname{ad}\left(s_{o}\right)$ commutes with ad $(t)$. The symmetry decompositions of $M^{t}$ and $M^{-t}$ are $\mathfrak{f}^{t}+\mathfrak{m}^{t}$ and $\mathfrak{f}^{t}+\mathfrak{m}^{-t}$ at $o$ respectively.

We choose a maximal abelian subalgebra $\mathfrak{a}^{-t}$ in $\mathfrak{m}^{-t}$. Since $Q\left(\mathfrak{a}^{-t}\right)$ generates a toral group $A^{-t}$, we have another decomposition $\mathfrak{g}=\sum \mathfrak{g}(\alpha)$ of $g$ through the adjoint action of $A^{-t}$, where $\alpha$ is a linear form on $\mathfrak{a}^{-t}$ and $\mathfrak{g}(\alpha)$ is a subspace on which $(\operatorname{ad}(H))^{2}$ is a scalar multiplication by $-\alpha(H)^{2}$ for every member $H$ of $\mathfrak{a}^{-t}$. We agree $g(\alpha)=\mathfrak{g}(-\alpha)$ because of the ambiguity involved in the definition; whenever we need distinguish $-\alpha$
from $\alpha$ for a technical reason, we have only to work on the complexification of $\mathfrak{g}$, as in the usual Lie algebra theory.

Since every $(\operatorname{ad}(H))^{2}$ commutes with $\operatorname{ad}\left(s_{o}\right)$ and $\operatorname{ad}(t)$, we obtain a finer decomposition: $\mathfrak{f}^{t}=\sum \mathfrak{f}^{t}(\alpha), \mathfrak{f}^{-t}=\sum \mathfrak{f}^{-t}(\alpha), \mathfrak{m}^{t}=\sum \mathfrak{m}^{t}(\alpha)$, and $\mathfrak{m}^{-t}=\sum \mathfrak{m}^{-t}(\alpha)$, where $\mathfrak{f}^{t}(\alpha):=\mathfrak{f}^{t} \cap \mathfrak{g}(\alpha)$, etc. Note $\boldsymbol{m}^{-t}(0)=\mathfrak{a}^{-t}$. One sees that $\mathfrak{f}^{t}(\alpha), \alpha \neq 0$, is linearly isomorphic with $\mathfrak{m}^{-t}(\alpha)$ and $\mathfrak{f}^{-t}(\alpha)$ with $\mathfrak{m}^{t}(\alpha)$ by any ad $(H), H \in \mathfrak{a}^{-t}$ satisfying $\alpha(H) \neq 0$, since $\operatorname{ad}(H)^{2}$ is then a linear automorphism on $f(\alpha)$ and $\mathfrak{m}(\alpha)$.
2.2. Notations. Let $R\left(M ; \mathfrak{a}^{-t}\right), R\left(M^{t} ; \mathfrak{a}^{-t}\right)$ and $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ denote the set of all the linear forms $\pm \alpha \neq 0$ with $\mathfrak{g}(\alpha) \neq\{0\}$, its subset consisting of $\alpha$ with $\mathfrak{m}^{t}(\alpha) \neq\{0\}$, and the subset consisting of $\alpha$ with $\mathfrak{m}^{-t}(\alpha) \neq\{0\}$ respectively; thus one has $R\left(M ; a^{-t}\right)=$ $R\left(M^{t} ; \mathfrak{a}^{-t}\right) \cup R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$. The linear forms $\pm \alpha$ are identified with members of $\mathfrak{a}^{-t}$ by means of the inner product on $m$.
2.3. Proposition. $\quad R\left(M ; \mathfrak{a}^{-t}\right)$ and $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ are root systems in the usual sense (cf. [B]). $R\left(M^{t} ; \mathfrak{a}^{-t}\right)$, or the union $R\left(M^{t} ; \mathfrak{a}^{-t}\right) \cup\{0\}$ in case $\mathfrak{m}^{t}(0) \neq\{0\}$, is a weight system in the sense to be explained below.

Proof. This is known for the first two sets [OS]; the root theory for a Lie algebra $\mathfrak{g}$ remains valid to this extent and beyond even if the abelian subalgebra $a^{-t}$ is not maximal in $g$ (See 2.4 c for another example). The point is that every member $\alpha$ of $R\left(\mathrm{M} ; \mathfrak{a}^{-t}\right)$ together with a nonzero member $x$ of $\mathrm{g}(\alpha)$ generates a Lie subalgebra $\mathrm{g}_{x}(\alpha) \cong \mathscr{L} \operatorname{Sp}(1)$ of $\mathfrak{g}$ if $2 \alpha$ is not a member of $R\left(M ; \mathfrak{a}^{-t}\right) . \mathrm{g}_{x}(\alpha)$ acts on g through the adjoint action. It acts on $\mathfrak{g}^{-t}:=\mathfrak{f}^{t}+\mathfrak{m}^{-t}$ if $\alpha$ is in addition a member of $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$. We add that $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ spans $\mathfrak{a}^{-t}$ if $M^{-t}$ is semisimple. From now on we will use the language of the root theory $[B]$; see $[B]$ also for some notation, the numbering of the simple roots, etc. The set $R\left(M^{t} ; \mathfrak{a}^{-t}\right)$ is a weight system for $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ in the sense that (i) this finite set is invariant under the action of the Weyl group of $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$; (ii) its members $\lambda$ are weight forms, that is, $\left\langle\lambda, \alpha^{\vee}\right\rangle$ is an integer for every root $\alpha$ in $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$, where $\alpha^{\vee}=2\|\alpha\|^{-2} \alpha$; and (iii) it contains $\lambda+m \alpha$ whenever it contains $\lambda$ and $\lambda+p \alpha, m$ an integer between 0 and the integer $p$; namely, the set is $R$-saturé, $R=R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$, in the sense of [B], Chap. 8. (The linear span of $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ does not necessarily contain $R\left(M^{t} ; \mathfrak{a}^{-t}\right)$.) This obtains since the Lie subalgebra $\mathrm{g}_{x}(\alpha)$ stabilizes the linear subspace $\mathfrak{f}^{-t}+\mathfrak{m}^{t}$ of $\mathfrak{g}$. QED
2.3a. Remark. If $M$ is a group and $t \circ s_{o}$ is a group automorphism, $o=1$, then $R\left(M^{\boldsymbol{t}} ; \mathbf{a}^{-t}\right)$ is the weight system of the isotropy representation for the space $M^{\boldsymbol{t}} \fallingdotseq M / M^{-t}$; $\fallingdotseq$ means local isomorphism. By a later theorem 2.15 , one can more easily determine the representation for a meridian than E.Cartan did years ago.
2.4. Definition. We call $R\left(M^{-t} ; a^{-t}\right)$ the root system of $M^{-t}$ and denote it by $R\left(M^{-t}\right)$ also; its isomorphism class depends on the space $M^{-t}$ only, independent of $a^{-t}$ and $t$. The members of $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ are called the roots of $M^{-t}$ (with respect to $\mathfrak{a}^{-t}$ ),
and those of $\mathfrak{m}^{-t}(\alpha)$ are the root space for $\alpha$. We call the dimension of $\mathfrak{m}^{-t}(\alpha)$ the multiplicity of $\alpha$, denoted by $m^{-t}(\alpha)$. One has $m^{-t}(\alpha)=\operatorname{dim} \mathfrak{f}^{t}(\alpha)$. The rank of $M^{-t}$ is $r\left(M^{-t}\right)=\operatorname{dim} a^{-t}$ as defined earlier. In case $t=s_{o}, M^{-t}$ is $M$ itself and, dropping the upper index $-t$, we write $\mathfrak{a}$ for $\mathfrak{a}^{-t}$ to have $R(M ; \mathfrak{a})=R\left(M^{-t}\right)$; also $m(\alpha)=m^{-t}(\alpha)$.
2.4a. Remark. One gets some information about $G$ from $R(M)$ and the action of $G$ on $M=G / K$. Thus, if $G$ is the bottom $G^{*}=\operatorname{ad}(G)$ acting on a semisimple $M$, one has $\exp (2 \pi H)=1 \Leftrightarrow \operatorname{ad}(\exp (2 \pi H))=1 \Leftrightarrow \cos (2 \pi \alpha(H))=1$ for every $\alpha$ in $R(M)$, where $H \in \mathfrak{a}$; cf. 2.20. Other examples are 2.4b, 2.4c and 2.5.

The next lemma gives a geometric meaning of the root.
2.4b. Lemma. Let $\alpha$ be a root $\in R(M), M$ simple. Assume $2 \alpha$ is not a root. Then (i) $\mathfrak{m}(\alpha)$ and $\alpha$ together span the tangent space $T_{o} M(\alpha)$ to a connected subspace $M(\alpha)$ of positive constant curvature $\|\alpha\|^{2}$ (that is, $M(\alpha)$ is either a sphere or a real projective space). (ii) The bracket product: $\mathfrak{m}(\alpha) \wedge \mathfrak{m}(\alpha) \rightarrow[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)] \cong \mathscr{L} \mathrm{O}(\mathfrak{m}(\alpha))$ is bijective. Also $\mathfrak{m}(\alpha)+$ R $\alpha$ generates $\mathscr{L} \mathrm{O}(m(\alpha)+2)$. (iii) $M(\alpha)$ is a sphere unless $M=M(\alpha)$ or $R(M)$ is $\mathrm{B}_{r}$ in which $\alpha$ is a shorter root. (iv) $M(\alpha)$ is a sphere if $M$ is 1 -connected. (v) $M(\alpha)$ contains a subspace $M^{\prime}(\alpha) \ni$ э whose tangent space $T_{o} M^{\prime}(\alpha)$ is $\mathfrak{m}(\alpha)$, which is congruent with the polar $(\cong$ a real projective space) or the centrosome ( $\cong$ a sphere) in $M(\alpha)$. And (vi) there is an involutive member $b$ of $K_{(1)}$ which stabilizes $a$ and induces the reflection in the hyperplane with a normal vector $\alpha$ on a. Thus $K_{(1)}$ contains members which, restricted to $\mathfrak{a}$, generate the Weyl group $W(R(M))$.

Proof. Recall E.Cartan's result [H]: a linear subspace $\mathfrak{m}^{\prime}$ of $\mathfrak{m}$ is tangent to a unique connected subspace $M^{\prime}$ of $M$ if and only if $\left[\left[m^{\prime}, m^{\prime}\right], m^{\prime}\right] \subset \mathfrak{m}^{\prime}$. The condition is equivalent to say that the subalgebra $\mathbb{F}^{\prime}$ of $g$ generated by [ $\left.m^{\prime}, m^{\prime}\right]$ normalizes $m^{\prime}$; the symmetry decomposition for $M^{\prime}$ is $\mathfrak{f}^{\prime}+\mathfrak{m}^{\prime}$. We will verify it for $\mathfrak{m}^{\prime}:=\mathfrak{m}(\alpha)+\boldsymbol{R} \alpha$. One notes
2.4b.1.

$$
[\mathfrak{g}(\alpha), \mathfrak{g}(\beta)] \subset \mathfrak{g}(\alpha+\beta)+\mathfrak{g}(\alpha-\beta)
$$

for roots (or zeroes) $\alpha$ and $\beta$; in particular one has $[\mathfrak{g}(\alpha), \mathfrak{g}(\alpha)] \subset \mathfrak{g}(0)=f(0)+\mathfrak{a}$, since $2 \alpha$ is not a root. Hence one has $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)] \subset f(0)$. One knows $[\mathfrak{m}(\alpha), \boldsymbol{R} \alpha]=\mathfrak{f}(\alpha)$ and $[\mathfrak{f}(\alpha), \boldsymbol{R} \alpha]=\mathfrak{m}(\alpha)$.

One obtains $[\mathfrak{f}(\alpha), \mathfrak{m}(\alpha)]=\boldsymbol{R} \alpha$ from the inner product $\langle[v, x], H\rangle=\langle v,[x, H]\rangle=$ $\langle v,-\alpha(H) \mathrm{y}\rangle=-\langle v, y\rangle \alpha(H)$ for every $v \in \mathfrak{f}(\alpha), H \in \mathfrak{a}$ and $x \in \mathfrak{m}(\alpha)$ and for some $y \in f(\alpha),[H, x]=\alpha(H) y$; one has $[v, x]=-\langle v, y\rangle \alpha$. Since $f(0)$ normalizes $\mathfrak{m}(\alpha), f(\alpha)$ and $\boldsymbol{R} \alpha$, one has a subalgebra $(\mathfrak{f}(0)+\mathfrak{f}(\alpha))+(\mathfrak{m}(\alpha)+\boldsymbol{R} \alpha)$ of $\mathfrak{g}$ with this symmetry decomposition; we have established the unique existence of $M(\alpha)$. Now we compute the curvature by using the formula $[\mathrm{H}]$ for the one corresponding to the orthonormal vectors $v$ and $x \in \mathfrak{m}^{\prime}:\langle K(v, x) x, v\rangle=\langle-[[v, x], x], v\rangle=\|[x, v]\|^{2}$. One may assume that $x$ is proportional to $\alpha$; in fact one can rotate $x$ into a unit vector $H \in R \alpha$ fixing $v$ by means of the group generated by $\operatorname{ad}(y),[\alpha, x]=\|\alpha\|^{2} y \in f(\alpha)$, because of $\langle[y, v], \alpha\rangle=$ $\langle v,[\alpha, y]\rangle=-\left\langle v,\|\alpha\|^{2} x\right\rangle=0$ and $[\mathfrak{f}(\alpha), \mathfrak{m}(\alpha)]=\boldsymbol{R} \alpha$. Now $\langle K(v, H) H, v\rangle=\langle-[[v, H]$,
$H], v\rangle=\|[H, v]\|^{2}=\|\alpha(H) v\|^{2}=\|\alpha\|^{2}$. We turn to (ii). Now that $M(\alpha)$ is an elliptic space, the isotropy subgroup of its automorphism group has the Lie algebra $f_{0}(\alpha)+f(\alpha)$, where $\mathfrak{f}_{0}(\alpha)=[\mathfrak{f}(\alpha), \mathfrak{f}(\alpha)]=[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$ is that of the subgroup which fixes $\alpha \mathfrak{f}_{0}(\alpha)+\mathfrak{f}(\alpha)$ is the Lie algebra of the orthogonal group $\mathbf{O}\left(\boldsymbol{m}(\alpha)+\boldsymbol{R} \alpha\right.$ ). (Replacing $\mathfrak{f}(0)$ with $\mathfrak{f}_{0}(\alpha)$ in the above symmetry decomposition, one gets the effective Lie algebra acting on $M(\alpha)$. Also see the proof of 2.25 for a more algebraic proof of the above equalities involving $\mathfrak{f}_{0}(\alpha)$.) For (iii), we first assume that $G$ is the bottom $G^{*}$. And let $G_{x}(\alpha)$ be the connected subgroup of $G^{*}$ generated by $g_{x}(\alpha)$ which is, as before, generated in $g$ by a nonzero $x \in \mathfrak{m}(\alpha)$ and $\alpha$. Then $G_{x}(\alpha)$ is isomorphic with $\mathrm{Sp}(1)$ (not with $\mathrm{SO}(3)$ ) if and only if $\left\langle\beta, \alpha^{\vee}\right\rangle$ is odd for some root $\beta$ in $R(M)$, as one sees by letting $G_{x}(\alpha)$ act on the sum of $\mathrm{g}(j \alpha+\beta)$, $j$ integer, ([B] on the length of $\alpha$-series of roots). Such a root $\beta$ fails to exist if and only if either $M=M(\alpha)$ or $\alpha$ is a shorter root in $R(M)$ which is $\mathrm{B}_{r}$. In case $M$ is also the bottom $M^{*}, G_{x}(\alpha) \cap M^{*}$ is still a 2 -sphere if such a root $\beta$ exists, since $M^{*}$ is a subspace $Q\left(M^{*}\right)$. Then the elliptic space $M(\alpha)$ of which $G_{x}(\alpha) \cap M^{*}$ is a subspace is also a sphere. Therefore one has (iii) for every covering space of $M^{*}$. Assume that $M$ is 1 -connected. If $M$ has rank 1 , then $M(\alpha)$ is the whole space $M$ and of course it is a sphere. If $R(M)$ is $B_{r}$, then (let us assume one knows or one will find later that) $M^{*}$ is the group $\mathrm{SO}(2 r+1)$ or the real Grassmann manifold $G_{r}\left(R^{2 r+m}\right), m \geqq 1 . M^{*}(\alpha)$ is $\mathrm{SO}(3)$ (embedded in the obvious way) or the real projective space $G_{1}\left(\boldsymbol{R}^{2+m}\right)$ respectively. It is not hard to see that the lift of the circle with the tangent $\alpha$ passes through the pole in $M$. (iii) and (iv) are essentially due to Helgason, although he discusses the highest root only in $[\mathrm{H}]$. (v) is obvious; $M^{\prime}(\alpha)$ is c-orthogonal to the circle with a tangent $\alpha$ at $o$ and $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]+\mathfrak{m}(\alpha)$ is the symmetry decomposition for the elliptic space $M^{\prime}(\alpha)$. (vi) is elementary. Take $y$ in the above and normalize $y$ (and $x$ ) so that $[x, y]=\alpha$, hence $[y, \alpha]=x$. Then $\operatorname{ad}(y)$ acts trivially on the hyperplane with the normal $\alpha$ in $a$. And $b:=\exp (\pi \operatorname{ad}(y))$ carries $\alpha$ into $-\alpha$. QED
2.4c. Remark. One has the multiplicity $m(\alpha)=m(\beta)$ if the length $\|\alpha\|=\|\beta\|$ and $M$ is simple, by 2.4 b . Moreover $m(\alpha) \leqq m(\beta)$ if $\|\alpha\| \geqq\|\beta\|$, as one sees by the usual arguments on $\alpha$-series of a weight [B].

The construction of $M(\alpha)$ for a single root $\alpha$ may be generalized to that of a subspace for several roots.
2.4d. Lemma. Given a set $S \subset R(M)$, one has a unique connected subspace $M(S)$ of $M$ whose tangent space $T_{o} M(S)$ equals $\mathfrak{m}_{S}:=a_{S}+\sum_{R(S)} \mathfrak{m}(\alpha)$, summed up for the roots in $R(S)$, where $a_{s}$ is the linear span of $S$ and $R(S)$ is the minimal root subsystem of $R(M)$ satisfying $S \subset R(S) \subset R(M) \cap \mathfrak{a}_{s}$.

Proof. $R(S)$ exists, since $R(M) \cap \mathfrak{a}_{S}$ is a root system (See [B]). Let $\mathfrak{f}_{s}$ be the subalgebra of $\mathfrak{f}$ generated by $\left[\mathfrak{m}_{s}, \mathfrak{m}_{s}\right]$. One knows $[\mathfrak{m}(\alpha), \mathfrak{m}(\beta)] \subset \mathfrak{f}(\alpha+\beta)+\mathfrak{f}(\alpha-\beta)$, and one sees $\alpha \pm \beta \in R(S)$ if $\mathfrak{f}(\alpha \pm \beta) \neq 0$ and $\alpha \pm \beta \neq 0$. Hence $\mathfrak{f}_{S} \subset \mathfrak{f}(0)+\sum_{R(S)} \mathfrak{f}(\alpha)$. While $\mathfrak{f}(0)$ normalizes every $\mathfrak{m}(\beta)$, one has $[\mathfrak{f}(\alpha), \mathfrak{m}(\beta)] \subset \mathfrak{m}(\alpha+\beta)+\mathfrak{m}(\alpha-\beta)$, and one concludes
$\left[\mathfrak{f}_{s}, \mathfrak{m}_{s}\right] \subset \mathfrak{m}_{s}$. This establishes the unique existence of $M(S)$; the symmetry decomposition for $M(S)$ is $\mathfrak{f}_{s}+m_{s}$. QED

### 2.5. Proposition. The following five conditions are equivalent.

(i) The multiplicity $m(\alpha)=1$ for every root $\alpha$ of $M=G / K$.
(ii) The $\operatorname{rank} r(M)=r(G)$.
(iii) The root system $R(M) \cong R(G)$.
(iv) The subspace $\mathfrak{f}(0)=\{0\}$.
(v) The subalgebra $\mathfrak{f}(0)$ acts on $\mathfrak{m}(\alpha)$ reducibly for every root $\alpha$ of $M$.

Proof. One clearly sees $[\mathfrak{f}(0), \mathfrak{m}(\alpha)] \subset \mathfrak{m}(\alpha)$ for every $\alpha$. Under the assumption of (i), this gives $[\mathfrak{f}(0), \mathfrak{m}(\alpha)]=\{0\}$, since $f(0)$ is the Lie algebra of a compact Lie group. Hence $\mathfrak{f}(0)=\{0\}$, since $\mathfrak{f}$ is effective on $m$. Obviously, (iv) $\Leftrightarrow \mathfrak{a}$ is a maximal abelian subalgebra of $\mathfrak{g} \Leftrightarrow$ (ii). Assume (ii). Then $\mathfrak{g}$ is the direct sum of $\mathfrak{a}$ and $g(\alpha)$ for the roots of $M$; hence every root $\alpha$ of $M$ is that of $\mathfrak{g}$. The converse is trivial: (iii) $\Rightarrow$ (ii), since $\mathfrak{a}$ is the direct sum of the linear space spanned by $R(M)$ and the torus part of $m$. Under the equivalent assumptions of (ii), one recalls $\operatorname{dim} g(\beta)=2$ to derive $m(\beta)=\frac{1}{2} \operatorname{dim} g(\beta)=1$; (ii) $\Rightarrow$ (i). Trivially, (iv) implies (v). Finally assume (v). If $2 \alpha$ is not a root, then $[m(\alpha), \mathfrak{m}(\alpha)] \subset f(0)$ is $\mathscr{L} \mathrm{O}(\mathfrak{m}(\alpha))$ by 2.4 b . Thus $m(\alpha)=1$ by $(\mathrm{v})$. The case of a root $2 \alpha$ is handled similarly (See 2.26a).
2.5a. Remark. One cannot generalize 2.5 by replacing $M$ and $G$ with $M^{-t}$ and $M$ respectively. For example, if $M=\mathrm{EI}=\mathrm{E}_{6} / \mathrm{Sp}(4)^{*}$, there is an involution for which $M^{-t}=\mathbf{C I}(4)^{*}=(\mathbf{S p}(4) / \mathrm{U}(4))^{*}$; thus (i) does not imply (ii). However, (v) implies (i): $\mathfrak{i}^{+\boldsymbol{t}}(0)$ is irreducible on $\mathfrak{m}^{-t}(\alpha)$ if $\operatorname{dim} \mathfrak{m}^{-t}(\alpha)>1$. And similarly for its action on $\mathfrak{m}^{t}(\lambda)$.
2.6. Example. Let $M=\mathrm{SU}(n), M^{t}=\mathrm{AI}(n):=\mathrm{SU}(n) / \mathrm{SO}(n)$ and $M^{-t}=\mathrm{SO}(n)$; thus $t$ is the composite of the complex conjugation $\kappa$ and the symmetry at 1 . Then $R\left(M ; \mathfrak{a}^{-t}\right)$ is, if $n=2 n^{\prime}$ is even, $C_{n^{\prime}}(4,2)$, where $C_{n^{\prime}}$ is the root system, 4 is the multiplicity of the shorter roots and 2 is the common multiplicity of the longer roots. By convention, we indicate the multiplicities of the roots in the order of the length of the roots, based on the fact that the roots of equal length have equal multiplicity for simple symmetric spaces; this is true, because the members of the Weyl group represented by those of $K_{(1)}$ preserve the multiplicity. $R\left(M^{-t}\right)$ is $\mathrm{D}_{n^{\prime}}(2,0) \cong R(\mathrm{SO}(n))$ and the highest weight in $R\left(M^{t} ; \mathfrak{a}^{-t}\right)$ is $2 \omega_{1}$, which indicates the action of the isotropy subgroup $\mathrm{SO}(n)$ on the tangent space to $\operatorname{AI}(n)$ at the unit element $1 . R\left(M^{t} ; \mathfrak{a}^{-t}\right)$ is actually $\mathrm{C}_{n^{\prime}}(4,2)$. If $n=2 n^{\prime}+1$ is odd, then $R\left(M ; \mathfrak{a}^{-t}\right)$ is $\mathrm{BC}_{n^{\prime}}(4,2,2)$; the longest roots have multiplicity 2 . We also note that $\mathfrak{m}^{t}(0)+\mathfrak{a}^{-t}$ is a maximal abelian subalgebra of the Lie algebra $\mathscr{L} \mathrm{SU}(n)$. Now we exchange $\operatorname{AI}(n)$ and $\mathrm{SO}(n) ; t=\kappa$ so that we consider $M^{-t}=\operatorname{AI}(n):=\mathrm{SU}(n) / \mathrm{SO}(n)$ and $\quad M^{t}=\mathrm{SO}(n)$. Then $\quad R\left(M^{-t}\right) \cong \mathrm{A}_{n-1}(1,0), \quad R\left(M^{t} ; \mathfrak{a}^{-t}\right) \cong \mathrm{A}_{n-1}(1,0), \quad R\left(M ; \mathfrak{a}^{-t}\right) \cong$ $\mathrm{A}_{n-1}(2,0)$ of course.

Now we return to the geodesic $c, c^{\prime}(0)=H \in \mathfrak{a}^{-t}, H \neq 0$, and $J F^{t} ; c^{\prime}(u)$ is (the
restriction of) a member $H$ of $\mathfrak{a}^{-t}$ so that one has $c(u)=\exp (u H)(o)$. If $v$ is a member of $\mathfrak{g}(\alpha)$, then $v$ solves 2.1a or, quite explicitly, $(d / d u)^{2} v+\alpha(H)^{2} v=0$. Thus, if one notes $v(c(u))=v(\exp (u H) o)=\exp (u H) \circ \operatorname{ad}(\exp (-u H))(v)(o)$ for any value of the parameter $u$, then one obtains the next lemma.
2.7. Lemma. (i) $v$ vanishes at $c(u)$ if and only if $\operatorname{ad}(\exp (-u H))(v)$ belongs to $\mathfrak{f}$; and (ii) under additional conditions of $v \in \mathfrak{f}(\alpha)$ and $\alpha(H) \neq 0, v$ vanishes at $c(u)$ if and only if $u \alpha(H)$ is an integral multiple of $\pi$.

In case $\alpha(H)=0$, one sees that not only $v \in \mathfrak{g}(\alpha)$ but the vector field: $u \mapsto u v=u v(c(o))$ is also a solution of the Jacobi equation. And similarly for the members of $\mathfrak{a}^{-t}$. Therefore we obtain the next lemma.
2.8. Lemma. $J F^{t}$ is, in the natural fashion, isomorphic with the direct sum of the following linear spaces; (1) $\mathfrak{m}^{t}$, (2) $\mathfrak{I}^{t}(\alpha)$ for $\alpha(H) \neq 0$, (3) \{the vector fields: $u \mapsto$ $\left.u v(c(u)) \mid v \in \mathfrak{m}^{-t}(\alpha)\right\}$ for $\alpha(H)=0$, and (4) \{the vector fields: $\left.u \mapsto u v(c(u)) \mid v \in \mathfrak{a}^{-t}\right\}$.

Proof. This must be obvious from the above, since $J F^{t}$ has dimension $=\operatorname{dim} M$ and one has $\nabla_{H} v=0$ on $c$ for $v$ in (3) and (4). QED

The following four conditions are equivalent to each other. (i) The point $p=c(\pi)=\exp (\pi H)(o)$ is fixed by $t$; (ii) $c$ meets another component $M^{t}(p)$ of $F(t, M)$ through $p$; (iii) $s_{o}$ fixes $p$; and (iv) $\exp (2 \pi H)(o)=o$. We assume $t(p)=p$. Then $c$ is a circle with $c(2 \pi)=o$; it may happen, however, that $p$ coincides with $o$. By 2.7 , this gives that $\alpha(2 H)$ is an integer for every $\alpha$ in $R\left(M ; \mathfrak{a}^{-t}\right)$; alternatively, one sees this from the fact that $\operatorname{ad}(\exp (2 \pi H))$ preserves $f$, which follows from $o=c(2 \pi)=\exp (2 \pi H)(o)$. We use these facts to prove the next proposition.
2.9. Proposition. Assume that $t$ fixes the point $p=c(\pi)$ on the geodesic $c$ : $u \mapsto \exp (u H)(o), H \in \mathfrak{a}^{-t}$.
(i) If there is no conjugate point of $o$ on the interval $(0, \pi)$ along the geodesic $c$, then one has $\alpha(H)=0, \pm \frac{1}{2}$ or $\pm 1$ for every $\alpha$ in $R\left(M^{-t} ; a^{-t}\right)$.
(ii) If there is no focal point of $o$ on the interval $(0, \pi)$ along the geodesic $c$, then one has $\lambda(H)=0$ or $\pm \frac{1}{2}$ for every $\lambda$ in $R\left(M^{t} ; a^{-t}\right)$.

Proof. (i) We saw that $\alpha(2 H)$ is an integer for every $\alpha$ in $R\left(M ; a^{-t}\right)$. But the members of $\mathfrak{f}^{t}$ cannot vanish on the interval $(0, \pi)$ by the assumption. (ii) While $\operatorname{ad}(\exp (2 \pi H))$ preserves $\mathfrak{m}^{t}$, the members of $\mathfrak{m}^{t}$ cannot vanish on the interval $(0, \pi)$ similarly. More details may be due. Let $v$ be a (nonzero) member of $\mathfrak{m}^{t}(\lambda)$. Then there is a member $w$ of $\mathfrak{f}^{-t}(\lambda)$ such that one has $\operatorname{ad}(\exp u H)(v)=\cos (u \lambda(H)) v+\sin (u \lambda(H)) w$ for every real number $u$ by (2.1a). If $\lambda(H) \neq 0$, then $\lambda(H)= \pm \frac{1}{2}$ by (2.8) and the assumption, since $v$ never vanishes ( $\Leftrightarrow \cos (u \lambda(H))$ never vanishes) on the interval $(0, \pi)$ and yet $\lambda(2 H)$ is an integer. We might add that a conjugate point is focal in our setting. QED

[^1]$F\left(\operatorname{ad}\left(s_{p}\right), \mathfrak{m}^{t}\right)=F\left(-\operatorname{ad}(Q(p)), \mathfrak{m}^{t}\right)$ for $\lambda$ in $R\left(M^{t} ; \mathfrak{a}^{-t}\right)$ if $\lambda(H) \neq 0 ;$ and $\mathfrak{m}^{t}(\lambda) \subset F\left(-\operatorname{ad}\left(s_{p}\right)\right.$, $\mathrm{m}^{t}$ ) if $\lambda(H)=0$.
(ii) In the setting of $(\mathbf{i})$ of $(2.9), \mathfrak{f}^{t}(\alpha)$ is contained in $F\left(\operatorname{ad}\left(s_{p}\right), \mathfrak{f}^{t}\right)$ for $\alpha$ in $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$ if $\alpha(H)= \pm 1$ or 0 ; and $\mathrm{f}^{t}(\alpha) \subset F\left(-\operatorname{ad}\left(s_{p}\right)\right.$, $\left.\mathrm{f}^{t}\right)$ if $\alpha(H)= \pm \frac{1}{2}$.
(iii) In the setting of (ii) of (2.9), the parallel transport of the tangent space $T_{o} M$ along the circle $c=c \mid[0,2 \pi]\left(=\right.$ the action of $\exp (2 \pi H)=Q(p)$ on $\left.T_{o} M\right)$ is the identity on the sum
$$
\mathfrak{m}^{t}(0)+\sum_{\lambda(H)=0} \mathfrak{m}^{t}(\lambda)+\sum_{\alpha(H)= \pm 1 \text { or } 0} \mathfrak{m}^{-t}(\alpha)+\mathfrak{a}^{-t} .
$$

This is identified with $T_{o} M^{-}(p)$ by evaluation at $o$ and with $T_{p} M^{-}(p)$ at $p$ by evaluation.
2.11. Corollary. In the setting of (ii) of (2.9), the tangent space $T_{p} M^{t}(p)$ at $p$ is identified with the sum

$$
\mathfrak{m}^{t}(0)+\sum_{\lambda(H)=0} \mathfrak{m}^{t}(\lambda)+\sum_{\alpha(H)= \pm 1 / 2} \mathfrak{f}^{t}(\alpha)
$$

by evaluation. This sum is $F\left(-\operatorname{ad}\left(s_{p}\right), \mathfrak{g}^{t}\right)$. In particular the tangent space to the intersection $M^{-t} \cap M^{t}(p)$ at $p$ is identified with the third sum $\sum \mathfrak{f}^{t}(\alpha)$ for $\alpha(H)= \pm \frac{1}{2}$ by evaluation.

To state an important corollary, we denote by $\left(H^{k}\right)_{1 \leqq k \leqq r} r:=\operatorname{dim} \mathfrak{a}^{-t}$, the dual basis to a basis of simple roots $\left(\alpha_{j}\right)_{1 \leqq j \leq r}$ for $R\left(M ; \mathfrak{a}^{-t}\right)$ under the assumption that $M$ is simple; thus $\alpha_{j}\left(H^{k}\right)=\delta_{j}^{k}$ and $\left(H^{k}\right)$ is a basis for $\mathfrak{a}^{-t}$, while the $k$-th fundamental weight $\omega_{k}$ equals $\frac{1}{2}\left\|\alpha_{k}\right\|^{2} H^{k}$. The vector $H$ in $\mathfrak{a}^{-t}$ is a unique linear combination $\sum h_{k} H^{k}$. We may assume that $h_{k} \geqq 0$, in our study. And the highest root $\alpha^{\sim}$ of $R\left(M ; a^{-t}\right)$ is written $\sum n^{j} \alpha_{j}$ with positive integers $n^{j}$ as coefficients.
2.12. Example. We describe these for the root system $\mathrm{BC}_{r}=\mathrm{B}_{r} \cup \mathrm{C}_{r} . \alpha_{j}=\varepsilon_{j}-\varepsilon_{j+1}$ for $1 \leqq j<r$ and $\alpha_{r}=\varepsilon_{r}$, while $\alpha^{\sim}=2 \varepsilon_{1}=2\left(\alpha_{1}+\cdots+\alpha_{r}\right)$. One sees $\omega_{j}=H^{j}=\varepsilon_{1}+\cdots+\varepsilon_{j}$ for $1 \leqq j<r$ and $2 \omega_{r}=H^{r}=\varepsilon_{1}+\cdots+\varepsilon_{r}$.
2.13. Corollary. Under the assumption of 2.9 (i), if $M$ is simple, then $H$ is congruent (by $K_{(1)}$ ) with the vector in $1^{\circ}$ or $2^{\circ}$ below:
$1^{\circ} \quad H=\frac{1}{2} H^{j}$ for some $j$ with $n^{j}=1$ or 2 ; or
$2^{\circ} \quad H=\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$ for some $j$ and $k$ with $n^{j}=1=n^{k}$.
The case $1^{\circ}$ occurs if $\alpha^{\sim}$ is not a member of $R\left(M^{-t} ; \mathfrak{a}^{-t}\right)$.
Proof. $H=\sum h_{k} H^{k}$ is carried into a given Weyl domain in $a^{-t}$ by 2.4a. And the transform of $H$ still satisfies the assumption of 2.9 (i). Thus we may assume every $h_{k}$ is nonnegative. For every simple root $\alpha_{j}$, one has $\alpha_{j}(H)=h_{j}=0$, $\frac{1}{2}$ or 1 and $\alpha^{\sim}(H)=\sum n^{j} h_{j}=\frac{1}{2}$ or 1 by 2.9. If $\alpha^{\sim}(H)=\frac{1}{2}$ then one has the case $1^{\circ}$ with $n^{j}=1$ necessarily. If $\alpha^{\sim}(H)=1$ then one has $1^{\circ}$ or $2^{\circ}$ as is easily seen. QED
2.14. Remark. By this corollary, one can find the length of the arc $c \mid[0, \pi]$ and
the distance from $o$ to $p=c(\pi)$ (and to $M^{t}(p)$ ), or its ratio if the invariant Riemannian metric is not specified; in fact the length of $H^{j}=\left(2 /\left\|\alpha_{j}\right\|^{2}\right) \omega_{j}$ is readily available in [B]. The distance was computed for certain exceptional spaces by Atsuyama [At].
2.14a. Remark. A weight $\omega_{j}$ with $n^{j}=1$ is called "minuscule" in [B].
2.14b. Remark. The case $2^{\circ}$ in 2.13 will be illustrated in 2.16 (1) and 3.7.
2.15. Theorem ( $A$ local characterization of a meridian $M^{-}(p)$ ). Assume a point $p \neq o$ of a simple space $M$ is fixed by the symmetry $s_{o}$. Then (i) the root system $R\left(M^{-}(p)\right)$ of the meridian to the polar $M^{+}(p)$ is read off from the root system $R(M)$ as follows; one obtains the Dynkin diagram of $R\left(M^{-}(p)\right)$ either by deleting a vertex $\alpha_{j}, n^{j}=1$, from the Dynkin diagram of $R(M)$ or by deleting a vertex $\alpha_{j}, n^{j}=2$, from the extended Dynkin diagram of $R(M)$, where $n^{j}$ is a coefficient in $\alpha^{\sim}=\sum n^{j} \alpha_{j}$. In the first case (of $n^{j}=1$ ), $M^{-}(p)$ is a local product of a circle with a tangent $H^{j}$ and a semisimple space with the obtained root system; and $M^{-}(p)$ is semisimple if and only if $n^{j}=2$. (ii) In all the cases (but that of the real projective space), the multiplicity of the roots is preserved. (iii) Moreover, if $M$ is the bottom space $M^{*}$, then the converse is true (Theorem 2.5, [N]).

Proof. Letting $t=s_{o}$, we apply (2.13). We then have $M^{-t}=M$ and $M^{t}=\{0\}$. Thus $\mathfrak{a}^{-t}$ is a maximal abelian subalgebra $\mathfrak{a}$ in $m$. Let $c$ be a shortest geodesic from $o=c(0)$ to $p=c(\pi)$. Then $c$ lies in the meridian $M^{-}(p)$; in fact the $\operatorname{arc} c \mid[0, \pi]$ is one of the shortest from $o$ to the polar $M^{+}(p)=M^{t}(p)$ by 1.5 a (ii) and hence $c$ is orthogonal to $M^{+}(p)$. We may assume that $a$ is tangent to $M^{-}(p)$ (See 1.8) and that the initial tangent $H:=c^{\prime}(0)$ lies in $a$ and further in a given Weyl chamber or its closure. Now we employ 2.10, which we can, since the assumption (i) of 2.9 is equivalent to (ii) because of $M^{t}=\{0\}$. By 2.10 , the tangent space $T_{o} M^{-}(p)$ to the meridian is identified with $\sum \mathrm{m}(\alpha)+a$ for $\alpha(H)= \pm 1$ or 0 , since $\mathfrak{m}^{t}(0)+\sum \mathfrak{m}^{t}(\lambda)$ is trivially zero by $M^{t}=\{0\}$. We will characterize the sets of the roots $\alpha$ satisfying this condition, which will be the root system of $M^{-}(p)$. By 2.13 , we may assume $1^{\circ} H=\frac{1}{2} H^{j}$ for some $j$ with $n^{j}=1,2^{\circ} H=\frac{1}{2} H^{j}$ for some $j$ with $n^{j}=2$, or $3^{\circ} H=\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$ for some $j$ and $k$ with $n^{j}=1=n^{k}$. In the case $1^{\circ}, R\left(M^{-}(p)\right)$ consists of the roots which are orthogonal to $\frac{1}{2} H^{j}$; thus the Dynkin diagram of $R\left(M^{-}(p)\right)$ is that of $R(M)$ less the vertex $\alpha_{j}$ and $M^{-}(p)$ is a local product of a semisimple subspace with $R\left(M^{-}(p)\right)$ and the circle with the initial tangent $\frac{1}{2} H^{j}$. In the case of $2^{\circ}, R\left(M^{-}(p)\right)$ contains the highest root and all the roots that are orthogonal to $\frac{1}{2} H^{j}$. Hence it has the extended Dynkin diagram of $R(M)$ less the vertex $\alpha_{j}$. In the third case, it is easy to check that the Dynkin diagram of $R\left(M^{-}(p)\right)$ is obtained from the extended Dynkin diagram of $R(M)$ by deleting the vertices $\alpha_{j}$ and $\alpha_{k}$; alternatively one looks at the bottom for which the case $3^{\circ}$ does not occur (See 2.21). Obviously the multiplicity is preserved; simply because $\mathfrak{m}(\alpha)$ is contained in the tangent space $T_{o} M^{-}(p)$ to the meridian whenever $\alpha$ is its root and $M^{-}(p)$ has an equal rank to $M$. Finally, assume that $M$ is the bottom space $M^{*}$. Then, given a vector $H$ in $\mathfrak{a}$, the point $c(2 \pi)=\exp (2 \pi H)(o)$ coincides with $o$ if $\operatorname{ad}(\exp (2 \pi H))$ preserves $f$, simply because $M^{*}$ has no pole. This is the case if and only
if $\sin (2 \pi \alpha(H))=0$ on each $\mathfrak{f}(\alpha)+\mathfrak{m}(\alpha), \alpha \in R(M)$. Now choose $H=\frac{1}{2} H^{j}$ for some $j$ with $n^{j}=1$ or 2 . And $2 \pi \alpha(H)=\pi \alpha\left(H^{j}\right)$ is an integral multiple of $\pi$ for every root $\alpha$. Thus $c(2 \pi)=o$, while $p:=c(2 \pi) \neq o$ by $\alpha_{j}(\pi H)=\frac{1}{2} \pi$. Hence the point $p$ lies in a polar $M^{+}(p)$. One has $Q(p)=\exp (2 \pi H)$, which determines $M^{-}(p)$ as desired. QED
2.15a. Remark. If one chooses the involution $t=s_{p}$ for a point $p$ in a polar $M^{+}(p)$ (hence $t(o)=o$ ), one has $M^{-t}=M^{-}(p)$ and $\mathfrak{a}^{-t}$ is a maximal abelian subalgebra in $\mathfrak{m}$ by 1.8 . The subspace $M^{t}$ is congruent with $M^{+}(p)$ by the point symmetry $s_{m}$ at the midpoint $m=c\left(\frac{1}{2} \pi\right)$, where $c$ is a shortest geodesic from $o=c(0)$ to $p=c(\pi)$ as in the proof above. Since $c$ is a shortest from $o$ to the polar, the use of $s_{m}$ shows that there is no focal point on $c \mid(0, \pi)$ and 2.10 applies as well as 2.11 and others; hence $\mathfrak{m}^{t}(0)+\sum \mathfrak{m}^{t}(\lambda)$ is zero. One concludes that (i) $R(M)$ is the disjoint union of $R\left(M^{-t}\right)=R\left(M^{-}(p)\right)$ and $R\left(M^{t}, \mathfrak{a}^{-t}\right)$, (ii) $R\left(M^{-}(p)\right)$ consists of the roots $\alpha$ of $M$ such that $\alpha(H)= \pm 1$ or 0 , and (iii) $R\left(M^{t}\right)$ consists of the roots $\lambda$ of $M$ such that $\lambda(H)= \pm \frac{1}{2}$. In particular, $\mathfrak{f}^{-}:=\mathfrak{f}^{-t}=F(-\operatorname{ad}(t), \mathfrak{f})$ is exchanged with $\mathfrak{m}^{+}:=\mathfrak{m}^{t}=F(\operatorname{ad}(t), \mathfrak{m})$ by $\operatorname{ad}\left(s_{m}\right)$, while $\mathfrak{f}^{+}:=\mathfrak{f}^{t}=F(\operatorname{ad}(t), \mathfrak{f})$ and $\mathfrak{m}^{-}:=\mathfrak{m}^{-t}=F(-\operatorname{ad}(t), \mathfrak{m})$ remain invariant. The symmetry decomposition for $M^{t} \cong M^{+}(p)$ is $\mathfrak{g}^{+}=\mathfrak{f}^{+}+\mathfrak{m}^{+}$and the one for the meridian is $\mathfrak{g}^{-}=\mathfrak{f}^{+}+\mathfrak{m}^{-}$. (These are thus graded at least if they are complexified.)
2.15b. Corollary. Some coefficient $n^{j}$ in $^{\sim}{ }^{\sim}=\sum n^{j} \alpha_{j}$ is 1 or 2 for any root system.
2.16. Examples. (1) Let $M=\operatorname{SU}(n)$. Then every $n^{j}=1$. The circle in the direction of $\frac{1}{2} H^{j}+\frac{1}{2} H^{n-j}$ meets the polar $G_{2 j}\left(C^{n}\right)$ as in [N] (3.4). But in $\operatorname{SU}(n)^{*}$ the circle in the direction of $\frac{1}{2} H^{j}$ meets the polar $G_{j}\left(C^{n}\right)$ (or $G_{j}\left(C^{n}\right)^{*}$ if $\left.2 j=n\right)$ at $c\left(\frac{1}{2} \pi\right)$. Notice that the polars are closer in the bottom, since one has $\left\|\frac{1}{2} H^{2 j}\right\|<\left\|\frac{1}{2} H^{j}+\frac{1}{2} H^{n-j}\right\|$. The theorem implies that similar phenomena occur to the spaces $\operatorname{AI}(n)$ and $\operatorname{AII}(n)$ of the same root system as well.
(2) Consider the case $R(M)=\mathrm{BC}_{r}=\mathrm{BC}_{r}(a, b, c)$, where $a$ denotes the multiplicity of the shortest roots $\alpha, b$ that of the roots of medium length and $c$ that of $2 \alpha$, the longest. The meridians have the root systems $\mathrm{C}_{p}(b, c) \times \mathrm{BC}_{r-p}(a, b, c), 1 \leqq p \leqq r$, by 2.12 .
2.17. Remark. The theorem 2.15 gives not only the local structure of $M^{-}(p) \fallingdotseq G^{-} / K^{+}$(together with 2.29 ) but also that of $M^{+}(p) \fallingdotseq K_{(\mathbf{1})} / K^{+}$by 2.15 a , where $\fallingdotseq$ means local isomorphism, with the reservation that $K^{+}$is not necessarily almost effective on $M^{+}(p)$.
2.17a. Remark. A few more words to the theorem 2.15. In the first case, the circle $T$ lies in the direction of $H^{j}$ or $\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$. In the second case, $H^{j}$ is orthogonal to all the simple roots of $M^{-}(p)$ but the added vertex $-\alpha^{\sim}$.
2.17b. Remark. It is not quite always true that the circle $T$ in the direction of $H^{j}$ or $\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$ is actually one of the shortest that reaches the polar. It depends on the spaces in the local isomorphism class of $M$, as the previous example (1) shows. In $\mathrm{E}_{7}$ and EV , the circles in the directions of $H^{2}$ and $H^{7}$ reach the pole, but the latter is
shorter (See the proof of 3.13 ). In $\mathrm{E}_{6}$, the circles in the directions of $\boldsymbol{H}^{1}, H^{6}$ and $H^{1}+H^{6}$ reach the polar EIII; the third one is shorter in $\mathrm{E}_{6}$ and longer in $\mathrm{E}_{6}^{*}$ (See the proof of 3.17).
2.17c. Remark. One can immediately read off the isotropy representation of the isotropy subgroup $K$ on the tangent space $T_{o} M$ of the space $M=G / K$ from the root systems $R(K)$ and $R(G)$ if the rank $r(K)=r(G)$. In fact, if one removes the simple root $\alpha_{j}$ out of $R(G)$ to obtain the Dynkin diagram of $R(K)$ as in the theorem, then one has only to express $\alpha_{j}$ as a linear combination of the fundamental weights of $R(K)$; in case $\boldsymbol{n}^{j}=1, H^{j}$ should be included as a fundamental weight.
2.18. Remark. Whether or not $p=c(\pi)$ is fixed by $s_{o}$, one has $\alpha(H)= \pm 1$ or 0 for every root $\alpha$ of $R(M)$ if $K_{(1)}$ fixes $p$, or equivalently $\operatorname{ad}(\exp (\pi H)$ ) preserves $f$ and if there is no conjugate point on $(0, \pi)$ along $c$. Since every homotopy class of closed smooth curves in $M$ contains a circle of the shortest length, one can conclude that the nonzero members of the fundamental group $\pi_{1}\left(M^{*}\right)$ are in a one-to-one correspondence with those $\frac{1}{2} H^{j}$ with $n^{j}=1$, as is well known. We tabulate $\pi_{1}\left(M^{*}\right)$ below for each root system $R(M) ; Z_{k}$ denotes a cyclic group of order $\boldsymbol{k}$.

| $R(M)$ | $\mathrm{A}_{r}$ | $\mathrm{~B}_{r}$ | $\mathrm{C}_{r}$ | $\mathrm{D}_{r}, r$ odd | $\mathrm{D}_{r}, r$ even | $\mathrm{E}_{6}$ | $\mathrm{E}_{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\pi_{1}\left(M^{*}\right)$ | $Z_{r+1}$ | $Z_{2}$ | $Z_{2}$ | $Z_{4}$ | $Z_{2} \times Z_{2}$ | $Z_{3}$ | $Z_{2}$ |

$\pi_{1}\left(M^{*}\right)$ is $\{1\}$ if $R(M)$ is $\mathrm{G}_{2}, \mathrm{~F}_{4}, \mathrm{E}_{8}$ or $\mathrm{BC}_{r}$ by the above. One obtains more information about $\pi_{1}\left(M^{*}\right)$, through the knowledge of the length of the circle $c, c\left(\frac{1}{2} \pi H^{j}\right)=o$ for $M=M^{*}$. The next proposition 2.19 illustrates the point.
2.18a. Remark. Let $M^{-}(p)$ be a meridian in $M$. Then every covering morphism $\pi: M \rightarrow M^{\prime \prime}$ restricts to a covering morphism of $M^{-}(p)$ onto a meridian $M^{\prime \prime}\left(p^{\prime \prime}\right)$ in $M^{\prime \prime}$. We assert that the kernel of the restriction $\pi \mid M^{-}(p)$ coincides with that of $\pi$; see 1.14 for the kernel. This follows from the fact that the inclusion: $M^{-}(p) \rightarrow M$ induces a surjection: $\pi_{1}\left(M^{-}(p)\right) \rightarrow \pi_{1}(M)$, which is a consequence of 1.14a. In particular, $M$ covers $M^{\prime \prime}$ as many times as $M^{-}(p)$ covers $M^{\prime \prime}\left(p^{\prime \prime}\right)$. The assertion is true for any subspace of equal rank, not just for $M^{-}(p)$.
2.19. Proposition. Let $t^{*}$ be an automorphism of a compact connected simple bottom space $M^{*}$ which fixes a point $o^{*}$. Then
(i) $t^{*}$ acts on the fundamental group $\pi_{1}\left(M^{*}\right)$ as the identity or $s_{1}: x \mapsto x^{-1}$ except when $R\left(M^{*}\right)=\mathrm{D}_{r}$ and $r$ is even.
(ii) $t^{*}$ lifts to an automorphism of any covering space $M$ of $M^{*}$ with the same possible exceptions.
(iii) Assume $R\left(M^{*}\right)=D_{r}$ and $r$ is even. If $M$ is $\mathrm{SO}(2 r)$ or $\boldsymbol{G}_{r}\left(\boldsymbol{R}^{2 r}\right)$ with $r \neq 4$, then $t^{*}$ lifts to an automorphism of $M$. In case $r \neq 4$, an automorphism $t^{*}$ of $M^{*}=\mathrm{SO}(2 r)^{*}$ or
$G_{r}\left(\boldsymbol{R}^{2 r}\right)^{*}$ lifts to an automorphism of $M=\mathrm{SO}(2 r)^{\#}$ (=semi-spinor group) or $G_{r}\left(\boldsymbol{R}^{2 r}\right)^{\#}$ respectively if and only if $t^{*}$ is inner (which is equivalent to say that $t^{*}$ is homotopic to the identity map in this case) or the composite of an inner automorphism and a symmetry at a point. In case $r=4$, an inner automorphism $t^{*}$ of $M^{*}$ lifts to an automorphism of $M$, but this is not necessarily true if $t^{*}$ is outer; see the proof for some details.

Proof. $t^{*}$ lifts to an automorphism $t^{\sim}$ of the universal covering space $M^{\sim}$, so that we have the "exact" sequences of homomorphisms:

$$
\left\{o^{\sim}\right\} \rightarrow \pi_{1}(M) \rightarrow M^{\sim} \rightarrow M \rightarrow\{o\} \quad \text { and } \quad\{o\} \rightarrow C(M) \rightarrow M \rightarrow M^{*} \rightarrow\left\{o^{*}\right\}
$$

where the projections: $M^{\sim} \rightarrow M \rightarrow M^{*}$ carry $o^{\sim} \mapsto o \mapsto o^{*}, t^{\sim}\left(o^{\sim}\right)=o^{\sim}$ (See 1.14). $t^{\sim}$ preserves $C\left(M^{\sim}\right)=\pi_{1}\left(M^{*}\right)$. The action may be identified with the above mentioned action of $t^{*}$ on $\pi_{1}\left(M^{*}\right)$, which is the question in (i). In (ii) and (iii), the question is whether or not $t^{\sim}$ preserves the subgroup $\pi_{1}(M)$. There is no problem if $t^{\sim}$ is inner, simply because $t^{\sim}$ then acts on $\pi_{1}\left(M^{*}\right)$ trivially. In view of the table in 2.18, both (i) and (ii) are true obviously (by the group theory) unless the root system $R(M)$ is $\mathrm{A}_{r}$ or $\mathrm{D}_{r}$. In the case of $\mathrm{A}_{r}, t^{\sim}$ acts on the cyclic group $C\left(M^{\sim}\right)=\pi_{1}\left(M^{*}\right)$ as an automorphism. We will prove that $t^{\sim}$ stabilizes every subgroup of $C\left(M^{\sim}\right)$ in this case, by showing that $t^{\sim}$ either fixes any given generator $g$ or reverses $g$. We have $H^{j}=\omega_{j}$ and $n^{j}=1$ for every $j, 1 \leqq j \leqq r$. One easily sees that the geodesic in the direction of $H^{j}$ reaches a member of $C\left(M^{\sim}\right)$, whose inverse lies in the direction of $H^{n-j}$ and that the length satisfies $\left\|\omega_{j}\right\|^{2}=j(n-j) / n, n: \doteq r+1$. Therefore $t^{\sim}$ carries $g$ into $g$ or $g^{-1}$; (i) and (ii) are proven for $\mathrm{A}_{r}$. There is no problem in the case of $\mathrm{D}_{r}, r$ odd. So assume $R(M) \cong \mathrm{D}_{r}, r$ even. Then $\pi_{1}\left(M^{*}\right)$ is generated by two poles $\delta$ and $\varepsilon(=-1$ in the Clifford algebra); so $\pi_{1}\left(M^{*}\right)=\{1, \delta, \varepsilon, \delta \varepsilon\} . \delta\left(\right.$ resp. $\varepsilon$ and $\delta \varepsilon$ ) lies in the direction of $H^{r}$ (resp. $H^{1}$ and $H^{r-1}$ ), and the respective distance from $o^{\sim}$ is proportional to the lengths of those vectors; one has $\left\|H^{1}\right\|^{2}=1$ and $\left\|H^{r-1}\right\|^{2}=\left\|H^{r}\right\|^{2}=r / 4$. Thus, if $r=4$, all the poles are of equal distance from $o^{\sim}$; in fact there is an automorphism T which permutes these three cyclically (See [B]), which naturally lifts to $M^{\sim}$ only. If $r \neq 4$, then one has $\left\|H^{1}\right\|<\left\|H^{r-1}\right\|=\left\|H^{r}\right\|$ and indeed there is a well known outer involution which exchanges $\delta \varepsilon$ and $\delta$ which therefore cannot lift to $\mathrm{SO}(2 r)^{\sim} /\{1, \delta\} \cong \mathrm{SO}(2 r)^{*}:=\mathrm{SO}(2 r)^{\sim} /\{1, \delta \varepsilon\}$ if $M^{*}$ is $\mathrm{SO}(2 r)^{*}$ or to $G_{r}\left(R^{2 r}\right)^{\sim} /\{1, \delta\} \cong G_{r}\left(R^{2 r}\right)^{\sim} /\{1, \delta \varepsilon\}$ if $M^{*}$ is $G_{r}\left(R^{2 r}\right)^{*}$. QED
2.20. Proposition. Assume that $M$ is the bottom space $M^{*}$. Then the "unit lattice" $\left\{H \in \mathfrak{a} \mid \exp (2 \pi H)(o)=o \in M^{*}\right\}$ is $\left\{H \in \mathfrak{a} \mid(\exp (2 \pi H))^{2}=1 \in G^{*}\right\}=\left\{\sum c_{j} H^{j} \in \mathfrak{a} \mid 2 c_{j} \in Z\right\}$ spanned by $\frac{1}{2} H^{j}, 1 \leqq j \leqq r=$ rank of $M$, over $\boldsymbol{Z}$.

Proof. (This is known [H].) Recall that a point $p=\exp (\pi H)(o)$ lies in a polar of $o$ if and only if $\exp (2 \pi H)(o)=o$ and that a bottom space $M^{*}$ is expressed as $G^{*} / F\left(\sigma, G^{*}\right)$, $\sigma=\operatorname{ad}\left(s_{o}\right)$. Let $H \in \mathfrak{a}$. Then one has $\sigma(H)=-H$. Thus $\exp (2 \pi H)(o)=o \Leftrightarrow \exp (-2 \pi H)=$ $\sigma \exp (2 \pi H)=\exp (2 \pi H) \Leftrightarrow(\exp (2 \pi H))^{2}=1 \Leftrightarrow \operatorname{ad}(\exp (4 \pi H))=1 \Leftrightarrow \alpha(4 \pi H) \in 2 \pi Z$ for every root $\alpha \in R(M) \Leftrightarrow 2 \alpha(H) \in Z$ for every root $\alpha \in R(M) \Leftrightarrow 2 c_{j}=2 \alpha_{j}(H) \in Z$ for every simple
root $\alpha_{j}$, where $H=\sum c_{j} H^{j}$. QED
2.21. Corollary. Assume $M=M^{*}$. Then, referring to 2.17 b , the direction $H=$ $\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$ cannot give one of the shortest curve to a polar.

Proof. By the proposition, the point $\exp \left(\pi\left(\frac{1}{2} H^{j}-\frac{1}{2} H^{k}\right)\right)(o)$ coincides with $\exp \left(\pi\left(\frac{1}{2} H^{j}+\frac{1}{2} H^{k}\right)\right)(o)$. But the vector $\frac{1}{2} H^{j}-\frac{1}{2} H^{k}$ is shorter than $\frac{1}{2} H^{j}+\frac{1}{2} H^{k}$, since the inner product $\left\langle H^{j}, H^{k}\right\rangle$ is positive. This proves the corollary if $j \neq k$. If $j=k$, then $\exp \left(\frac{1}{2} \pi H^{j}\right)(o)$ is a point in the polar, since $\exp \left(\pi\left(\frac{1}{2} H^{j}+\frac{1}{2} H^{k}\right)\right)(o)$ is then $o$, again by the proposition. QED
2.22. Remark. The fact 2.21 shows that $R(M)$ is read off from $R\left(M^{-}(p)\right)$ if $M^{-}(p)$ is semisimple. One can derive other various results on $\left(M^{+}, M^{-}\right)$. The next proposition is an example.
2.23. Proposition. Let $M$ be a Kaehlerian (hermitian) symmetric space with $R(M)=C_{r}$. Then (i) $M$ has a connected centrosome $C\left(o, o^{\prime}\right)$. (ii) $C\left(o, o^{\prime}\right)$ is congruent with its c-orthogonal space $C^{\perp}$. (iii) Indeed one can rotate $C\left(o, o^{\prime}\right)$ onto $C^{\perp}$ at any point $x$ of $C\left(o, o^{\prime}\right)$ with the complex structure $J_{x}: T_{x} M \rightarrow T_{x} M$ which extends to a global transformation of TM in the natural fashion. In particular $C\left(o, o^{\prime}\right)$ is totally real (and hence an $R$-space). And (iv) $C\left(o, o^{\prime}\right)$ is a dot product of a circle and a simple space of root system $\mathrm{A}_{r-1}$ with the equal multiplicity to the shorter ones in $R(M)$.

Proof. We will work on the bottom $M^{*}$, of which $M$ is the double covering space. $C\left(o, o^{\prime}\right)$ will project onto a polar $M^{*+}\left(p^{*}\right)$ of the point $o^{*}$. We choose the meridian $M^{*-}\left(p^{*}\right)$ that corresponds to $H^{r}$ (so the simple root $\alpha_{r}$ is the longer) by (2.15). $M^{*-}\left(p^{*}\right)$ is the dot product of the circle with a tangent $H^{r}$ and a subspace as stated. Now the point symmetry at $p^{*}$, taken as $t$, gives the decompositions $\mathfrak{m}=\mathfrak{m}^{+}+\mathfrak{m}^{-}$and $\mathfrak{f}=\mathfrak{f}^{+}+\mathfrak{f}^{-} ; \mathfrak{m}^{-}$gives the tangent space to $M^{*-}\left(p^{*}\right)$ at $o^{*}$. The longer roots $2 \varepsilon_{j}, 1 \leqq j \leqq r$, belong to $\mathrm{m}^{+}$and make a system of strongly orthogonal roots. Recall (or see 2.26 and 2.27) that they have multiplicity 1. By using a Chevalley system (Cf. Proposition 7 about it in [B]), one can find a vector $I \in \sum \mathfrak{m}^{+}\left(2 \varepsilon_{j}\right) \subset \mathfrak{m}^{+}$such that $\left\{H^{r}, I\right\}$ generates a 3-dimensional subalgebra. And $J:=\left[H^{r}, \square \subset \mathfrak{f}^{-}\right.$generates a 1-parameter group whose orbit through $H^{r}$ contains $I$. Hence, making it act on $M^{*}$, one sees its orbit through $p^{*}$ contains a pole $q^{*}$ of $o^{*}$ in $M^{* t}$. This means that $M^{* t}$ is a meridian $M^{*-}\left(q^{*}\right)$ to the polar $M^{*+}\left(p^{*}\right)$. QED
2.23a. Remark. The proposition applies to $M=G_{2}^{o}\left(\boldsymbol{R}^{4+m}\right), m>0, \mathrm{CI}(r), G_{r}\left(C^{2 r}\right)$, DIII $(2 r)$ and EVII. A similar proposition obtains for the quaternion-Kaehlerian spaces in which the so-to-speak "totally complex" meridians $S^{2} \cdot B$ are congruent with the polars; details will appear elsewhere.
2.23b. Remark. A meridian is a maximal subspace, generally. More precisely, let $M$ be a simple space of rank $>1$. Then a proper connected subspace of $M$ coincides
with a meridian $M^{-}$if it contains $M^{-}$. This should be more or less obvious from various known facts such as 2.17 c together with (ii) of 2.15 . Namely, if any one root $\alpha$ of $R(M)$ (outside $R\left(M^{-}\right)$) is added to $R\left(M^{-}\right)$, then $R(M)$ will be the only root system that contains these, $\{\alpha\} \Perp R\left(M^{-}\right)$, by (2.3). (This argument at once shows that the isotropy representation of $K$ for a simple space $M=G / K$ is simple with $r(K)=r(G)$ and hence its Lie algebra $\mathscr{L} K$ is a maximal subalgebra of $\mathscr{L} G$.)
2.24. Lemma. Let $q$ be a pole of $o$ in $M^{-}(p)$, the meridian to a polar $M^{+}(p)$ of o at $p$. Then there are at most three cases: $1^{\circ} q$ is a pole of $o$ in $M ; \quad 2^{\circ} q=p$; or $3^{\circ} q$ is a pole of $p$ in $M$. In the case $3^{\circ}$, the polar $M^{+}(q)$ is congruent with $M^{+}(p)$ by $G$.

Proof. Assume $1^{\circ}$ is not the case. Then $M^{-}(q)$ is not the whole space $M$. The quadratic transform $Q(q)$ is the identity on $M^{-}(p)$ but not on the whole space $M$. We now assume that $M$ is simple and has the rank $r(M)>1$, in order to use 2.23b. Since $M^{-}(p)$ is then a maximal connected subspace of $M$, it follows that $M^{-}(p)$ is $F(Q(q), M)_{(o)}$. But one has $M^{-}(p)=F(Q(p), M)_{(o)}$ in general. Hence one obtains $Q(q)=Q(p)$; that is, $s_{q}=s_{p}$. Therefore $q$ is in the case $2^{\circ}$ or $3^{\circ}$. If $r(M)=1$, then $M^{-}(p)$ is a sphere (of dimension $1,2,4$ or 8 ), and one has $q=p$ certainly. In case $M$ is not simple, $M$ is the local product (i.e. a finite covering is a product) of simple spaces (and a torus). $M^{-}(p)$ is then a maximal connected subspace of that, $M^{\prime}$, of some of them (and the intersection with the torus). A pole in $M$ remains to be one in $M^{\prime}$ and vice versa. The congruence is easy to see from the fact that $M^{+}(p)$ is carried onto the c-orthogonal space to $M^{-}(p)$ by the point symmetry $s_{m}$ at the midpoint $m$ of a geodesic arc joining $o$ to $p$ within $M^{-}(p)$, since the composite of two point symmetries is a member of $G$. QED

In the rest of the section, we will scrutinize the root system of a compact symmetric space of rank $\leqq 2$ (in continuation of Lemma 2.4b) to study its structure. As a result, a local classification of the symmetric spaces would come out easily (Remark 2.27a). Also the proof of Theorem 1.15 on $\left(M^{+}, M^{-}\right)$determining $M$ will be completed (Lemma 2.28). As a consequence, it will be shown that a space $M$ is locally determined by its root system $R(M)$ with multiplicity (2.29). To illustrate the use of the pair ( $M^{+}, M^{-}$), we will show that $M$ is hermitian $\Leftrightarrow M^{+}$and $M^{-}$are hermitian for some pair ( $\left.M^{+}, M^{-}\right) \Leftrightarrow$ this is true for every pair ( $M^{+}, M^{-}$) (Proposition 2.30).

We introduce a few symbols. As before, $\mathfrak{f}_{0}(\alpha)$ denotes the subalgebra generated by $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$ for a root $\alpha \in R(M)$. $M(\alpha):=f_{0}(\alpha)+\mathfrak{f}(\alpha)$ and $m(\alpha):=\operatorname{dim} \mathfrak{f}(\alpha)=\operatorname{dim} \mathfrak{m}(\alpha)$, the multiplicity of $\alpha, \mathfrak{g}_{y}(\alpha)$ is the subalgebra generated by $\alpha$ and a nonzero member $y$ of $\mathfrak{g}(\alpha) ; \mathfrak{g}_{y}(\alpha) \cong \mathscr{L} \mathrm{O}(3) . \mathfrak{g}(\beta++\alpha)$ denotes the linear subspace $\sum_{j} \mathrm{~g}(\beta+j \alpha)$ corresponding to the $\alpha$-series of the root $\beta$ (summed up for all the linear subspaces of this type); similarly for $\mathfrak{m}(\beta++\alpha)$. As usual, $n(\beta, \alpha):=\left\langle\beta, \alpha^{\vee}\right\rangle:=2\|\alpha\|^{-2}\langle\beta, \alpha\rangle$.
2.25 Lemma. Assume $\alpha$ is a root but not $2 \alpha$. Then
(a) $\mathfrak{f}_{0}(\alpha)$ is isomorphic with $\mathscr{L} \mathrm{O}(m), m=\operatorname{dim} \mathfrak{m}(\alpha)$. Moreover $\mathfrak{f}_{0}(\alpha)$ acts on $\mathfrak{m}(\alpha)$
and on $\mathfrak{f}(\alpha)$ as $\mathscr{L} \mathrm{O}(m)$ through the standard representation $\omega_{1}$ of $\mathrm{O}(m) ; \mathfrak{f}_{0}(\alpha)+(\alpha)$ acts on $\mathfrak{m}(\alpha)+R \alpha$ as $\mathscr{L} \mathbf{O}(m+1)$ similarly. Also one has $\mathfrak{f}_{0}(\alpha)=[\mathfrak{f}(\alpha), \mathfrak{f}(\alpha)]=[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$.
(b) $\mathfrak{f}_{0}(\alpha)$ is an ideal in $\mathfrak{f}(0)$. Hence $\mathfrak{f}_{0}(\alpha)$ stabilizes $\mathfrak{m}(\beta)$ for every root $\beta$.
(c) $\mathbf{g}_{y}(\alpha)$ stabilizes $\mathrm{g}(\beta++\alpha)$. If $n(\beta, \alpha)=1$, then $\mathrm{g}(\beta++\alpha)$ is $\mathrm{g}(\beta)+\mathrm{g}(\beta-\alpha)$ and is a direct sum of simple $\mathrm{g}_{\boldsymbol{y}}(\alpha)$-modules (of dimension 4) on which $\mathrm{g}_{\boldsymbol{y}}(\alpha)$ acts through the spin representation of the highest weight $\omega_{1}$. Thus they are direct sums of simple modules over every line in $\mathrm{g}_{\boldsymbol{y}}(\alpha)$ and, in particular, they meet every linear subspace $\mathrm{g}(\beta+j \alpha) \neq\{0\}$ in a subspace of dimension 2 .
(d) The subgroup $G_{y}(\alpha)$ with Lie algebra $\mathrm{g}_{y}(\alpha)$ is isomorphic with $\mathrm{SU}(2)$ (not with $\mathrm{SO}(3))$, if the integer $n(\beta, \alpha)$ is odd for some root $\beta$.
(e) If $n(\beta, \alpha)=1$ and the multiplicity $m(\alpha)>1$, then $m(\beta)$ is a direct sum of simple (and nontrivial) $\mathfrak{f}_{0}(\alpha)$-modules; thus $\left[\mathfrak{f}_{0}(\alpha), \mathfrak{m}(\beta)\right]=\mathfrak{m}(\beta) . \mathfrak{f}_{0}(\alpha)$ acts on them through the spin or a half-spin representation; in case $m(\alpha)=2$, this simply means that $m(\beta)$ is a direct sum of isomorphic 2-dimensional $\mathfrak{f}_{0}(\alpha)$-modules, giving rise to a $\mathfrak{f}_{0}(\beta)$-invariant complex structure on $\mathfrak{m}(\beta)$. In case $m(\alpha)=4, \mathfrak{1}_{0}(\alpha)$ may act through the spin representation of $\mathscr{L} \mathrm{O}(3)$, the other ideal of $\mathfrak{f}_{0}(\alpha)$ acting trivially. (In particular, $m(\beta)$ is even.)

Proof. The linear subspace $[m(\alpha), \mathfrak{m}(\alpha)] \subset f(0)=f(0)+f(2 \alpha)$ normalizes itself and hence it equals $f_{0}(\alpha)$. Since ad $(\alpha)$ gives a bijection of $\boldsymbol{m}(\alpha)$ onto $\mathfrak{f}(\alpha)$, the equality $[\mathfrak{f}(\alpha)$, $\mathfrak{f}(\alpha)]=[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)]$ follows from a stronger fact

$$
\left[x, x^{\prime}\right]=\left[y, y^{\prime}\right]
$$

where $[\alpha, x]=\|\alpha\|^{2} y \in f(\alpha)$ and $\left[\alpha, x^{\prime}\right]=\|\alpha\|^{2} y^{\prime} \in \mathfrak{f}(\alpha)$. To prove this, observe $\left[\alpha,\left[y^{\prime}\right.\right.$, $[\alpha, y]]]=\left[\left[\alpha, y^{\prime}\right],[\alpha, y]\right]+\left[y^{\prime},[\alpha,[\alpha, y]]\right]=\left[\left[\alpha, y^{\prime}\right],[\alpha, y]\right]-\|\alpha\|^{4}\left[y^{\prime}, y\right]$, in which the two terms in the right hand side are alternating in $y^{\prime}, y$ while the left hand side is symmetric in $y^{\prime}, y$ by $\left[y^{\prime},[\alpha, y]\right]=\left[\alpha,\left[y^{\prime}, y\right]\right]-\left[\left[\alpha, y^{\prime}\right], y\right]=\left[y,\left[\alpha, y^{\prime}\right]\right]$ because $\left[y^{\prime}, y\right] \in f(0)$; hence $\left[\left[\alpha, y^{\prime}\right],[\alpha, y]\right]=\|\alpha\|^{4}\left[y^{\prime}, y\right]$ as asserted. The rest of (a) follows from 2.4 b or its proof: the $\mathfrak{f}_{0}(\alpha)$-module $\mathfrak{m}(\alpha)$ is isomorphic with $f(\alpha)=[\alpha, \mathfrak{m}(\alpha)]$ by $\left[\mathfrak{f}_{0}(\alpha), \alpha\right] \subset[\mathfrak{f}(0), \alpha]=\{0\}$. One has (b) by (a), since $\mathfrak{f}(0) \supset \mathfrak{f}_{0}(\alpha)$ normalizes every $\mathfrak{f}(\beta)$ and $\mathfrak{m}(\beta)$. We turn to (c). Clearly $\mathfrak{g}_{y}(\alpha)$ stabilizes $g(\beta++\alpha)$ by $[g(\alpha), g(\beta)] \subset g(\beta+\alpha)+$ $\mathrm{g}(\beta-\alpha)$ and $[\alpha, \mathfrak{m}(\beta)+\mathfrak{f}(\beta)] \subset \mathfrak{f}(\beta)+\mathfrak{m}(\beta)$. Thus, if $n(\beta, \alpha)$ is 1 , one sees $g(\beta++\alpha)=$ $g(\beta)+g(\beta-\alpha)$, another well known fact about the roots [B]. If the inner product $\langle\alpha, \beta+j \alpha\rangle$ is not zero, then ad( $\alpha$ ) carries $\boldsymbol{m}(\beta+j \alpha)$ onto $f(\beta+j \alpha)$ bijectively. Hence $\mathrm{g}_{y}(\alpha)$ acts effectively on each simple $\mathrm{g}_{y}(\alpha)$-submodule of $\mathrm{g}(\beta++\alpha)$ through the weight $\omega_{1}$; the submodules thus have dimension 4. Since the lines in $\mathfrak{g}_{y}(\alpha)$ are conjugate to each other, their actions are known from that of $R \alpha$. If $n(\beta, \alpha)$ is odd, $\boldsymbol{g}_{y}(\alpha)$ acts similarly through the highest weight $n(\beta, \alpha) \omega_{1}$, and one obtains (d). For (e), one first notes that any two orthonormal vectors $y_{1}, y_{2}$ in $f(\alpha)$ generate a subalgebra $f_{12}$ which is isomorphic with $\mathscr{L} \mathrm{O}(3)$; in fact one knows $\left[y_{1}, y_{2}\right] \neq 0$ by 2.4 b and that $\operatorname{ad}\left(\left[y_{1}, y_{2}\right]\right)$ exchanges the two lines spanned by $y_{1}, y_{2}$. $\mathfrak{f}_{12}$ stabilizes $\mathfrak{m}(\beta)+\mathfrak{m}(\beta-\alpha)$, which does not contain a trivial $f_{12}$-submodule by (c). One also notes $m(\beta) \geqq m(\alpha)>1$ by 2.4 c .
$\mathfrak{f}_{12}$ acts on each $\mathfrak{f}_{12}$-submodule through the weight $\omega_{1}$ again by $(\mathrm{c}) ; \operatorname{ad}\left(y_{j}\right): \mathfrak{m}(\beta) \rightarrow$ $\mathfrak{m}(\beta-\alpha)$ is bijective. Therefore $\operatorname{ad}\left(\left[y_{1}, y_{2}\right]\right): \mathfrak{m}(\beta) \rightleftharpoons \mathfrak{m}(\beta)$ is bijective, which immediately implies that $\mathfrak{f}_{0}(\alpha)$ acts on each simple submodule of $\mathfrak{m}(\beta)$ through the spin or a half-spin representation; it may help to note that $\left(\left[y_{2 j-1}, y_{2 j}\right]\right)_{j}$ makes a basis for a maximal abelian subalgebra of $\mathfrak{f}_{0}(\alpha)$ for an orthogonal basis $\left(y_{j}\right)_{j}$ for $\mathfrak{f}(\alpha)$. In case $m(\alpha)=1, \mathfrak{m}(\beta)$ is a direct sum of a simple $\operatorname{Spin}(2)$-submodules of dimension 2. In case $m(\alpha)=4$, a 3-dimensional ideal in $\mathfrak{f}_{0}(\alpha)$ may act trivially on $\mathfrak{m}(\beta)$, as one will see later. QED
2.25a. Lemma. Let L be a subset of the root system $R(M)$. Then the subspace $\mathfrak{m}^{\prime}(L)=\sum_{L} \mathfrak{m}(\lambda)$, summed up for $\lambda$ in $L$, is the tangent space $T_{o} M^{\prime}(L)$ to a subspace $M^{\prime}(L)$ of $M$ if and only if (1) the set $R(L)=\{\lambda \pm \mu \mid \lambda, \mu \in L\} \cap R(M)$ is a root subsystem of $R(M)$ or empty, (2) $L$ is a weight system for $R(L)$, and (3) $L \cap R(L)=\varnothing$.

Proof. Assume $m^{\prime}(L)$ is tangent to a subspace $M^{\prime}(L)$. Then, as in the proof of 2.4 b , one has the symmetry decomposition $\mathfrak{f}^{\prime}+\mathfrak{m}^{\prime}$ for $M^{\prime}(L)$, where $\mathfrak{m}^{\prime}=\mathfrak{m}^{\prime}(L)$ and $\mathfrak{f}^{\prime}=\left[\mathfrak{m}^{\prime}, \mathfrak{m}^{\prime}\right]$ (1.6a). Hence $\mathfrak{f}^{\prime} \subset \sum_{L^{\prime}} \mathfrak{f}_{o}(\lambda)+\sum_{R(L)} \mathfrak{f}^{\mathfrak{f}}(\alpha)$, summed up for $\lambda$ in $L$ and $\alpha$ in $R(L)$, where $\mathfrak{f}_{0}(\lambda):=[\mathfrak{m}(\lambda), \mathfrak{m}(\lambda)]$. Here the equality obtains; in fact, if $n(\mu, \lambda)=1$ as we may assume, then $\mathfrak{f}(\lambda-\mu) \subset \mathcal{F}^{\prime}$ by 2.25(c). Trivially $n(\beta, \alpha)$ is an integer for every pair of members of $R(L) . R(L)$ is left invariant by the reflections in its members by the proof of 2.4 b (vi). Therefore $R(L)$ is a root system in the linear span $\mathfrak{a}_{L}$, unless $R(L)$ is empty (in which case the members of $L$ are strongly orthogonal to each other). Since $L$ is a subset of $R(M)$ and one has $\left[\mathfrak{f}^{\prime}, m^{\prime}\right] \subset \mathfrak{m}^{\prime}, L$ is a weight system for $R_{L}$ in the sense of 2.3; the Weyl group there means that of $R_{L}$ in the present context. If $L \cap R(L)$ contains a member $\alpha$, then $\mathfrak{m}^{\prime}$ must contain $[\mathfrak{m}(\alpha), \mathfrak{f}(\alpha)]=\boldsymbol{R} \alpha$, contrary to the assumption. Conversely, assume (1) through (3). Then $S:=R(L) \cup L$ is a root subsystem of $R(M)$ too. By 2.4 d , there is a subspace $M(S)$, which admits an involution $\tau$ such that $M^{\prime}(L)=F(\tau, M(S))_{(o)} ; \operatorname{ad}\left(\tau \circ s_{o}\right)$ induces the identity on $\mathfrak{f}^{\prime}$ and on $\mathfrak{a}_{L}+\sum_{R(L)} \mathfrak{m}(\alpha)$, summed up for $\alpha$ in $R(L)$. QED
2.26. Lemma. Assume $\alpha$ and $2 \alpha$ are roots $\in R(M), M$ simple. Let $M(\alpha, 2 \alpha)$ denote the subspace $M(S)$ for the root subsystem $S=\{\alpha, 2 \alpha\}$ (See 2.4d). Then (i) $M(\alpha, 2 \alpha)$ has rank 1, and the ratio of the maximum of its sectional curvature to the minimum is $4: 1$. (ii) $M(\alpha, 2 \alpha)$ is one of the complex, quaternion and Cayley projective spaces, denoted by $G_{1}\left(C^{2+k}\right), G_{1}\left(H^{2+k}\right)$ and FII respectively. Its root system is $\mathrm{BC}_{1}(2 k, 1), \mathrm{BC}_{1}(4 k, 3)$ or $\mathrm{BC}_{1}(8,7)$ with multiplicity, the first number in each being that of the shorter ones; the space has dimension $2 k+2,4 k+4$ or 16 accordingly. (iii) $M(\alpha, 2 \alpha)$ is 1 -connected.

Proof. The stated ratio is obtained with the formula in the proof of 2.4 b . We now assume $M=M(\alpha, 2 \alpha)$ for simplicity and will prove (ii). Let $M^{\prime}(\alpha)$ be the subspace with $\mathfrak{m}(\alpha)=T_{o} M^{\prime}(\alpha) ; M^{\prime}(\alpha)=M^{\prime}$ for $L=\{\alpha\}$ in 2.25a. $M^{\prime}(\alpha)$ is c-orthogonal to the meridian $M(2 \alpha)$ (See $2.15 ; M^{\prime}(\alpha)$ is congruent with the polar), which is in fact a sphere of dimension $>1$ by 2.4 b (iii). The space $M$ of rank 1 is thus 1 -connected. The subalgebra
$\mathfrak{f}(0)+\mathfrak{f}(2 \alpha)$ of $\mathfrak{f}$ is $\mathfrak{f}^{+}=F(\operatorname{ad} Q(p), \mathfrak{f})$ and hence it acts irreducibly on $T_{o} M^{\prime}(\alpha)$ and $T_{o} M(2 \alpha)$ and the isotropy subalgebras; the actions are irreducible because $M^{\prime}(\alpha)$ and $M(2 \alpha)$ have rank 1 . We want to rotate $M$ around $o$ with a member $b$ of $K_{(1)}$ so that $b$ carries $M(2 \alpha)$ into $M^{\prime}(\alpha)$. Let $p$ be the pole of $o$ in $M(2 \alpha)$. Choose $b$ of $K_{(1)}$ which carries $p$ into a point $q$ in $M^{\prime}(\alpha) ; q$ lies necessarily on the polar $M^{+}(p)$, the only polar of $o$ in $M^{\prime}(\alpha)$. Then $b(M(2 \alpha))$ is entirely contained in $M^{\prime}(\alpha)$, since $q$ is the pole of $o$ in the sphere $b(M(2 \alpha))$. Therefore $M^{\prime}(\alpha)$ has the same root system $\mathrm{BC}_{1}=\mathrm{BC}_{1}(a, s-1)$ as $M$ with the multiplicity $a$ of $\alpha$ less than that, $m(\alpha)$, of the root $\alpha$ of $M$ by $s:=\operatorname{dim} M(2 \alpha)=m(2 \alpha)+1$; and $a=m(\alpha)-s$. Repeating rotations, one sees that $\operatorname{dim} M^{\prime}(\alpha)=m(\alpha)$ is an integral multiple, $j s$, of $s$. One has $n(\alpha, 2 \alpha)=1$; hence $\operatorname{dim} \mathfrak{m}(\alpha)$ is even by 2.25 (c) and so is $s$. Also one observes that $f(2 \alpha)$ normalizes $g(\alpha)$.

We begin with the case $s=2$. By 2.25 (c), $\mathfrak{f}(2 \alpha) \cong \mathscr{L} \mathrm{U}(1)$ defines a complex structure on $\mathfrak{m}(\alpha)$ as well as $\mathfrak{m}$ which is invariant under the action of $f=f_{0}(\alpha)+f(\alpha)+f(2 \alpha)$. One easily sees that $M$ with rank 1 is a complex projective space $G_{1}\left(C^{2+j}\right)$, by showing that the holomorphic sectional curvature of $M$ is constant (which boils down to the fact that any $f(2 \alpha)$-invariant 2-plane in $m$ is tangent to some Riemann sphere $b(M(2 \alpha))$ ) or showing that $\mathrm{g} \cong \mathscr{L} \mathrm{SU}(j+2)$ and $\mathfrak{f} \cong \mathscr{L} \mathrm{U}(j+1)$ as in the next case.

In case $s=4$, we induct on $j$ to show that $M$ is a quaternion projective space $G_{1}\left(H^{2+j}\right) . \mathfrak{f}_{0}(2 \alpha) \cong \mathscr{L} \mathrm{Sp}(1)$ gives the invariant $\boldsymbol{H}$-structure on $\boldsymbol{m}(\alpha)$ by 2.25 (e) and one on $\mathfrak{m}(2 \alpha)$, since $\mathfrak{f}_{0}(2 \alpha)$ is an ideal in $\mathfrak{f} M(2 \alpha):=f_{0}(2 \alpha)+\mathfrak{f}(2 \alpha) \cong \mathscr{L} \mathrm{O}(4)$ (See 2.4b). Assume $M^{\prime}(\alpha)$ is $G_{1}\left(\boldsymbol{H}^{1+j}\right)$; one has $\mathfrak{f}_{0}(\alpha) \cong \mathscr{L} \mathrm{Sp}(j) \cdot \mathrm{Sp}(1)$ and $\mathfrak{f}_{0}(\alpha) \cap \mathfrak{f}(0) \cong \mathscr{L} \mathrm{Sp}(j)$. The rotation ad $\exp (t \alpha)$ acting on $g$ exchanges $\mathfrak{m}(\alpha)$ and $\mathfrak{f}(\alpha)$ and stabilizes $\mathfrak{f}(2 \alpha)+\mathfrak{f}(0)$ for some $t \in \boldsymbol{R}$, since its angular velocity on $\mathfrak{m}(2 \alpha)+f(2 \alpha)$ is twice as much as the one on $\mathfrak{m}(\alpha)+f(\alpha)$. Hence one has $\mathfrak{f} \cong \mathscr{L} \operatorname{Sp}(j+1) \cdot \operatorname{Sp}(1)$. To conclude $M \cong G_{1}\left(H^{2+j}\right)$ or $g \cong \mathscr{L} \operatorname{Sp}(j+2)$, one has to verify certain uniqueness or that the curvature of $M$ or the Lie algebra structure of $g$ is determined by the root system with multiplicity (and the induction assumption); more specifically one has to determine the bracket product $[]:, \mathfrak{m} \wedge \mathfrak{m} \rightarrow \mathfrak{f}$. The $\mathfrak{f} M(2 \alpha)$-module $\mathfrak{m}(\alpha)$ is a (not unique) direct sum $\sum_{P} \mathfrak{m}_{P}$ of simple submodules $\mathfrak{m}_{P}$, $\mathfrak{m}_{P} \perp \mathfrak{m}_{Q}$ for $P \neq Q, \operatorname{dim} \mathfrak{m}_{P}=4$. Now the restriction [,]: $\mathfrak{m}_{P} \wedge \mathfrak{m}_{Q} \rightarrow \mathfrak{f}$ is known for $P \neq Q$, since $\left[m_{P}, \mathfrak{m}_{Q}\right]$ is contained in $M^{\prime}(\alpha) \cong \mathscr{L} \operatorname{Sp}(j) \cdot \operatorname{Sp}(1)$ by $\left\langle\mathfrak{q} M(2 \alpha),\left[m_{P}, m_{Q}\right]\right\rangle=$ $\left\langle\left[\mathfrak{f} M(2 \alpha), \mathfrak{m}_{P}\right], \mathfrak{m}_{Q}\right\rangle=\left\langle\mathfrak{m}_{P}, \mathfrak{m}_{Q}\right\rangle=0$. For the remaining case of $P=Q$, one observes that $b(M(2 \alpha))=m_{P}$ and $b\left(m_{P}\right)=M(2 \alpha)$ for some $b \in K ; b:=\operatorname{ad}(\exp (t[\alpha, x]))$ will do for any nonzero member $x$ of $\mathfrak{m}_{P}$ and some real number $t$. Thus one concludes $g \cong \mathscr{L} \mathrm{Sp}(j+2)$ and $M$ is $G_{1}\left(H^{2+j}\right)$.

Finally, assume $s>4$. Since $\mathfrak{f}_{0}(2 \alpha)$ acts on every simple $\mathfrak{f} M(2 \alpha)$-submodule $\mathfrak{m}_{P}$ of $\mathfrak{m}$ through the spin representation by 2.25 (e), one has $s=8$; in fact, writing $2 r+1$ for $s-1=\operatorname{dim} m(2 \alpha)$, one knows $2^{r}=s=\operatorname{dim} m_{P}$ for the spin representation and one finds $s=8$ as the only possibility. Furthermore one will see $j=1$ at the end. If $j=1, \mathfrak{f} M(2 \alpha) \cong$ $\mathscr{L} \mathrm{O}(8)$ acts on $\mathfrak{m}(\alpha)$ through a half-spin representation (which is the composite of the standard representation with an outer automorphism T of $\mathscr{L} \mathrm{O}(8), \mathrm{T}^{3}=1$ ). Hence the ideal $\mathfrak{f}_{0}(2 \alpha) \cong \mathscr{L} \mathrm{O}(7)$ in $\mathfrak{f}(0)$ must coincide with $\mathfrak{f}(0)$; that is, $M(2 \alpha)=\mathfrak{f}^{+}$. Thus one
has $\mathfrak{f}=\mathfrak{f}^{+}+\mathfrak{f}(\alpha) \cong \mathscr{L} \mathrm{O}(9)$, which acts on $\mathfrak{m}$ through the spin representation just as $\mathfrak{f}_{0}(2 \alpha)$ acts on $\mathfrak{m}(\alpha)$ through it. Hence $\mathfrak{g}$ is $\mathrm{F}_{4}$ and $M$ is FII; in fact one has the rank $r(\mathfrak{g})=r(\mathfrak{a})+r(\mathfrak{f}(0))=r(\mathfrak{a})+r\left(\mathfrak{f}_{0}(2 \alpha)\right)=1+3=r(\mathfrak{f})$ and the roots of $\mathfrak{g}$ are the union of those of $\mathfrak{f}$ and the weights of its spin representation. Finally, suppose $j>1$. Then $\mathfrak{f}(0)$ contains a subalgebra $\mathbf{B}_{4} \cong \mathscr{L} \mathrm{O}(9)$, which acts on $\mathfrak{m}_{P}+\mathfrak{m}_{Q}, P \neq Q$, irreducibly through the spin representation and normalizes $\mathfrak{f}_{0}(2 \alpha)$ by 2.25 (b). Since $B_{4}$ acts on the 8-dimensional space $T_{o} M(2 \alpha)$ trivially, $\mathrm{B}_{4}$ and $\mathfrak{f}_{0}(2 \alpha)$ centralize each other; $\mathrm{B}_{4} \times \mathfrak{f}_{0}(2 \alpha)$ is a subalgebra of $\mathfrak{f}(0)$ which acts on $m_{P}+m_{Q}$ effectively. But this is impossible obviously. QED
2.26a. Corollary. Assume both $\alpha$ and $2 \alpha$ are roots. Then the actions of $\mathfrak{f}_{0}(\alpha)$ and $\mathfrak{f}(0)$ on $\mathfrak{m}(\alpha)$ are irreducible and depend on the multiplicities $m(\alpha)$ and $m(2 \alpha)$ only. More precisely, in case $s:=m(2 \alpha)+1=2$, they act on $\mathrm{m}(\alpha)$ as $\mathscr{L} \mathrm{U}(j)$, where $j s:=m(\alpha)$. In case $s=4, \mathfrak{f}_{0}(\alpha)$ and $\mathfrak{f}(0)$ act on $\mathfrak{m}(\alpha)$ as $\mathscr{L} \operatorname{Sp}(1) \times \operatorname{Sp}(j)$, while $\mathfrak{f}_{0}(\alpha)$ acts on $\mathfrak{f}(\alpha)$ as $\mathscr{L} \operatorname{Sp}(j)$; $[\mathfrak{m}(\alpha), \mathfrak{m}(\alpha)] \neq[\mathfrak{f}(\alpha), \mathfrak{f}(\alpha)]$. In case $s=8, \mathfrak{f}_{0}(\alpha)$ acts on $\mathfrak{m}(\alpha)$ as $\mathscr{L} \mathrm{O}(8)$ and $\mathfrak{f}(0)$ does as $\mathscr{L} \mathrm{O}(7)$ through the spin representation; and $\mathfrak{f}_{0}(\alpha)=\mathfrak{f}(0)+\mathfrak{f}(2 \alpha)$.
2.26b. Corollary. There exist monomorphisms $G_{1}\left(\boldsymbol{R}^{2+k}\right) \rightarrow G_{1}\left(\boldsymbol{C}^{2+k}\right) \rightarrow$ $G_{1}\left(\boldsymbol{H}^{2+k}\right)$ and $G_{1}\left(\boldsymbol{H}^{3}\right) \rightarrow \mathrm{FII} \leftarrow S^{8}$, which are the inclusion maps of the fixed point sets of involutions, which correspond to the extensions of the coefficient rings and which induce monomorphisms $\mathrm{A}_{1}(k) \rightarrow \mathrm{BC}_{1}(2 k, 1) \rightarrow \mathrm{BC}_{1}(4 k, 3)$ and $\mathrm{BC}_{1}(4,3) \rightarrow \mathrm{BC}_{1}(8,7) \leftarrow \mathrm{A}_{1}(7)$ of their root systems. There is another family of monomorphisms $G_{1}\left(F^{2+m}\right) \rightarrow G_{1}\left(F^{2+k}\right)$, $F=\boldsymbol{R}, \boldsymbol{C}$ or $\boldsymbol{H}, 0 \leqq m<k$, and $\mathrm{FII} \leftarrow S^{8}$ inducing $\mathrm{BC}_{1}(8,7) \leftarrow \mathrm{A}_{1}(7)$.
2.27. Lemma. Let $\alpha$ and $\beta$ be linearly independent roots $\in R(M)$. Let $R(\alpha, \beta)$ and $M(\alpha, \beta)$ denote $R(S)$ and $M(S)$ for $S=\{\alpha, \beta\}$ (See 2.4d). Then (i) $R(\alpha, \beta)$ is one of $\mathrm{A}_{2}, B_{2}=\mathrm{C}_{2}, \mathrm{G}_{2}$ and $\mathrm{BC}_{2}$ unless $M(\alpha, \beta)$ is a local product $M^{\prime \prime}(\alpha) \times M^{\prime \prime}(\beta)$, where $M^{\prime \prime}(\gamma)$ denotes $M(S)$ for $S=\{\gamma\},\{\gamma, 2 \gamma\}$ or $\left\{\frac{1}{2} \gamma, \gamma\right\}$. (ii) If the multiplicity is included, the root systems are $\mathbf{A}_{\mathbf{2}}(m)$ for $m=1,2,4$ or $8, \mathbf{B}_{2}(m, 1)$ for $m \geqq 1, \mathbf{B}_{2}(2,2), \mathbf{B}_{2}(4,3), \mathrm{BC}_{2}(2 k, 2,1)$, $\mathrm{BC}_{2}(4,4,1), \mathrm{BC}_{2}(8,6,1), \mathrm{BC}_{2}(4 k, 4,3), \mathrm{G}_{2}(1,1)$ and $\mathrm{G}_{2}(2,2)$. (iii) If $M(\alpha, \beta)$ is 1 -connected, $M(\alpha, \beta)$ is uniquely determined by the root system with multiplicity (as made explicit in the proof).

Proof. The subspace $M(\alpha, \beta)$ has rank 2. If $\alpha$ and $\beta$ are strongly orthogonal $\left(\Leftrightarrow[\mathfrak{m}(\alpha), \mathfrak{m}(\beta)]=\{0\}\right.$ ), then $R(\alpha, \beta)$ is $\{ \pm \alpha, \pm \beta\}$ possibly with $\pm 2 \alpha$ (or $\pm \frac{1}{2} \alpha$ ) and/or $\pm 2 \beta$ (or $\pm \frac{1}{2} \beta$ ) added, hence $M(\alpha, \beta)$ is a local product of $M^{\prime \prime}(\alpha)$ and $M^{\prime \prime}(\beta)$. If not, $M(\alpha, \beta)$ is simple and hence $R(\alpha, \beta)$ is one of $1^{\circ} \mathrm{A}_{2}, 2^{\circ} \mathrm{B}_{2}=\mathrm{C}_{2}, 3^{\circ} \mathrm{BC}_{2}$ and $4^{\circ} \mathrm{G}_{2}$. Again we assume $M=M(\alpha, \beta)$ for simplicity.

Consider the case $1^{\circ}: R(\alpha, \beta)=\mathrm{A}_{2}$. One may assume $\gamma:=\alpha+\beta$ is another root. There is a subspace $M^{\prime}(\alpha, \beta)$ with $T_{o} M^{\prime}(\alpha, \beta)=\mathfrak{m}(\alpha)+\mathfrak{m}(\beta)$ by 2.25 a. The subspace $M^{\prime}(\alpha, \beta)$ is corthogonal at $o$ to the meridian (2.15) $T \cdot M(\gamma)$ with $T_{o}(T \cdot M(\gamma))=\mathfrak{a}+\mathfrak{m}(\gamma)$; hence $M^{\prime}(\alpha, \beta)$ is congruent with the polar and has the symmetry decomposition $\mathfrak{f}=\mathfrak{f}^{+}+\mathfrak{f}^{-}$at $p . M^{\prime}(\alpha, \beta)$ has rank $=1$ by 2.25 (c). Therefore the root system $R\left(M^{\prime \prime}(\alpha, \beta)\right)$ is $\mathrm{BC}_{1}=\mathrm{BC}_{1}(m, m-1)$ unless $m:=m(\alpha)=1$. If $m>1$, one has $m=2,4$ or 8 by 2.26. We
now prove (iii) in this case by using the symmetry decompositions $\mathfrak{g}=\mathfrak{f}+\boldsymbol{m}, \mathfrak{f}=\mathfrak{f}^{+}+\mathfrak{f}^{-}$ and $\mathfrak{f}^{+}=\mathfrak{f}(0)+\mathfrak{f}(\gamma)$ (modulo the centralizer $C(f(\gamma), \mathfrak{f}(0))$ ) in the reversed order. Thus, if $m=1$, one sees $M=\mathrm{AI}(3)$, since $\mathfrak{f}^{+}=\mathfrak{f}(\gamma) \cong \mathscr{L} \mathrm{O}(2), \mathfrak{f}^{\cong} \cong \mathfrak{f}^{+}+T_{o} M^{\prime}(\alpha, \beta) \cong \mathscr{L} \mathrm{O}(2)+T_{o} S^{2} \cong$ $\mathscr{L} \mathrm{O}(3)$ and one has its action $4 \omega_{1}$ on $\mathfrak{m} \cong m(\mathrm{AI}(3))$, where $\mathfrak{m}(\mathrm{AI}(m))$ is, as one recalls, the space of the symmetric bilinear forms of trace 0 on $R^{m}$, to see that $g$ is $\mathscr{L} \operatorname{SU}(3)$ having the root spaces $g(\alpha)$, etc. for $\mathbf{A}_{2}(2)$ with respect to the same a. If $m=2$, one has $M=\operatorname{SU}(3)$. If $m=4$, one has $M=\mathrm{AII}(3)$; f is $\mathscr{L} \mathrm{Sp}(3)$, since $M^{\prime}(\alpha, \beta)$ with $\mathrm{BC}_{1}(4,3)$ is congruent with the polar $G_{1}\left(H^{3}\right)$. One finds $g \cong \mathscr{L} \operatorname{SU}(6)$ from this and the action of $m$ on itself: $\mathfrak{m} \wedge \mathfrak{m} \rightarrow \mathfrak{i}$ which is determined by 2.25 and 2.4 b . Let us add that $\mathfrak{f}(0)=\mathfrak{f}_{0}(\alpha)+\mathfrak{f}_{0}(\beta)+f_{0}(\gamma)$ is isomorphic with $A \times B \times C$, where $A, B$ and $C$ are all $\cong \mathscr{L} \mathrm{Sp}(1), B \times C$ acts on $\mathfrak{m}(\alpha), C \times A$ on $\mathfrak{m}(\beta)$, and $A \times B$ on $\mathfrak{m}(\gamma)$ all as $\mathscr{L} \mathrm{O}(4)$. In case $m=8, M$ is EIV. First, $f$ is $F_{4}$, since FII is the polar $\cong M^{\prime}(\alpha, \beta)$ (the $\cong$ by $2.15 a$ ) with $\mathrm{BC}_{1}(8,7) . \mathrm{g}$ is $\mathrm{E}_{6}$, as is seen without difficulty. Let us add a few facts. (1) $\mathfrak{f}(0) \cong \mathscr{L} \mathrm{O}(8)$; (2) since $\mathfrak{f}(\gamma)$ acts on $\mathfrak{m}(\alpha)+\mathfrak{m}(\beta)$ effectively and $\mathfrak{f}(0)$ stabilizes these linear spaces, one has an embedding of $\mathfrak{f}(\gamma)$ into $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$ as a $\mathfrak{f}(0)$-module; (3) if $\mathfrak{f}(0) \cong \mathscr{L} \mathrm{O}(8)$ acts on $\mathfrak{m}(\alpha)$ by the representation $\omega_{3}=\omega_{3}\left(\mathrm{D}_{4}\right)$, say, on $\mathfrak{m}(\beta)$ by $\omega_{4}$, on $\mathfrak{f}(\gamma)$ by $\omega_{1}$, then $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$ is the direct sum of a simple module with the highest weight $\omega_{3}+\omega_{4}$ and another simple submodule with $\omega_{1}$. (Recall that these are obtained from each other by composing with an outer automorphism T of $\mathscr{L} \mathrm{O}(8)$ or $\mathrm{T}^{2} ; \mathrm{T}^{3}=1$. There is a member $t$ of $\mathrm{F}_{4}$ which stabilizes $a$ and induces a cyclic permutation of $\{\alpha, \beta, \gamma\}$ by 2.4 b (vi). This $t$ then permutes $\{\mathfrak{m}(\alpha), \mathfrak{m}(\beta), \mathfrak{m}(\gamma)\}$ cyclically and stabilizes $\mathfrak{f}(0)$. Hence $t$ induces the outer automorphism T on $\mathscr{L} \mathrm{O}(8)$.) The observation at once allows to describe the bracket: $\mathfrak{m}(\gamma) \wedge \mathfrak{m}(\alpha) \rightarrow \tilde{f}(\beta)$ completely, although this is found also by the cyclic automorphism and $M^{\prime}(\alpha, \beta)=$ FII.

Now we turn to the case $2^{\circ}$ of $\mathrm{B}_{2}=\mathrm{B}_{2}(m, n), m \geqq n$. Assume $\alpha$ and $\beta$ are shorter roots, $\pm \alpha \pm \beta$ being the longer. We first prove that the multiplicity $n$ of $\alpha \pm \beta$ cannot be greater than 3. One recalls that $\mathfrak{f}(0)$ acts on $\mathfrak{m}(\alpha), \mathfrak{f}(\alpha)$ and $\mathfrak{m}(\beta)$ as $\mathscr{L} \mathbf{O}(m)$ by 2.25 (a) and (b). In the adjoint representation, ad $\mathfrak{f}(\alpha \pm \beta)$ exchanges $\mathfrak{m}(\alpha)$ and $\mathfrak{m}(\beta)$ effectively by 2.25 (c), and hence one can embed $\mathfrak{f}(\alpha \pm \beta)$ into $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$ as a $\mathfrak{f}(0)$-module. From this, one immediately sees that $\mathfrak{f}(0)$ acts on $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$ as a single algebra $\mathscr{L} \mathrm{O}(m)$ (as opposed to $\mathscr{L} \mathrm{O}(m) \times \mathscr{L} \mathrm{O}(m)$ whose factors act on $\mathfrak{m}(\alpha)$ and $\mathfrak{m}(\beta)$ independently); in other words, $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$ is isomorphic with $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\alpha)$ as a $\mathfrak{f}(0)$-module. Except for the case of $m=8, \mathfrak{m}(\alpha) \otimes \mathfrak{m}(\alpha)$ is the direct sum of the trivial one, $R$, a submodule $\mathfrak{m}(\alpha) \wedge \mathfrak{m}(\alpha) \cong \mathscr{L} \mathrm{O}(m)$ and a simple one $\mathfrak{m}(\mathrm{AI}(m))$ (explained earlier). They have dimensions $1, \frac{1}{2} m(m-1)$ and $\frac{1}{2} m(m+1)-1$ respectively and $\mathfrak{f}(\alpha \pm \beta)$ must be one of these submodules except when $m=4$ and hence $\mathscr{L O}(m)$ is the sum of two copies of $\mathscr{L} \mathrm{O}(3)$. Thus $(m, n)$ is $(2,2),(3,3)$ or $(4,3)$ unless $n=1$; the case $(3,3)$ contradicts 2.25 (e). In case $m=8$, the half-spin representations cannot appear as in $1^{\circ}$ for the following reason. Since the roots $\alpha-\beta$ and $\alpha+\beta$ are strongly orthogonal, $f_{0}(\alpha-\beta)$ centralizes $\dot{f}_{0}(\alpha+\beta)$ in acting on each of $\mathfrak{m}(\alpha)$ and $\mathfrak{m}(\beta)$. Therefore $R(M)$ is $B_{2}(m, 1), B_{2}(2,2)$ or $C_{2}(4,3)$. Thus we have determined all the possible embeddings of $\mathfrak{f}(\alpha \pm \beta)$ into
$\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$, which one notices means that the action of, say, ad $\mathfrak{f}(\alpha): \mathfrak{m}(\alpha \pm \beta) \rightarrow \mathfrak{m}(\beta)$ has been determined simultaneously. Suppose $n=1 ; R(M)$ is $B_{2}(m, 1)$. Then the 1 -dimensional subalgebras $\mathfrak{f}(\alpha \pm \beta)$ centralizes each other and $\mathfrak{f}(0)$. Hence $\mathfrak{f}(\alpha \pm \beta)$ define a $\mathfrak{f}(0)$-invariant complex structure $J^{\prime}$ on $T_{o} M^{\prime}(\alpha, \beta)=\mathfrak{m}(\alpha) \oplus \mathfrak{m}(\beta) ;\left\{ \pm J^{\prime}\right\}$ is unique by the above. Thus one has $M^{\prime}(\alpha, \beta) \fallingdotseq G_{2}\left(R^{2+m}\right)=\operatorname{SO}(2+m) /(\mathrm{SO}(2) \cdot \mathrm{SO}(m)), \mathfrak{f}(0)$ acting on $T_{o} M^{\prime}(\alpha, \beta) \cong \boldsymbol{R}^{2} \otimes \mathfrak{m}(\alpha)$ as $\mathscr{L} \mathrm{O}(2) \times \mathscr{L} \mathrm{O}(m)$. Moreover $\mathfrak{f}(\alpha+\beta)+\mathfrak{f}(\alpha-\beta)$ is the unique sum $\mathfrak{f}_{(+)}+\mathfrak{f}_{(-)}$such that $\left[\mathfrak{f}_{(+)}, \mathfrak{f}(\alpha)+\mathfrak{f}(\beta)\right]=0$ and $\left[\mathfrak{f}_{(-)}, \mathfrak{m}(\alpha)+\mathfrak{m}(\beta)\right]=0$ by the above; in fact, if a member $y$ of $f(\alpha+\beta)+f(\alpha-\beta)$ satisfies $[y, \mathfrak{m}(\alpha)+\mathfrak{m}(\beta)+\mathfrak{f}(\alpha)+\mathfrak{f}(\beta)]=0$, then one has $[y, \mathfrak{m}(\alpha \pm \beta)] \subset\left[y,[\mathfrak{f}(\alpha), \mathfrak{m}(\beta)]=0\right.$ and $y=0$ therefore. Hence $\mathfrak{f}_{(+)}$centralizes $\mathfrak{f}$. Since $\mathfrak{f}$ is irreducible on $\mathfrak{m}, \mathfrak{f}_{(+)}$, thus defines a $\mathfrak{f}$-invariant complex structure on $\mathfrak{m}$; here one sees $\mathfrak{f}=\mathfrak{f}_{(+)}+\mathscr{L} \mathrm{O}(2+m), \mathscr{L} \mathrm{O}(2+m) \supset \mathfrak{f}_{(-)}$, and that $\mathfrak{f}$ acts on $\mathfrak{m} \cong \boldsymbol{R}^{2} \otimes \boldsymbol{R}^{2+m}$ as $\mathscr{L} \mathrm{O}(2) \times \mathscr{L} \mathrm{O}(2+m)$. Therefore one concludes $M \fallingdotseq G_{2}\left(\boldsymbol{R}^{4+m}\right)$. In the case of $\mathrm{B}_{2}(2,2)$, $\mathfrak{f}(\alpha \pm \beta)$ embeds as $\mathfrak{m}(\mathrm{AI}(2))$ and defines an invariant quaternion structure on $\mathfrak{m}^{+} ; M^{+} \fallingdotseq G_{1}\left(H^{2}\right)$. Thus $\mathfrak{f}=\mathscr{L} \operatorname{Sp}(2)$ and $M$ is a group $\fallingdotseq \operatorname{Sp}(2)$. If $R(M)$ is $\mathrm{C}_{2}(4,3)$, $\mathfrak{f}(\alpha \pm \beta)$ defines an invariant quaternion structure on $\mathfrak{m}^{+}$as in the case of $\mathrm{B}_{\mathbf{2}}(m, 1) ; M^{+} \fallingdotseq G_{1}\left(H^{2}\right) \times G_{1}\left(H^{2}\right)$ and $M \fallingdotseq G_{2}\left(H^{4}\right)$.

Now suppose $R(\alpha, \beta)=\mathrm{BC}_{2}=\mathrm{BC}_{2}(a, b, c), a \geqq b \geqq c$. Let $R(\alpha, \beta)$ have $\alpha, \beta, \alpha \pm \beta, 2 \alpha$, and $2 \beta$. Since $2 \alpha$ and $\alpha \pm \beta$ generate a root system $R_{B} \cong \mathbf{B}_{2}=\mathbf{B}_{2}(b, c)$, there is a subspace $M^{-}=M\left(R_{\mathrm{B}}\right)$ by $2.4 \mathrm{~d} ; M^{-}$is a meridian. Hence the multiplicity $c=m(2 \alpha)$ is 1,2 or 3 by our result on $B_{2}$. But $c$ cannot be 2 , by 2.26 applied to the subspace $M(\alpha, 2 \alpha)$. Assume $c=1$. Then a member $J$ of $\mathfrak{f}(2 \alpha)+\mathfrak{f}(2 \beta)$ defines an invariant complex structure on $m$ as in the case of $\mathbf{B}_{2}(m, 1) ; M$ will be hermitian. The subspace $M(\alpha, 2 \alpha)$ is a complex projective space; hence $\mathfrak{m}(\alpha)$ has an even dimension $2 k=a$. Besides $\mathfrak{f}_{0}(\alpha)$ acts on $\mathfrak{m}(\alpha)$ as $\mathscr{L} \mathrm{U}(k)$ (2.26a), normalizing $\mathfrak{f}_{0}(\alpha+\beta)$ by $2.25(\mathrm{~b})$, while $\mathfrak{f}_{0}(\alpha+\beta)$ is $\mathscr{L} \mathrm{O}(b)$ by 2.25 (a). This greatly limits the possibility of $(2 k, b)$. Indeed, if $O(b)$ is simple so that $f_{0}(\alpha+\beta)$ is effective on $\mathfrak{m}(\alpha)$, then this gives $\mathscr{L} \mathrm{O}(b)=\mathscr{L} \mathrm{SU}(k)$, and hence $(b, k)=(6,4)$. For this, $\mathfrak{f}^{+}$is $\mathscr{L} T \cdot T \cdot \mathrm{O}(8)=\boldsymbol{R} J+\mathscr{L} T \cdot \mathrm{O}(8)$ by $M^{-} \cong G_{2}^{\mathrm{o}}\left(\boldsymbol{R}^{10}\right)$, and $\mathfrak{f}$ is $\boldsymbol{R}+\mathscr{L} \mathrm{O}(10) ; M^{\prime}(\alpha, \beta)$ is also $G_{2}^{\mathrm{o}}\left(\boldsymbol{R}^{10}\right)$. Since $\operatorname{dim} m=32$ obviously, $\mathscr{L} \mathrm{O}(10)$ acts on $m$ through a half-spin representation. Therefore $G \fallingdotseq \mathrm{E}_{6}$ and $M \fallingdotseq$ EIII. If $\mathrm{O}(b)$ is not simple, $b=1,2$ or 4 , but $b=1$ is impossible, since otherwise $\mathfrak{f}(0)$ would act trivially on $\mathfrak{f}(\alpha+\beta)+\mathfrak{f}(\alpha-\beta)$ which must be a $\mathfrak{f}(0)$-submodule of $\mathfrak{m}(\alpha) \otimes \mathfrak{m}(\beta)$. If $b=2, M$ is $G_{2}\left(C^{4+k}\right) ; M^{-}$is $G_{2}\left(C^{4}\right) \cong G_{2}^{\circ}\left(R^{6}\right)$, while the c-orthogonal space $M^{+}:=M^{\prime \prime}(\alpha, \beta)$ to $M^{-}$is $G_{2}\left(C^{2+k}\right)$. If $b=4, M^{-}$is $\operatorname{DIII}(4) \cong G_{2}^{\circ}\left(R^{8}\right)$ and $\mathscr{L} \operatorname{SU}(k)$ acting on $\mathfrak{m}(\alpha+\beta)$ must be an ideal in $\mathscr{L} \mathrm{O}(b)$; one finds $k=2$. Thus $M^{\prime}(\alpha, \beta)$ is $G_{4}\left(C^{5}\right) \cong G_{1}\left(C^{5}\right)$. One concludes $M \cong \mathrm{DIII}(5)$. Now assume $c=3$. Then $\mathfrak{f}(2 \alpha)+\mathfrak{f}(2 \beta) \cong \mathscr{L} \mathrm{O}(4)$ acts on $\mathfrak{m}^{+}=T_{o} M^{+}$as $\mathscr{L} \mathrm{Sp}(1)$, defining a quaternion structure. $M^{-}$is $G_{2}\left(H^{4}\right)$ and $M^{+}$is $G_{2}\left(H^{2+k}\right)$ by induction. $M$ is $G_{2}\left(H^{4+k}\right)$.

Finally we have come to the case of $R(\alpha, \beta)=\mathrm{G}_{2}$. Let $\alpha$ and $\beta$ be the simple roots with $\alpha^{\sim}=2 \alpha+3 \beta ; \alpha$ is longer. The multiplicity $m(\alpha)=1,2,4$ or 8 , since the longer roots form the system $\mathrm{A}_{2}$. But $m(\alpha)$ cannot be 4 or 8 ; in fact, since $\alpha^{\sim}$ and $\beta$ are strongly orthogonal, $\mathfrak{f}_{0}\left(\alpha^{\sim}\right) \cong \mathscr{L} \mathrm{O}(m(\alpha))$ thus centralizes $\mathrm{f}_{0}(\beta) \cong \mathscr{L} \mathrm{O}(m(\beta)), m(\alpha) \leqq m(\beta)$, and both act on $\mathfrak{m}(\alpha)$ nontrivially if $m(\alpha)>1$. Hence either $m(\alpha)=m(\beta)=2$ or $m(\alpha)=1$. If $m(\alpha)=1$,
so does $m(\beta)=1$; in fact, $\mathfrak{f}\left(\alpha^{\sim}\right)+\mathfrak{f} M(\beta)$ would act on $\mathfrak{m}^{+}=\sum_{0 \leq j \leq 3} \mathfrak{m}(\alpha+j \beta)$ as complex transformations which properly contain $\mathscr{L} \mathrm{O}(m(\beta)+1)$. In case $m(\alpha)=2$, the meridian $M^{-}=M\left(\alpha^{\sim}, \beta\right)$ is $S O(4)$ and the polar $M^{+}$has the root system $G_{2}(1,1)$ as is easily seen. $\mathfrak{f}^{+} \cong \mathscr{L} \mathrm{O}(4)$ acts on $\mathrm{m}^{+}$through $\left(\omega_{1}, \omega_{3}\right) . M$ is thus the group $\mathrm{G}_{2} . M^{+}$is the space GI. In case $m(\alpha)=1$, both $M^{+}$and $M^{-}$are $S^{2} \cdot S^{2}$ and $\mathfrak{f}$ is $\mathscr{L} O(4)$. Hence $M$ is GI. The lemma 2.27 has been proven at last. QED
2.27a. Corollary. There are (1) monomorphisms: $\mathrm{AI}(3) \rightarrow \mathrm{SU}(3) \rightarrow \mathrm{AII}(3) \rightarrow \mathrm{EIV}$ for the 1-connected spaces of $\mathrm{A}_{\mathbf{2}}(m)$, inducing $\mathrm{A}_{2}(1) \rightarrow \mathrm{A}_{\mathbf{2}}(2) \rightarrow \mathrm{A}_{\mathbf{2}}(4) \rightarrow \mathrm{A}_{\mathbf{2}}(8)$, (2) monomorphisms: $\mathrm{CI}(2) \rightarrow \mathrm{Sp}(2) \rightarrow \boldsymbol{G}_{\mathbf{2}}\left(\boldsymbol{H}^{4}\right)$, inducing $\mathrm{B}_{\mathbf{2}}(1,1) \rightarrow \mathrm{B}_{\mathbf{2}}(2,2) \rightarrow \mathrm{B}_{\mathbf{2}}(4,3)$, (3) $a$ monomorphism: $G_{2}\left(R^{4+m}\right) \rightarrow G_{2}\left(R^{4+k}\right), m<k$, of the bottom space, inducing $\mathrm{B}_{2}(m, 1) \rightarrow$ $\mathrm{B}_{2}(k, 1)$, (4) a monomorphism: $\quad G_{2}\left(C^{4+k}\right) \rightarrow G_{2}\left(H^{4+k}\right)$, inducing $\mathrm{BC}_{2}(2 k, 2,1) \rightarrow$ $\mathrm{BC}_{2}(4 k, 4,3)$, (5) monomorphisms: $\quad G_{2}\left(C^{5}\right) \rightarrow \mathrm{DIII}(5) \rightarrow \mathrm{EIII} \leftarrow G_{2}^{\mathrm{o}}\left(\mathrm{R}^{10}\right)$ inducing $\mathrm{BC}_{2}(2,2,1) \rightarrow \mathrm{BC}_{2}(4,4,1) \rightarrow \mathrm{BC}_{2}(8,6,1) \leftarrow \mathrm{C}_{2}(6,1)$, which restrict to $G_{2}\left(R^{5}\right) \rightarrow \mathrm{SO}(5) \rightarrow$ $G_{2}\left(H^{4}\right)^{*} \leftarrow S^{4} \cdot S^{4}$, (6) the monomorphism: EIII $\leftarrow G_{2}^{0}\left(R^{10}\right)$ also restricting to $\mathrm{FII} \leftarrow S^{8}$ with $\mathrm{BC}_{1}(8,0,7) \leftarrow \mathrm{A}_{1}(7)$ as well as $(7)$ monomorphisms: $\mathrm{GI}=\mathrm{G}_{2} / \mathrm{SO}(4) \rightarrow \mathrm{G}_{2} \leftarrow \mathrm{SO}(4)$, inducing $\mathrm{G}_{\mathbf{2}}(1,1) \rightarrow \mathrm{G}_{2}(2,2) \leftarrow \mathrm{A}_{1}(1) \times \mathrm{A}_{1}(1)$, but NOT those which induce $\mathrm{B}_{2}(2,1) \rightarrow \mathrm{B}_{2}(2,2)$ or $B_{2}(3,1) \rightarrow B_{2}(4,3)$; see $[\mathrm{CN}-3]$ for the last impossibilities.
2.27b. Remark on classification. These lemmas put together allow one to find the root systems with multiplicity of all the possible compact simple symmetric spaces. The details would be easy to work out; for instance, $\mathbf{A}_{3}(8)$ is impossible in view of our results on $A_{2}(8)$, since $f_{0}\left(\alpha_{1}\right)$ and $f_{0}\left(\alpha_{3}\right)$, centralizing each other, must act on $\mathfrak{m}\left(\alpha_{2}\right)$ as $\mathscr{L} \mathrm{O}(8)$, which is impossible of course, where $\alpha_{1}, \alpha_{2}$ and $\alpha_{3}$ are simple roots. Similarly for $C_{3}(8,1)$. A complete list is found in Table VI of Chapter $X,[H]$.

The lemmas give more together with their proofs; next we will complete the proof of Theorem 1.15 and show that a simple symmetric space $M$ is locally determined by its root system $R(M)$ with multiplicity, thereby we will have given another classification of the symmetric spaces which is different from [A] and [H]. The above lemmas give the classification for the spaces of rank $\leqq 2$.
2.28. Lemma. A simple space $M$ is locally determined by any polar $M^{+}$of a point $o$ in $M$ and a meridian $M^{-}$to it.

Proof. The lemma asserts, on the local level, that two simple spaces $M$ and $N$ are isomorphic if a polar $M^{+}(p)$ in $M$ is isomorphic with a polar $N^{+}$in $N$ and the meridian $M^{-}$to $M^{+}=M^{+}(p)$ is isomorphic with a meridian $N^{-}$to $N^{+}$; the fact on the global level was stated in 1.15 . Let $a$ be a maximal abelian subalgebra of $m=T_{o} M$ which is contained in $\mathfrak{m}^{-}:=T_{o} M^{-}$(See 1.8), and let $\mathfrak{g}=\mathfrak{f}+\mathfrak{m}$ be the symmetry decomposition for $M$ at $o$. We have the root space decomposition of $m$ with respect to $\mathfrak{a}$. $\mathfrak{m}^{-}$is spanned by $\mathfrak{a}$ and the root spaces $\mathfrak{m}(\alpha), \alpha \in R\left(\mathfrak{m}^{-}\right):=R\left(M^{-}\right) \subset R(M)$, by 2.15. Hence the orthogonal complement $\mathfrak{m}^{+}$to $\mathfrak{m}^{-}$in $\mathfrak{m}$ is the sum of the other root
spaces $\mathfrak{m}(\lambda), \lambda \in R\left(\mathfrak{m}^{+}\right):=R(M)-R\left(M^{-}\right) . \mathfrak{m}^{+}$is the tangent space to a subspace which is isomorphic with $M^{+}(2.15 \mathrm{a})$. Let $\mathfrak{f}^{+}$denote $F(\operatorname{ad} Q(p), \mathfrak{f}) ; \mathfrak{f}=\mathfrak{f}^{+}+\mathfrak{f}^{-}$. $\mathfrak{f}^{+}$is generated by all the spaces $\mathfrak{f}(\alpha), \alpha \in R\left(\mathfrak{m}^{-}\right)$, and $\mathfrak{f}_{0}(\lambda), \lambda \in R\left(\mathfrak{m}^{+}\right)$. (It does not matter if there is some ambiguity about $\mathfrak{f}(0) \subset \mathfrak{f}^{+}$.) Given $M^{+}$and $M^{-}$, one knows $R\left(M^{-}\right)$, the actions of $\mathfrak{f}^{+}$on $\mathfrak{m}^{-}$and $\mathfrak{m}^{+}$and the curvature maps [, ]: $\mathfrak{m}^{-} \otimes \mathfrak{m}^{-} \rightarrow \mathfrak{i}^{+}$and $\mathfrak{m}^{+} \otimes \mathfrak{m}^{+} \rightarrow \mathfrak{f}^{+}$. We have to show that these data alone allow one to determine the other part of the curvature map $[]:, \mathfrak{m}^{+} \otimes \mathfrak{m}^{-} \rightarrow \mathfrak{f}$ along with $[]:, \mathfrak{f}^{-} \otimes \mathfrak{m} \rightarrow \mathfrak{m}$. We may work on the bottom $M^{*}$ and use 2.21 .

To do it, we will use facts found in preceding lemmas and their proofs. $R\left(\mathfrak{m}^{+}\right)$ is a weight system (See 2.3 and 2.25a); indeed $R\left(\mathfrak{m}^{+}\right)$is the weight system of $F(\operatorname{ad} Q(p)$, $\mathfrak{g}$ ) acting on $\mathfrak{f}^{-}+\mathfrak{m}^{+}$, restricted to $\mathfrak{a}$. The decomposition of $\mathfrak{m}^{+}$into the sum of the weight spaces $\mathfrak{m}(\lambda), \lambda \in R\left(\mathfrak{m}^{+}\right)$, is obtained as the simple $f(0)$-module decomposition; $\mathfrak{f}(0)$ is the sum of $\mathfrak{f}_{0}(\alpha), \alpha \in R\left(\mathfrak{m}^{-}\right)$, and the ideal in $\mathfrak{f}^{+}$which acts trivially on $\mathfrak{m}^{-}$. To determine the weight $\lambda$ of each weight space $\mathfrak{m}(\lambda)$ out of the sum $\sum \mathfrak{m}(\lambda)=\mathfrak{m}^{+}$, one looks at the action of $\mathfrak{f} M(\alpha)=f_{0}(\alpha)+\mathfrak{f}(\alpha)$ on $\mathfrak{m}^{+}$. From its action on $\mathfrak{m}(\lambda++\alpha)$, the $\alpha$ series of $\lambda$, one finds the numbers $n(\lambda, \alpha)=2\|\alpha\|^{-2}\langle\lambda, \alpha\rangle$ for $\lambda \in R\left(\mathfrak{m}^{+}\right)$and $\alpha \in R\left(\mathfrak{m}^{-}\right)$ and thereby pinpoints $\lambda$ in $\mathfrak{a}$; this is possible because $R\left(\mathfrak{m}^{-}\right)$spans $\mathfrak{a}$ or its hyperplane. In the second case, the normalized normal vector $H^{j}$ has the inner product $\langle\lambda, H\rangle= \pm 1$ for every $\lambda$; normalization can be done by finding the pole in the circle with the tangent $H^{j}$. Thus every $\mathfrak{m}(\lambda)$ has the name $\lambda$ now. As to the curvature maps [, ] in question, one observes that $\mathfrak{m}(\lambda) \otimes \mathfrak{m}(\alpha) \rightarrow \mathfrak{1}^{-}$is converted to $\mathfrak{m}(\lambda) \otimes \mathfrak{f}(\alpha) \rightarrow \mathfrak{m}^{+}$by applying $\operatorname{ad}(H), H \in \mathfrak{a}$ with $\lambda(H)=0 \neq \alpha(H)$. Similarly $\mathfrak{f}^{-}(\lambda) \otimes \mathfrak{m}(\alpha) \rightarrow \mathfrak{m}^{+}$is converted to the same $\mathfrak{m}(\lambda) \otimes \mathfrak{f}(\alpha) \rightarrow \mathfrak{m}^{+}$(which is a part of the action at hand); an alternative, geometric proof for this is to use the symmetry $s_{m}$ at the midpoint $m$ on the geodesic arc joining $o$ to $p$ in $M^{-}(p)$ as in 2.15 a and to see the obvious fact that the automorphism $\operatorname{ad}\left(s_{m}\right)$ of $g$ exchanges $\mathfrak{m}^{+}$and $\mathfrak{f}^{-}$. QED
2.29. Corollary. A compact symmetric space is locally determined by its root system with multiplicity.

Proof. We may assume the space is semisimple and a bottom space. Then it has a polar and its meridian of lower dimension. These are known from the given root system with multiplicity. And one can apply the second half of the proof of the lemma. QED

In the same vein, one obtains such results as the next proposition; some properties of $M$ are faithfully reflected to those of the pairs ( $M^{+}, M^{-}$) of the polars $M^{+}$and the meridians $M^{-}$to them.
2.30. Proposition. Let $M$ be a simple 1-connected (compact) space. Then $M$ is hermitian if and only if some polar $M^{+}(p)$ and a meridian $M^{-}(p)$ to it are hermitian. (If $M$ is hermitian, all the polars and the meridians are hermitian, simply because the point symmetries $s_{p}$ are holomorphic.)

Proof. A simple space $M=G / K$ is hermitian if and only if $M$ is 1 -connected and $K$ contains a one dimensional center [H]. From the above, one sees that this is equivalent to say that $M$ is 1 -connected and $R(M)$ is $\mathrm{BC}_{r}=\mathrm{BC}_{r}(a, b, 1)$ with the understanding that $\mathrm{BC}_{r}(0, b, 1)$ means $\mathrm{C}_{r}(b, 1)$ and $\mathrm{C}_{r}(0,1)$ is $\mathrm{A}_{1}(1)$; see the proof of 2.27 in the case of $B_{2}$ for somewhat detailed analysis of this point. Assume $M^{+}(p)$ and $M^{-}(p)$ are hermitian. $M$ is then 1 -connected by 1.8 a . If $M^{-}$has a simple factor with the root system $\mathrm{BC}_{s}(*, *, 1)$, then $R(M)$ is necessarily of the form $\mathrm{BC}_{r}(a, b, 1)$ by 2.15 and hence $\boldsymbol{M}$ is hermitian, since a space with $\mathrm{BC}_{r}$ is 1 -connected. Thus we may assume that $M^{-}$ is the product of spaces with the root systems of type $\mathrm{C}_{s}(b, 1)$. Then the longer roots $2 \varepsilon_{j}, 1 \leqq j \leqq r$, form a basis for the maximal abelian subalgebra $a \subset \mathfrak{m}^{-}$; one agrees that $\left(\varepsilon_{j}\right)$ is an orthonormal basis. Hence every root $\lambda$ in $R\left(M^{+}, a\right):=R(M)-R\left(M^{-}\right)$is shorter than $2 \varepsilon_{j}$; there is no room for another root of that length. Thus $\|\lambda\|^{2}=1$ or 2 , for otherwise $R(M)$ would be $G_{2}$, contrary to the above in view of the highest root $\alpha^{\sim}\left(\mathrm{G}_{2}\right)=3 \alpha_{1}+2 \alpha_{2}$ (See the paragraph above 3.21). If $\|\lambda\|^{2}=1$, then $R(M)$ is of type $\mathrm{BC}_{r}(a, b, 1)$ and so $M$ is hermitian. So we assume $\|\lambda\|^{2}=2$ for every root $\lambda$ in $R\left(M^{+}, \mathfrak{a}\right)$. One has $n\left(\lambda, 2 \varepsilon_{j}\right)= \pm 1$ or 0 . One sees $\lambda= \pm \varepsilon_{j} \pm \varepsilon_{k}$ and hence $R(M)$ is of type $C_{r}(b, 1)$ QED

## §3. The involutions of the groups.

The purpose of this section is to describe the group involutions, $\mathrm{G}-\operatorname{Inv}(M)$, of compact simple Lie groups $M$ (as opposed to the involutions of $M$ as spaces) from a new view point, although they are known in a way. Using interrelationship between the groups (such as Corollary 2.10 and Theorem 2.11), we will try to describe them in a unified way. Thus, as to the exceptional groups, we will show ( 3.10 through 3.21 ) that (i) every group involution of $\mathrm{E}_{8}$ is conjugate with the extended adjoint action ad(b) of a member $b$ of a fixed subgroup $\mathrm{SO}(16)^{*}$ of $\mathrm{E}_{8}$; and (ii) all the group involutions (inner or outer) of the other 1-connected exceptional groups are restrictions of those of $E_{8}$, made explicit with fixed monomorphisms $E_{8} \supset E_{7} \supset E_{6} \supset F_{4} \supset G_{2}$. All the involutions of the exceptional Lie groups are given by a few members of $\mathrm{SO}(16)^{*}$; the results are summarized with diagrams in 3.22 through 3.29 . $\mathrm{SO}(16)^{*}$ is locally isomorphic with $\mathrm{SO}(16)$ of course, and all the group involutions of all the locally isomorphic groups to $\mathrm{SO}(n)$ will be determined as well as those of the classical groups in terms of fixed standard monomorphisms $\mathrm{O}(n) \subset \mathrm{SO}(n+1), \mathrm{U}(n) \subset \mathrm{SO}(2 n)$ and $\mathrm{Sp}(n) \subset \mathrm{SU}(2 n)$; so we will begin with $\operatorname{SO}(n)$. All the group involutions will be placed in a single panorama.

The involutions of the spaces which are not groups will be systematically discussed in a forthcoming paper. There some monomorphisms such as the one: $D_{r} \rightarrow C_{r}$ which cannot be realized by Lie group monomorphisms but by symmetric space ones: $\mathrm{D}_{r} \rightarrow \mathrm{C}_{r}$ is realized by $G_{r}\left(\boldsymbol{R}^{2 r}\right) \rightarrow G_{r}\left(C^{2 r}\right)$, for instance. New Satake diagrams are necessary to describe them [OS].
3.1. Notations. $I_{k}=I_{k, n-k}$ denotes the diagonal matrix whose first $k$ diagonal entries are -1 and the rest are equal to 1 ; that is, $I_{k}$ corresponds to $\left((-1) 1_{k}\right) \oplus 1_{n-k}$ in $\mathrm{O}(n)$, where $1_{k}$ is the $k \times k$ unit matrix, and similarly $0_{k}$ denotes the zero matrix of that size. We will use the following symbols for $2 \times 2$ matrices:
3.2. $\quad I=\left\|\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right\|, \quad J=\left\|\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right\| \quad$ and $\quad K=\left\|\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right\|$.

Also we denote by $K \otimes A$, say, the $2 n \times 2 n$ matrix which one gets by substituting the $n \times n$ matrix $A$ into 1 at the two locations in $K$; thus $I \otimes 1_{n}$ equals $I_{n, n}$ for another example. We write $P_{k}$ for the matrix $1_{2} \otimes I_{k}$, which has a pair of $I_{k}$ as diagonal blocks; $P_{k}$ is conjugate with $I_{2 k}$ in $\mathrm{O}(2 n)$. Also we write $J_{k}$ or simply $J$ for $J \otimes 1_{k}$ and similarly $K_{k}$ or simply $K$ for $K \otimes 1_{k}$.

We begin with the orthogonal groups, aiming at Propositions 3.4 and 3.5. Our explanation will be brief for the classical groups, for linear algebra is more or less directly available.

Every involutive member of $\mathrm{O}(n)$ is conjugate with some $I_{k}$. These involutive members $I_{k}, 1 \leqq k \leqq n$, make a commutative system, which is in one-to-one correspondence with the conjugate classes of the involutive members of $\mathrm{O}(n)$, i.e. with the polars of 1 in $O(n)$.

If $n=2 r+1$ is odd, every group involution of $\operatorname{SO}(n)$ is conjugate with $\operatorname{ad}\left(I_{k}\right)$. And $\operatorname{ad}\left(I_{k}\right)$ is conjugate with $\operatorname{ad}\left(I_{j}\right)$ if and only if $j=k$ or $j+k=n$. To prove these, we use Theorem 2.11 after introducing necessary notations.
3.3. More notations. We fix the maximal torus $A(\mathrm{SO}(2 r+1))$ which is also a maximal torus in $\mathrm{SO}(2 r)$ identified with $\mathrm{SO}(2 r) \oplus\left\{1_{1}\right\}$ and whose Lie algebra consists of $J \otimes D, D$ arbitrary diagonal $r \times r$ matrices. We write $\varepsilon_{k}$ for $J \otimes D$ in which the $j$-th diagonal member of $D$ is $\delta_{k}^{j}$. In conform with the notation of [B], the $k$-th fundamental weight is $\omega_{k}=\omega_{k}\left(\mathrm{~B}_{r}\right)=\omega_{k}\left(\mathrm{D}_{r}\right)=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{k}$ for $k<r-1$ and $\omega_{r}=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\right.$ $\varepsilon_{r}$ ), while $\omega_{r-1}\left(\mathrm{~B}_{r}\right)=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{r-1}$ for $\mathrm{SO}(2 r+1)$ and $\omega_{r-1}\left(\mathrm{D}_{r}\right)=\frac{1}{2}\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\right.$ $\left.\varepsilon_{r-1}-\varepsilon_{r}\right)$ for $\operatorname{SO}(2 r)$. We have identified the Cartan subalgebra with its dual vector space; the corresponding simple roots are $\alpha_{k}=\alpha_{k}\left(B_{r}\right)=\alpha_{k}\left(D_{r}\right)=\varepsilon_{k}-\varepsilon_{k+1}$ for $k<r$, while $\alpha_{r}\left(\mathrm{~B}_{r}\right)=\varepsilon_{r}$ and $\alpha_{r}\left(\mathrm{D}_{r}\right)=\varepsilon_{r-1}+\varepsilon_{r}$. We also denote by the symbol $\omega \mapsto b$ the fact that $\exp (\pi \omega)=b \in G$ for a member $\omega$ of the Cartan subalgebra $\mathfrak{a}$ of $G$. For instance, one has $\omega_{k} \mapsto P_{k}$ if $G=\mathbf{S O}(2 r)$ and $k<r-1$. Also $\omega_{r}\left(\mathrm{D}_{r}\right) \mapsto J_{r}=J \otimes 1_{r}$ for $\mathrm{SO}(2 r)$.

Back to the involutions of $\mathrm{SO}(2 r+1)$, one recalls the highest root $\alpha^{\sim}$ is $\varepsilon_{1}+\varepsilon_{2}=\alpha_{1}+2\left(\alpha_{2}+\cdots+\alpha_{r}\right)$. Hence there is no outer involution (because the Dynkin diagram admits no nontrivial automorphism; Cf. [B] Chap. 8, p. 110); the groupautomorphism group $\mathrm{G}-\mathrm{Aut}(\mathrm{SO}(2 r+1))$ is connected. Since $\mathrm{SO}(2 r+1)$ is the adjoint group $\mathrm{SO}(2 r+1)^{*}$, Corollary 2.13 tells us that $H^{k}, 1 \leqq k \leqq r$, are tangent to the shortest geodesics to the polars of 1 in $\operatorname{SO}(2 r+1)$; here $H^{k}=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{k}, 1 \leqq k \leqq r$. One has $H^{k} \mapsto P_{k}$. Therefore $\operatorname{ad}\left(P_{k}\right), 1 \leqq k \leqq r$, give a representative system of the
conjugate classes of the group involutions of $\mathrm{SO}(2 r+1)$; no pair among these are conjugate simply because the different $H^{k}$ have different lengths. By Theorem 2.15, the corresponding meridians are $\mathrm{SO}(2 k) \times \mathrm{SO}(2 r+1-2 k)$. The universal covering group $\mathrm{SO}(2 r+1)^{\sim}$ has the center of order $2,\{1, \varepsilon\}$, (since $\omega_{1}$ is the only minuscule). Hence there is no other connected group in the local isomorphism class of $\operatorname{SO}(2 r+1)$. Every $\operatorname{ad}\left(P_{k}\right)$ can act on $\operatorname{SO}(2 r+1)^{\sim}$.
3.4. Proposition (Case of $\left.\mathrm{B}_{r}\right)$. $\quad \operatorname{ad}\left(P_{k} \oplus 1_{1}\right), 1 \leqq k \leqq r$, form a representative system of the conjugate classes of the group involutions of $\mathrm{SO}(2 r+1)$ and $\mathrm{SO}(2 r+1)^{\sim}$. This is commutative.

We turn to the class of $\operatorname{SO}(2 r)$. The adjoint group is $\operatorname{SO}(2 r) /\{ \pm 1\}$. The highest root $\alpha^{\sim}$ is $\varepsilon_{1}+\varepsilon_{2}=\alpha_{1}+2\left(\alpha_{2}+\cdots+\alpha_{r-2}\right)+\alpha_{r-1}+\alpha_{r}$. Hence the inner automorphism group G-Aut $\left(\mathbf{S O}(2 r)^{*}\right)_{(1)}, r \neq 4$, has index 2 in G-Aut( $\left.\mathrm{SO}(2 r)^{*}\right)$. One has $H^{k}=\omega_{k}, 1 \leqq$ $k \leqq r$, and $H^{k} \mapsto P_{k}$ for $k<r-1$ in $\mathrm{SO}(2 r)$, while one has $\omega_{r} \mapsto J_{r}=J \otimes 1_{r}$ and $\omega_{r-1} \mapsto J_{r}^{\prime}:=\operatorname{ad}\left(I_{2 r-1}\right) J_{r}=-J \otimes I_{r-1}$ in $\operatorname{SO}(2 r)$. By taking " $H^{k} \mapsto P_{k}$ " as the definition of $P_{k}$, one sees what $P_{k}$ is in the locally isomorphic groups $\operatorname{SO}(n)^{*}, \mathrm{SO}(n)^{\sim}$ and $\operatorname{SO}(4 m)^{*}$. One notes that $\operatorname{ad}\left(P_{k}\right)$ is conjugate with $\operatorname{ad}\left(P_{r-k}\right)$ in $\operatorname{SO}(2 r)^{*}$ and that ad $\left(J_{r}\right)$ is conjugate with $\operatorname{ad}\left(J_{r}^{\prime}\right)$ in it in case $r$ is odd; more generally, $\operatorname{ad}\left(J \otimes I_{k}\right)$ is conjugate with $\operatorname{ad}\left(J \otimes I_{j}\right)$ if and only if $k-j$ is even. To $P_{k}$ there corresponds the meridian $\operatorname{SO}(2 k) \times \operatorname{SO}(2 r-2 k)$ in $\mathrm{SO}(2 r)$, and $\mathrm{U}(r) / Z_{2}$ is isomorphic with the meridians corresponding to ad $\left(J_{r}\right)$ and $\operatorname{ad}\left(J_{r}^{\prime}\right)$ in $\mathrm{SO}(2 r)^{*}$. Otherwise no pair of $\operatorname{ad}\left(P_{k}\right), 1 \leqq 2 k \leqq r, \operatorname{ad}\left(J_{r}\right)$ and $\operatorname{ad}\left(J_{r}^{\prime}\right)$ is conjugate to each other except for the case $r=4$ (in which $\mathrm{SO}(8)^{*}$ admits an outer automorphism $T$ of order 3 , which permutes the 3 polars). If $n=2 r$ is even, the adjoint group $\mathrm{O}(n)^{*}$ has two connected components. The outer involutions come from the polars of 1 in it outside $\operatorname{SO}(n)^{*}$. Thus one has $\operatorname{ad}\left(I_{k}\right), k$ odd, which are conjugate with $\operatorname{ad}\left(I_{2 r-k}\right)$ and nothing else. They commute with every $\operatorname{ad}\left(P_{k}\right)$ and no conjugate of $\operatorname{ad}\left(J_{r}\right)$. $\operatorname{ad}\left(I_{1}\right)$ carries $\omega_{r}$ into a conjugate of $\omega_{r-1}$.

Next we look at $\mathrm{SO}(n)^{\sim}$. It has the center of order 4 for $n=2 r$ consisting of $1, \delta_{r}, \varepsilon$ and $\delta_{r} \varepsilon$; one has $2 H^{k}=2 \omega_{k} \mapsto \varepsilon$ for $k$ odd and $<r-1,2 \omega_{r} \mapsto \delta_{r}$ and $2 \omega_{r-1} \mapsto \delta_{r} \varepsilon$ in $\mathrm{SO}(n)^{\sim} . \delta_{r}$ and $\delta_{r} \varepsilon$ projects to -1 in $\mathrm{SO}(n)$, while $\varepsilon$ does to 1 in it. $\varepsilon$ is involutive, as is elucidated in Remark 3.6; thus $4 \omega_{1} \mapsto 1$. Hence $4 \omega_{r} \mapsto \varepsilon$ if $r$ is odd, while $\delta_{r}$ is involutive if $r$ is even. Therefore the center $\left\{1, \delta_{r}, \varepsilon, \delta_{r} \varepsilon\right\}$ is cyclic for $r$ odd and isomorphic with $\left\{1, \delta_{r}\right\} \times\{1, \varepsilon\} \cong Z_{2} \times \boldsymbol{Z}_{\mathbf{2}}$ for $r$ even. Every automorphism of $\mathrm{SO}(n)^{\sim}$ fixes $\varepsilon$ because of the distance $\left\|2 \omega_{1}\right\|$ from 1 compared with $\left\|2 \omega_{r}\right\|$ except for $T$ acting on $\operatorname{SO}(8)^{\sim}$ which permutes $\left\{\delta_{r}, \varepsilon, \delta_{r} \varepsilon\right\}$ cyclically. In the general case including $\mathrm{SO}(8)^{\sim}, \operatorname{ad}\left(P_{k}\right)$ is the identity on the center as well as on the maximal torus which projects to $A(\operatorname{SO}(n))$ defined earlier, since $P_{k}$ is a member of $A(\mathrm{SO}(n))$ and $\operatorname{ad}\left(I_{1}\right)$ exchanges $\delta_{r}$ and $\delta_{r} \varepsilon$, in particular they fix $\varepsilon$. Hence every involution either fixes $\delta_{r}$ (in case it is inner) or carries it into $\delta_{r} \varepsilon$ (in case it is outer). Thus $\operatorname{SO}(n)^{\sim} /\left\{1, \delta_{r}\right\}$ is isomorphic with $\operatorname{SO}(n)^{\sim} /\left\{1, \delta_{r} \varepsilon\right\}=: \operatorname{SO}(2 r)^{\#}$, called semispinor group sometimes. Finally an involutive automorphism of $\mathrm{SO}(2 r)$ can act on $\mathrm{SO}(2 r)^{\#}$ if and only if it is inner. In finding the group involutions, one does not
have to consider the case $2^{\circ}$ in Corollary 2.10, since it does not occur to the adjoint group (See Remark 3.7). We summarize these in a proposition.
3.5. Proposition (Case of $\mathrm{D}_{r}$ ). (i) $\operatorname{ad}\left(P_{k}\right), 1 \leqq 2 k \leqq r$, together with $\operatorname{ad}\left(J_{r}\right)$ and $\operatorname{ad}\left(J_{r}^{\prime}\right)$ form a representative system of the conjugate classes of the inner group involutions of $\mathrm{SO}(2 r), \mathrm{SO}(2 r)^{*}$ and $\mathrm{SO}(2 r)^{\sim}$, except that $\left(J_{r}\right)$ is conjugate with $\operatorname{ad}\left(J_{r}^{\prime}\right)$ in case $r$ is odd. The system is commutative. Furthermore $\operatorname{ad}\left(I_{1}\right) \circ \operatorname{ad}\left(P_{k}\right), 1 \leqq 2 k \leqq r$, form that of the outer ones of these groups. This is commutative and centralizes $\operatorname{ad}\left(P_{k}\right), 1 \leqq 2 k \leqq r$, but not $\operatorname{ad}\left(J_{r}\right)$ or $\operatorname{ad}\left(J_{r}^{\prime}\right)$. (ii) Similarly for $\mathrm{SO}(2 r)^{*}$ with omission of the outer involutions.
3.6. Remark. That $\varepsilon^{2}=1$ is obvious if one knows that $\varepsilon=-1$ in a certain Clifford algebra into which $\mathrm{SO}(n)^{\sim}$ is embedded through the spin or half-spin representation. Let $\Sigma_{1}$ denote the subset $\left\{I \otimes J, J \otimes 1_{2}, K \otimes J\right\}$ of $\mathrm{SO}(4)$. The matrices in $\Sigma_{1}$ generate the quaternion algebra $\boldsymbol{H}$. The members of $\boldsymbol{H}$ having unit norm form a group which is homeomorphic with the 3 -sphere and its Lie algebra is spanned by $\Sigma_{1}$. The group is therefore $\mathrm{Sp}(1)=\mathrm{SO}(3)^{\sim}$. Next consider another subset $\Sigma_{2}=\left\{J \otimes I, 1_{2} \otimes J, J \otimes K\right\}$ (which is obtained from $\Sigma_{1}$ by the map: $X \otimes Y \mapsto Y \otimes X$ ). $\Sigma_{1}$ together with $\Sigma_{2}$ spans the Lie algebra of $\mathrm{SO}(4)$, which is $\mathrm{Sp}(1) \cdot \operatorname{Sp}(1)=\mathrm{SO}(4)^{\sim} /\{1, \varepsilon\}$, where $2 \omega_{1} \mapsto \varepsilon=\left(\delta_{2}, \delta_{2} \varepsilon\right)$ in $\operatorname{SO}(4)^{\sim}=\operatorname{Sp}(1) \times \operatorname{Sp}(1)$ and $\varepsilon_{1}+\varepsilon_{2} \mapsto \delta_{2}$ in the $\operatorname{Sp}(1)$ containing $\Sigma_{1}$, while $\varepsilon_{1}-\varepsilon_{2} \mapsto \delta_{2} \varepsilon$ in the other $\operatorname{Sp}(1)$ containing $\Sigma_{2}$. Both $\delta_{2}$ and $\delta_{2} \varepsilon$ appear as -1 in $\operatorname{SO}(4)$. Thus $\varepsilon$ is involutive. The monomorphism $f_{n}: \mathrm{SO}(n)^{\sim} \rightarrow \mathrm{SO}(n+1)^{\sim}$ carries $\varepsilon$ into $\varepsilon, f_{n}$ is the lift of the standard inclusion: $\mathrm{SO}(n) \rightarrow \mathrm{SO}(n+1)$ induced by the one: $\boldsymbol{R}^{n} \rightarrow \boldsymbol{R}^{n+1}=\boldsymbol{R}^{n} \oplus \boldsymbol{R}$ : $x \mapsto x+0$. In this sense $\varepsilon$ is independent of $r$, as opposed to $\delta_{r}$.
3.7. Remark. This is a good place to give more geometric illustrations of the case $2^{\circ}$ in Corollary 2.13. One knows $2 \omega_{1} \mapsto \varepsilon$ in $\operatorname{SO}(n)^{\sim}$ (Case $2^{\circ}$ ). $\varepsilon$ is a pole of 1 , and the geodesic arc $g\left[1, \varepsilon ; 2 \omega_{1}\right]$ from 1 to $\varepsilon$ in the direction of $2 \omega_{1}$ meets the oriented Grassmannian $G_{2}^{o}\left(R^{n}\right)=G_{2}\left(R^{n}\right)^{\sim}$, a component of the centrosome $C(1, \varepsilon)($ See $1.5 b)$, at the midpoint. In $\operatorname{SO}(n)$, one has $\omega_{1} \mapsto P_{1} \in G_{2}\left(\boldsymbol{R}^{n}\right) ; g\left[1, P_{1} ; \omega_{1}\right]$ joins 1 to $P_{1}$ on the polar $G_{2}\left(R^{n}\right)\left(\right.$ Case $\left.1^{\circ}\right)$. Also $\omega_{r-1}+\omega_{r} \mapsto P_{r-1}$ in $\operatorname{SO}(2 r)\left(\right.$ Case $\left.2^{\circ}\right) ; P_{r-1}$ lies on the polar $G_{2 r-2}\left(R^{n}\right), n=2 r$. The projection $\pi$ of $\operatorname{SO}(n)$ onto $\operatorname{SO}(n)^{*}$ carries the two distinct polars $G_{2}\left(\boldsymbol{R}^{n}\right)$ and $G_{2 r-2}\left(\boldsymbol{R}^{n}\right)$ onto a single polar $\pi G_{2}\left(\boldsymbol{R}^{n}\right)$ just as $\pi$ does $P_{1}$ and $P_{r-1}$ onto a singleton; thus both $\pi g\left[1, P_{1} ; \omega_{1}\right]$ and $\pi g\left[1, P_{r-1} ; \omega_{r-1}+\omega_{r}\right]$ lead to the polar $\pi G_{2}\left(\boldsymbol{R}^{n}\right)$ but the former is shorter. For the final example, one has $2 \omega_{r} \mapsto-1$ in $\operatorname{SO}(2 r)$ and $\omega_{1}+\omega_{r} \mapsto$ [a point $p$ in the polar $\left.\operatorname{DIII}(r)^{*}\right]$ in $\operatorname{SO}(2 r)^{*}, r$ even, (both in Case $2^{\circ}$ ); $g\left[1,-1 ; 2 \omega_{r}\right]$ meets a component $\operatorname{DIII}(r)$ of $\mathrm{C}(1,-1)$ in $\mathrm{SO}(2 r)$ at the midpoint. In $\mathrm{SO}(2 r)^{*}, r$ even, the projections of $g\left[1, J_{r} ; \omega_{r}\right]$ and $g\left[1, p ; \omega_{1}+\omega_{r}\right]$ lead to a single polar $\operatorname{DIII}(r)^{*}$.

We now work on the other classical groups. It is important to fix the position of the subspace located in the ambient space in the sequel. We place $\mathrm{U}(n)$ at $F(i, \mathrm{SO}(2 n))$, where $t:=\operatorname{ad}\left(J_{n}\right)=\operatorname{ad}\left(J \otimes 1_{n}\right)$; in other words, a unitary matrix $A+i C, A$ its real part and $C$ the imaginary one, is identified with $1_{2} \otimes A+J \otimes C$ in $\operatorname{SO}(2 n)$. Then we may
choose the maximal torus $A(\mathrm{U}(n))$ of $\mathrm{U}(n)$ to be the same as $A(\mathrm{SO}(2 n))$ fixed earlier; and that of the subgroup $\operatorname{SU}(n)$ as its subtorus. Also we use the same orthonormal $\operatorname{basis}\left(\varepsilon_{j}\right), 1 \leqq j \leqq n$, for its Lie algebra of $\mathfrak{a}(\mathrm{U}(n))$ as the one for that of $A(\mathrm{SO}(2 n))=A(\mathrm{U}(n))$. $\mathfrak{a}(\mathrm{SU}(n))$ is given by the equation $\sum p^{i}=0$ in $\mathfrak{a}(\mathrm{U}(n))$. The highest root $\alpha^{\sim}$ for $\operatorname{SU}(n)$ is $\varepsilon_{1}-\varepsilon_{n}=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r}, r=n-1$; hence G-Aut(SU( $n$ ) $)_{(1)}$ has index 2 in G-Aut(SU(n)), $n>1$. G-Aut $(\mathrm{SU}(n))$ is the "inner" automorphism group of the normalizer $\left\{1, K_{n}\right\} \operatorname{SU}(n)$ of $\operatorname{SU}(n)$ in $\operatorname{SO}(2 n), K_{n}:=K \otimes 1_{n}$, and it is $F\left(l, \mathrm{SO}(2 n)^{*}\right)$. Indeed ad $\left(K_{n}\right)$ acts on $\mathrm{U}(n)$ as the complex conjugation $\kappa$. The polar of 1 which contains $K_{n}$ is called $\mathrm{AI}(n)=\mathrm{SU}(n) / \mathrm{SO}(n)$. If $n=2 m$ is even, there is another polar, $\operatorname{AII}(n)=\mathrm{SU}(n) / \mathrm{Sp}(m)$, which contains $K \otimes J \otimes 1_{m} . \operatorname{SU}(n)$ is 1 -connected and the center is $\left\{\zeta^{k} \otimes 1_{n} \mid k \in N\right.$, $0 \leqq k<n\}$, where $\zeta$ is the $2 \times 2$ matrix $\exp (2 \pi J / n)$. A shortest geodesic to $\zeta^{k} 1_{n}$ is tangent to the $k$-th fundamental weight $H^{k}=\omega_{k}=\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{k}-(k / n)\left(\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{n}\right)$, $1 \leqq k \leqq r$. One sees $2 \omega_{k} \mapsto \zeta^{k} 1_{n}$ in $\operatorname{SU}(n)$ and $\omega_{k} \mapsto \operatorname{ad}\left(P_{k}\right)$ in $\operatorname{SU}(n)^{*}, 1 \leqq k \leqq r$. One has, however, $\operatorname{ad}\left(P_{n-k}\right)=\operatorname{ad}\left(P_{k}\right)$. If $\operatorname{SU}(n)$ were thought of as a group of $n \times n$ complex matrices, $\operatorname{ad}\left(P_{k}\right)$ should be written $\operatorname{ad}\left(I_{k}\right) . \omega_{j}+\omega_{k}, j<k$, gives $\operatorname{ad}\left(P_{k-j}\right)$. Since the center of $\operatorname{SU}(n)$ is cyclic, every involution of $\mathrm{SU}(n)$ can act on every quotient group of $\mathrm{SU}(n)$. We have proved.
3.8. Proposition (Case of $\left.A_{r}\right)$. (i) In case $n$ is odd, $\operatorname{ad}\left(P_{k}\right), 1 \leqq 2 k \leqq r$, and $\operatorname{ad}\left(K_{n}\right)$ form a representative system of the conjugate classes of the group involutions of the covering groups $\mathrm{SU}(n) / Z_{p}$ of $\mathrm{SU}(n)^{*}$ and it is commutative. (ii) In case $n=2 m$ is even, those involutions together with $\operatorname{ad}\left(K \otimes J \otimes 1_{m}\right)$ form a system of the same property. (iii) Whether or not $n$ is even, $\mathrm{G}-\operatorname{Inv}\left(\mathrm{SU}(n) / \boldsymbol{Z}_{p}\right)$ is bijective with the restrictions of $F\left(\operatorname{ad}\left(\operatorname{ad}\left(J_{n}\right)\right), \mathrm{G}-\operatorname{Inv}(\mathrm{SO}(2 n))\right)$ to $\mathrm{SU}(n)$; that is, the restriction of the centralizer of $\operatorname{ad}\left(J_{n}\right)$ in $\mathrm{G}-\operatorname{Inv}(\mathrm{SO}(2 n))$ gives $\mathrm{G}-\operatorname{Inv}\left(\mathrm{SU}(n)^{*}\right)$ bijectively and every group involution of $\mathrm{SU}(n)^{*}$ lifts to an involution of every covering group.

We place $\operatorname{Sp}(m)$ at $F\left(\operatorname{ad}\left(K \otimes J \otimes 1_{m}\right), \mathrm{SU}(2 m)\right)$, where $\mathrm{SU}(2 m)=F\left(\operatorname{ad}\left(J_{2 m}\right), \mathrm{SO}(4 m)\right)$. This $\operatorname{Sp}(m)$ may be written $F\left(\kappa \circ \operatorname{ad}\left(J \otimes 1_{m}\right), \mathrm{SU}(2 m)\right.$ ), where $J \otimes 1_{m}$ is a member of $\mathrm{SO}(2 m) \subset \mathrm{SU}(2 m)$. We use $F\left(\kappa \circ \operatorname{ad}\left(J_{m}\right), A(\mathrm{SU}(2 m))\right.$ ) as our maximal torus $A(\mathrm{Sp}(m))$. We write $\varepsilon_{k}$ for $\varepsilon_{k}-\varepsilon_{k+m}, 1 \leqq k \leqq m$, and call them orthonormal in the Lie algebra $\mathfrak{a}(\operatorname{Sp}(m))$. The highest root $\alpha^{\sim}$ is $2 \varepsilon_{1}=2\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{r-1}\right)+\alpha_{r}$ and $\omega_{k}=\varepsilon_{1}+\varepsilon_{2}+$ $\cdots+\varepsilon_{k}, 1 \leqq k \leqq m$. There is no outer involution. The center of the 1 -connected group $\mathrm{Sp}(m)$ is $\{ \pm 1\}$. To $\omega_{k}$ there corresponds ad $\left(P_{k}\right)$ restricted to $\mathrm{Sp}(m), 1 \leqq k<m$, where $P_{k} \in \operatorname{SO}(2 m)$. To $H^{m}=\frac{1}{2} \omega_{m}$ there corresponds ad $\left(J_{m}\right)$, where $J_{m} \in \operatorname{SO}(2 m)$; and one has $2 H^{m} \mapsto-1$.
3.9. Proposition (Case of $\mathrm{C}_{r}$ ). (i) $\operatorname{ad}\left(P_{k}\right), 1 \leqq k<r$, and $\operatorname{ad}\left(J_{m}\right)$ form a representative system of the group involutions of conjugate classes of $\operatorname{Sp}(m)$ and $\operatorname{Sp}(m)^{*}$ and it is commutative. (ii) $\mathrm{G}-\operatorname{Inv}(\operatorname{Sp}(m))$ is bijective with the restrictions of $F\left(\operatorname{ad}\left(\operatorname{ad}\left(\operatorname{ad}\left(K \otimes J_{m}\right)\right)\right)\right.$ ), $\mathrm{G}-\mathrm{Inv}(\mathrm{SU}(2 m))$ to $\mathrm{Sp}(m)$.

Now we turn to the exceptional groups. We assume some knowledge of $\mathrm{E}_{8}$ including
its existence, but not of $\mathrm{E}_{6}, \mathrm{E}_{7}$ or $\mathrm{F}_{4}$. We denote by these both the compact 1-connected groups and their root systems. $\mathrm{E}_{8}$ contains $\mathrm{SO}(16)^{*}$ and we will show that all the group involutions of $\mathrm{E}_{8}$ are conjugate to those of $\mathrm{SO}(16)^{\ddagger}$ extended to $\mathrm{E}_{8}$.
3.10. Proposition (Case of $\mathrm{E}_{8}$ ). $\mathrm{E}_{8}$ has two involutions, denoted by $\sigma^{\mathrm{VIII}}$ and $\sigma^{\mathrm{IX}}$ corresponding to the two polars; $\sigma^{\mathrm{VIII}}:=\operatorname{ad}(\varepsilon)$ and $\sigma^{\mathrm{IX}}:=\operatorname{ad}\left(\varepsilon P_{2}\right)$ in terms of members of the subgroup $\mathrm{SO}(16)^{\sharp}=F\left(\mathrm{ad}(\varepsilon), \mathrm{E}_{8}\right)$ (See the proof). $\sigma^{\mathrm{VIII}}$ and $\sigma^{\mathrm{IX}}$ make a commutative representative system of the conjugate classes of the group involutions of $\mathrm{E}_{8}$.

Proof. We write $\alpha\left(q^{1}, \cdots, q^{r}\right)$ for a linear combination $q^{1} \alpha_{1}+\cdots+q^{r} \alpha_{r}$ of the simple roots and, similarly, $\varepsilon\left(p^{1}, \cdots, p^{r}\right)$ for $p^{1} \varepsilon_{1}+\cdots+p^{r} \varepsilon_{r}$. Then the highest root $\alpha^{\sim}=\alpha^{\sim}\left(\mathrm{E}_{8}\right)$ is $\alpha(2,3,4,6,5,4,3,2)$. There is no outer involution. By Theorem 2.11, there is a meridian $M^{-}(p)$ for the polar $M^{+}(p)$ of the unit element 1 that corresponds to the first number 2 in the above expression of $\alpha^{\sim} ; M^{-}(p)=F\left(\operatorname{ad}(p), \mathrm{E}_{8}\right)$, the centralizer of $p$. Its Lie algebra is $\mathrm{D}_{8}$. We choose a common Cartan subalgebra $\mathfrak{a}\left(\mathrm{D}_{8}\right)=\mathfrak{a}\left(\mathrm{E}_{8}\right)$. Besides we make $\varepsilon_{1}, \cdots, \varepsilon_{j}, \cdots, \varepsilon_{8}$, the orthonormal basis vectors for $\mathfrak{a}\left(\mathrm{E}_{8}\right)$, correspond to the vectors $\varepsilon_{8}, \varepsilon_{7}, \cdots, \varepsilon_{k}, \cdots, \varepsilon_{2},-\varepsilon_{1}$, considered earlier for $D_{8}, j+k=9$ for $1 \leqq j \leqq 7$, notationwise, referring to the tables at the end of Chap. 6 of [B]; thus the root system $R\left(\mathrm{E}_{8}\right)$ is the union of $R\left(\mathrm{D}_{8}\right)$ and the weights of the half-spin representation $\omega_{7}=\omega_{7}\left(\mathrm{D}_{8}\right)$ of $\mathrm{D}_{8}$. One sees that $M^{-}(p)$ is the semi-spinor group $\mathrm{SO}(16)^{\sim} /\{1, \delta \varepsilon\}$ which we denote by $\mathrm{SO}(16)^{*}$. It meets the polar $M^{+}(p)$ at $\varepsilon$, the only pole of 1 in $\mathrm{SO}(16)^{\#}$; hence $p=\varepsilon$. The polar is called EVIII. $\sigma^{\text {VIII }}$ is $\operatorname{ad}(\varepsilon)$ acting on $\mathrm{E}_{8}$ by definition. $\omega_{7}\left(\mathrm{D}_{8}\right)$, etc. being abbreviated to $\omega_{7}$, etc. one sees $\omega_{1}\left(\mathrm{E}_{8}\right)=-2 \omega_{1}, \omega_{2}\left(\mathrm{E}_{8}\right)=\omega_{8}-3 \omega_{1}, \omega_{3}\left(\mathrm{E}_{8}\right)=\omega_{7}-4 \omega_{1}$, $\omega_{4}\left(\mathrm{E}_{8}\right)=\omega_{6}-6 \omega_{1}, \omega_{5}\left(\mathrm{E}_{8}\right)=\omega_{5}-5 \omega_{1}, \omega_{6}\left(\mathrm{E}_{8}\right)=\omega_{4}-4 \omega_{1}, \omega_{7}\left(\mathrm{E}_{8}\right)=\omega_{3}-3 \omega_{1}, \quad$ and $\omega_{8}\left(\mathrm{E}_{8}\right)=\omega_{2}-2 \omega_{1}$. Next from the second coefficient 2 in $\alpha^{\sim}$ and Theorem 2.11, one obtains another meridian $M^{-}(q)$, where the point $q$ lies in the direction of $\omega_{8}\left(\mathrm{E}_{8}\right)=\omega_{2}-2 \omega_{1}$, a root of $\mathrm{D}_{8}$. Again by Theorem 2.11, $M^{-}(q)$ is a dot product of $\mathrm{Sp}(1)$ and a simple group with the root system $\mathrm{E}_{7} . q$ is the common pole of $1 \mathrm{in} \operatorname{Sp}(1)$ and the group $\mathrm{E}_{7}$; one sees $q$ equals $\varepsilon 1_{2} \otimes I_{2}=\varepsilon P_{2} . \sigma^{\mathbf{I X}}$ is $\operatorname{ad}\left(\varepsilon \mathrm{P}_{2}\right)$ by definition. The polar $M^{+}(q)$ is called EIX. $\sigma^{\text {VIII }}$ commutes with $\sigma^{\mathrm{IX}}$, since they have been defined by two members of a maximal torus. They form a representative system of the congruence classes of the group involutions of $\mathrm{E}_{8}$ by Theorem 2.11. QED
3.11. Remark. Clearly $\varepsilon P_{2}$ is conjugate with $P_{2}, \varepsilon I_{4}$ and $I_{4}$ in $\operatorname{SO}(16)^{*}$; indeed all these lie in the polar $G_{4}^{o}\left(R^{16}\right)$ of 1 in $\mathrm{SO}(16)^{\#}$. In particular, $\sigma^{\mathrm{VIII}}$ is conjugate with $\operatorname{ad}\left(P_{2}\right)$ even in $\mathrm{SO}(16)^{\#}$. We record $\mathrm{SO}(16)^{\sharp}=F\left(\sigma^{\mathrm{VIII}}, \mathrm{E}_{8}\right)$ and $\mathrm{Sp}(1) \cdot \mathrm{E}_{7}=F\left(\sigma^{1 \mathrm{X}}, \mathrm{E}_{8}\right)$. These are the meridians for the polars EVIII and EIX respectively.
3.12. Remark. There are many ways of checking results because of abundant interrelationship between the spaces. Here is a simple example. It is not hard to see that, among the polars $\{\varepsilon\}, 2$ copies of $\operatorname{DIII}(8)^{*}, G_{4}^{o}\left(R^{16}\right)$ and $G_{8}\left(R^{16}\right)^{\#}$ of $\operatorname{SO}(16)^{\#}$, one of DIII(8)* and $G_{4}^{o}\left(\boldsymbol{R}^{16}\right)$ lie in EIX; indeed $\omega_{7}\left(\mathrm{D}_{8}\right)$ and $\alpha_{1}\left(\mathrm{D}_{8}\right)$ are conjugate in $\mathrm{E}_{8}$ (or with respect to its Weyl group $W\left(\mathrm{E}_{8}\right)$ ) so that this $\mathrm{DIII}(8)^{*}$ in EIX contains $J \otimes I_{1}$ (on
the 1-parameter subgroup with the initial tangent $\omega_{7}\left(\mathrm{D}_{8}\right)$ ) and the other $\operatorname{DIII}(8)$ * contains $\varepsilon J \otimes I_{1}$. Assuming the knowledge of the Euler numbers of the polars of $\operatorname{SO}(16)^{*}$, one finds that the Euler number $\chi \mathrm{EIX}$ is $120=56+64$ and $\chi \mathrm{EVIII}=1+64+70=135$; thus $1+\chi$ EVIII $+\chi$ EIX equals $2^{8}$, as it should.
3.13. Proposition (Case of $\mathrm{E}_{7}$ ). $\mathrm{E}_{7}$ has three group involutions, $\sigma^{\mathbf{v}}, \sigma^{\mathbf{v 1}}$ and $\sigma^{\mathrm{vII}}$ corresponding to the 3 polars in $\mathrm{E}_{7}^{*}=\mathrm{E}_{7} / \boldsymbol{Z}_{2}$. Here $\sigma^{\mathbf{v}}:=\operatorname{ad}\left(K \otimes 1_{8}\right) \mid \mathrm{E}_{7} ; \sigma^{\mathbf{v 1}}$ is $\operatorname{ad}(\varepsilon)=\sigma^{\mathrm{vIII}}$ restricted to $\mathrm{E}_{7}$; and $\sigma^{\mathrm{VII}}$ is $\operatorname{ad}\left(J_{2} P_{1}\right) \mid \mathrm{E}_{7}$, where $J_{2}$ is a member of $\mathrm{Sp}(1)($ that is, the member $J \otimes 1_{2}$ of $\Sigma_{1}$ in Remark 3.6) and $P_{1}$ is that of $\mathrm{SO}(12)^{\sim}$, both of which are subgroups of $\mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{\sim} \subset \mathrm{E}_{7} \cap \mathrm{SO}(4)^{\sim} \cdot \operatorname{SO}(12)^{\sim} \subset \mathrm{SO}(16)^{\ddagger}$, if $\mathrm{E}_{7}$ is located in $F\left(\sigma^{\mathbf{I X}}, \mathrm{E}_{8}\right) \cdot \sigma^{\mathbf{v}}, \sigma^{\mathbf{v I}}$ and $\sigma^{\mathrm{VII}}$ make a commutative representative system of the conjugate classes of the group. involutions of $\mathrm{E}_{7}$ and of $\mathrm{E}_{7}^{*}$.

Proof. We place $\mathrm{E}_{7}$ at the position in $\mathrm{E}_{8}$ specified in the above. Thus a Cartan subalgebra $a\left(E_{7}\right)$ of $E_{7}$ is given by the equation $p^{1}=p^{2}$, i.e. one has $a\left(E_{7}\right)=$ $\left\{\varepsilon\left(p^{1}, \cdots, p^{8}\right) \in \mathfrak{a}\left(\mathrm{E}_{8}\right) \mid p^{1}=p^{2}\right\}$. We choose a system of simple roots $\alpha_{1}, \cdots, \alpha_{7}$, just omitting $\alpha_{8}$ from those in $R\left(\mathrm{E}_{8}\right)$. One has the fundamental weights $\omega_{1}\left(\mathrm{E}_{7}\right)=-\omega_{2}=$ $-\omega_{2}\left(\mathrm{D}_{8}\right), \quad \omega_{2}\left(\mathrm{E}_{7}\right)=\omega_{8}-(3 / 2) \omega_{2}, \quad \omega_{3}\left(\mathrm{E}_{7}\right)=\omega_{7}-2 \omega_{2}, \quad \omega_{4}\left(\mathrm{E}_{7}\right)=\omega_{6}-3 \omega_{2}, \quad \omega_{5}\left(\mathrm{E}_{7}\right)=$ $\omega_{5}-(5 / 2) \omega_{2}, \omega_{6}\left(\mathrm{E}_{7}\right)=\omega_{4}-2 \omega_{2}$, and $\omega_{7}\left(\mathrm{E}_{7}\right)=\omega_{3}-(3 / 2) \omega_{2}$, where the right hand sides involve fundamental weights of $D_{8}$ only. Now that the location of $E_{7}$ has been fixed in $\mathrm{E}_{8}$ together with its Cartan subalgebra, we are ready to determine the polars of $\mathrm{E}_{7}^{*}$ (which are all contained in those of $\mathrm{E}_{8}$ somehow) and the involutions of $\mathrm{E}_{7}^{*}$ by heavy use of Theorem 2.11 as in the foregoing proof. The highest root $\alpha^{\sim}\left(E_{7}\right)$ is $\omega_{1}\left(E_{7}\right)=\alpha(2,2,3,4,3,2,1)$. There is no outer involution; in particular every involution is the restriction of that of $\mathrm{E}_{8}$ to $\mathrm{E}_{7}$.

The first coefficient 2 gives the meridian $\mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{\sim}=\mathrm{E}_{7} \cap \mathrm{SO}(16)^{*}$. This meets the polar, called EVI, at $P_{2}$, since $\omega_{1}\left(\mathrm{E}_{7}\right)=-\omega_{2} \mapsto P_{2}$. It is more convenient to denote this $P_{2}$ by $\delta_{2}$, which is the pole of 1 in $\operatorname{Sp}(1)$. One has $\operatorname{Sp}(1) \cdot \operatorname{SO}(12)^{\sim}=(\operatorname{Sp}(1) \times$ $\left.\mathrm{SO}(12)^{\sim}\right) /\left\{1,\left(\delta_{2}, \delta_{6} \varepsilon\right)\right\}$, as one knows $\delta_{2}=\delta_{6} \varepsilon$ in $\operatorname{SO}(16)^{\sharp}$. The Cartan subalgebra $a\left(\mathrm{D}_{6}\right)$ of $\operatorname{SO}(12)^{\sim}$ is spanned by $\varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}$ and $\varepsilon_{8}$, that is, $a\left(D_{6}\right) \perp\left\{\varepsilon_{1}, \varepsilon_{2}\right\}$. The poles of 1 in $\mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{\sim}$ are identified with $\varepsilon, \delta_{6}$ and $\delta_{6} \varepsilon$ in $\mathrm{SO}(12)^{\sim}$. One has $2 \omega_{6}\left(\mathrm{D}_{6}\right)=\varepsilon_{3}+\cdots+\varepsilon_{8} \mapsto \delta_{6}$ in $\mathrm{E}_{7}$, while $\omega_{1}\left(\mathrm{E}_{7}\right) \mapsto \delta_{2}=\delta_{6} \varepsilon$. Since $\omega_{8}\left(\mathrm{E}_{8}\right) \mapsto \delta_{6}, \delta_{6}$ is the pole in $\mathrm{E}_{7}$ by the definition of $\mathrm{E}_{7}$; the center of $\mathrm{E}_{7}$ is $\left\{1, \delta_{6}\right\}$.

The second coefficient 2 , thus, gives the meridian with the root system $A_{7}$ in the bottom space $\mathrm{E}_{7}^{*}$ but not in $\mathrm{E}_{7}$, since $2 \omega_{2}\left(\mathrm{E}_{7}\right) \mapsto \delta_{6}$. In $\mathrm{E}_{7}$ the centrosome has the component, called EV , in correspondence with $\omega_{2}\left(\mathrm{E}_{7}\right)$. The meridian in $\mathrm{E}_{7}^{*}$ is $\mathrm{SU}(8) / \boldsymbol{Z}_{4}$ because of the relative position of the root $\alpha_{2}\left(E_{7}\right)$ to the Dynkin diagram of $A_{7}$ within the extended Dynkin diagram of $\mathrm{E}_{7}$; indeed $\alpha_{2}\left(\mathrm{E}_{7}\right)$ indicates the isotropy representation $\omega_{4}\left(A_{7}\right)$ for $E V$, or $\alpha_{2}\left(E_{7}\right)=-\omega_{4}\left(A_{7}\right)$ with respect to an appropriate basis for $\mathfrak{a}\left(\mathrm{E}_{7}\right)=\mathfrak{a}\left(\mathrm{A}_{7}\right)$.

The 6-th coefficient 2 in $\alpha^{\sim}\left(E_{7}\right)$ gives the other polar EVI in $E_{7}$, which can share the meridian $\operatorname{Sp}(1) \cdot \operatorname{SO}(12)^{\sim}$ with the first EVI because of the other pole $\varepsilon$ of 1 in
$\mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{\sim}$. This EVI is therefore a subspace of EVIII, while the first EVI $\ni \delta_{2}$ (which is $P_{2}$ in $\mathrm{SO}(16)^{\sharp}$ ) is contained in EIX. The pole $\delta_{6}$ of 1 in $\mathrm{E}_{7}$ gives rise to the covering transformation for the double covering map; $\mathrm{E}_{7} \rightarrow \mathrm{E}_{7}^{*}$, and the translation $\delta_{6}$ permutes the two polars, since it carries $\delta_{2}=\delta_{6} \varepsilon$ into $\varepsilon$. Hence the covering map projects the two polars onto a single polar EVI in $\mathrm{E}_{7}^{*}$. We choose $\sigma^{\mathbf{v 1}}:=\operatorname{ad}(\varepsilon) \mid \mathrm{E}_{7}$.

The 7-th coefficient 1 in $\alpha^{\sim}\left(\mathrm{E}_{7}\right)$ gives the subgroup $T \cdot \mathrm{E}_{6}, T \cong \mathrm{U}(1)$, and the other component of the centrosome $C\left(1, \delta_{6}\right)$, denoted by EVII, which project respectively to a meridian and the corresponding polar in $\mathrm{E}_{7}^{*}$. Here $\mathrm{E}_{6}$ is of course the 1-connected group of the root system $\mathrm{E}_{6} . T \cdot \mathrm{E}_{6}$ denotes $\left(T \times \mathrm{E}_{6}\right) / Z_{3}$; indeed $\omega_{7}\left(\mathrm{E}_{7}\right)$ is an initial tangent to $T$ and orthogonal to $\mathfrak{a}\left(\mathrm{E}_{6}\right)$ in $\mathfrak{a}\left(\mathrm{E}_{7}\right)$, whence the orthogonal projection of $\alpha^{\sim}\left(E_{7}\right)$ into $\mathfrak{a}\left(E_{6}\right)$ is $-(2 / 3) \omega_{3}=\omega_{1}\left(E_{6}\right)$, the denominator suggesting the center $Z_{3}$ of $\mathrm{E}_{6}$; also $\mathfrak{a}\left(\mathrm{E}_{6}\right)$ is defined by the equation $p^{2}=p^{3}$ in $\mathfrak{a}\left(\mathrm{E}_{7}\right)$. We add that $\sigma^{\mathrm{VII}}$ is conjugate with $\operatorname{ad}\left(J_{6}\right), J_{6} \in \mathrm{SO}(12)^{\sim}$, since the vector $\omega_{7}\left(\mathrm{E}_{7}\right)$ in $\mathfrak{a}\left(\mathrm{E}_{7}\right)$ is carried into $\omega_{6}\left(\mathrm{D}_{6}\right)$ by the reflection with respect to the root $\frac{1}{2} \varepsilon(1,1,-1,1,1,1,1)$ of $\mathrm{E}_{7}$. For another consequence, $J_{6}$ lies on DIII(6), a component of $\operatorname{Sp}(1) \cdot \operatorname{SO}(12)^{\sim} \cap$ EVII, and $J_{2} P_{1}$ does on $S^{2} \cdot G_{2}^{\circ}\left(R^{12}\right)$, the other component.

Now $K_{8}:=K \otimes 1_{8}$ is an involutive member of $\mathrm{SO}(16)^{\#} . \operatorname{ad}\left(K_{8}\right)$ stabilizes our maximal torus $A=A\left(\mathrm{E}_{8}\right)$ and acts on it as the symmetry $s_{1}$. Hence $\operatorname{ad}\left(K_{8}\right)$ fixes every involutive member of $A$. In particular it stabilizes $\mathrm{E}_{7} ; K_{8}$ is a member of $\mathrm{Sp}(1) \cdot \mathrm{E}_{7}$ and not of $\mathrm{E}_{7}$. Also it follows that the subspace $F\left(s_{1} \circ \operatorname{ad}\left(K_{8}\right), G\right)_{(1)}$ of $G$ has equal rank to that of $G$ for any compact $\operatorname{ad}\left(K_{8}\right)$-invariant subgroup $G$ of $\mathrm{E}_{8}$ with a maximal torus contained in $A$. This applies to $\mathrm{E}_{7}$ as well as any group $F\left(\mathrm{~S}, \mathrm{E}_{8}\right)$ defined for a finite set $S$ of $\operatorname{ad}(t)$, $t$ involutive members of $A$. Therefore the subspace $F\left(s_{1} \circ \sigma^{\mathbf{v}}, \mathrm{E}_{7}\right)_{(1)}=$ : EV of $\mathrm{E}_{7}$ has rank $=7$ and shares the root system with $\mathrm{E}_{7}$.

Finally, we come to the statement on the representative system. In view of Theorem 2.11, there are involutive members of $\mathrm{E}_{7}^{*}$ in the directions of $\omega_{1}\left(\mathrm{E}_{7}\right), \omega_{2}\left(\mathrm{E}_{7}\right), \omega_{6}\left(\mathrm{E}_{7}\right)$, $\omega_{7}\left(\mathrm{E}_{7}\right)$ and nothing more up to conjugacy. $\omega_{1}\left(\mathrm{E}_{7}\right)$ corresponds to $\sigma^{\mathrm{V1}}$, since $\omega_{1}\left(\mathrm{E}_{7}\right) \mapsto \delta_{2}$ which projects to the same element of $\mathrm{E}_{7}^{*}$ as $\varepsilon$ does, that is, one has $\omega_{1}\left(\mathrm{E}_{7}\right) \mapsto \varepsilon$ in $\mathrm{E}_{7}^{*}$. Since $\omega_{6}\left(\mathrm{E}_{7}\right) \mapsto \delta_{2} P_{2}=\delta_{6} \varepsilon P_{2}$ in $\mathrm{E}_{7}$ hence $\omega_{6}\left(\mathrm{E}_{7}\right) \mapsto \varepsilon P_{2}$ in $\mathrm{E}_{7}^{*}$, we assert that $\omega_{6}$ gives $\varepsilon$; in fact $2 \varepsilon_{3} \mapsto \varepsilon$ and $2 \varepsilon_{3}$ is conjugate with $\omega_{6}$ by the Weyl group of $E_{7}$, as one easily sees. Thus both $\omega_{1}\left(\mathrm{E}_{7}\right)$ and $\omega_{6}\left(\mathrm{E}_{7}\right)$ correspond to the class of $\sigma^{\mathbf{V I}}$. One sees that $\omega_{7}\left(\mathrm{E}_{7}\right)$ gives $\sigma^{\text {VII }}$, since $\omega_{7}\left(\mathrm{E}_{7}\right)=\omega_{3}-(3 / 2) \omega_{2}=-\frac{1}{2} \omega_{2}+\varepsilon_{3}=-\frac{1}{2} \omega_{2}+\omega_{1}\left(\mathrm{D}_{6}\right) \mapsto J_{2} P_{1}$. Therefore $\omega_{2}\left(\mathrm{E}_{7}\right)$ must give $\sigma^{\mathbf{v}}$; this can be checked directly with computations. QED
3.14. Remark. We record $F\left(\sigma^{\mathrm{V} 1}, \mathrm{E}_{7}\right)=\mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{\sim}$. One has $\mathrm{U}(1) \cdot \mathrm{E}_{6}=$ $F\left(\sigma^{\mathrm{VII}}, \mathrm{E}_{7}\right) . \sigma^{\mathrm{VII}}$ is conjugate with $\operatorname{ad}\left(J_{6}\right), J_{6} \in \mathrm{SO}(12)^{\sim}$. We add some explanations without proof. The involution $\operatorname{ad}\left(K_{8}\right)$ on $\mathrm{E}_{7}^{*}$ equals $\operatorname{ad}(b)$ for a member $b$ in $S^{2} \cdot G_{6}\left(R^{12}\right)^{\#} \subset \mathrm{EV}^{*} \subset \mathrm{E}_{7}^{*}$. The involutive member $c$ of $\mathrm{E}_{7}^{*}$ in the direction of $\omega_{2}\left(\mathrm{E}_{7}\right)$ lies in DIII(6)* $\subset \mathrm{EV}^{*}$. The intersection $\mathrm{SO}(4)^{\sim} \cdot \mathrm{SO}(12)^{*} \cap \mathrm{EV}^{*}$ is the disjoint union of these two subspaces; in particular the Euler number $\chi \mathbf{E V}^{*}=\chi S^{2} \cdot G_{6}\left(R^{12}\right)^{\ddagger}+\chi$ DIII(6)* $=20+16=36$. Similarly $\operatorname{SO}(4)^{\sim} \cdot \operatorname{SO}(12)^{\ddagger}$ meets EVII* in the disjoint union of
$S^{2} \cdot G_{2}^{\mathrm{o}}\left(\boldsymbol{R}^{12}\right)$ and $\operatorname{DIII}(6)^{*}$; thus $\chi \mathrm{EVII} *=12+16=28$. The same group $\mathrm{SO}(4)^{\sim} \cdot \mathrm{SO}(12)^{*}$ meets the other polar EVI in the disjoint union of $S^{2} \cdot \operatorname{DIII}(6), G_{4}^{\circ}\left(R^{12}\right)$ and a single point; $\chi \mathrm{EVI}=32+30+1=63$. Finally the sum $\chi \mathrm{EV}^{*}+\chi \mathrm{EVII} *+\chi \mathrm{EVI}+\chi\{1\}=2^{7}$, cross-checking our result partly.
3.15. Remark. We describe the polars of $\mathrm{EV}^{*}$ for a later use. Their meridians have the same root systems with multiplicity one and the same fundamental groups as those of the meridians in $\mathrm{E}_{7}^{*}$, hence they are $\mathrm{AI}(8) / Z_{4}, S^{2} \cdot G_{6}\left(R^{12}\right)^{\#}$ and $T \cdot \mathrm{EI}$ in correspondence with $\mathrm{SU}(8) / \boldsymbol{Z}_{4}, \mathrm{Sp}(1) \cdot \mathrm{SO}(12)^{*}$ and $T \cdot \mathrm{E}^{6}$ respectively in $\mathrm{E}_{7}^{*}$, where EI is the space with the root system of $\mathrm{E}_{6}$ with multiplicity 1 . The c-orthogonal to $\mathrm{AI}(8) / \boldsymbol{Z}_{4}$ in EV* is isomorphic with itself by the explained property of $\operatorname{ad}\left(K_{8}\right)$. The isotropy subgroup for $\mathrm{U}(1) \cdot \mathrm{EI}$ (and for EI ) is $\mathrm{Sp}(4)^{*}$, which, placed as the c-orthogonal to EI at 1 in $\mathrm{E}^{6}$, meets the polars, EII and EIII, of 1 in $\mathrm{E}^{6}$ at polars $\mathrm{CI}(4)^{*} \Perp G_{1}\left(H^{4}\right)$ and the polar $G_{2}\left(H^{4}\right)^{*}$ in $\mathrm{Sp}(4)^{*} ; \mathrm{CI}(4)^{*}$ and $G_{2}\left(H^{4}\right)^{*}$ are the polars in EI.
3.15a. Remark. The fixed point set $F\left(\sigma^{\mathbf{v}}, \mathrm{E}_{7}^{*}\right)=2 \times \operatorname{SU}(8) / \boldsymbol{Z}_{4}$ ( 2 copies). It cannot be connected, since $F\left(\sigma^{\mathbf{v}}, \mathrm{E}_{7}^{*}\right)_{(1)}=\mathrm{SU}(8) / \boldsymbol{Z}_{4}$ is the meridian to $\mathrm{EV}^{*}$ which has the polars $G_{4}\left(C^{8}\right)^{*}, \mathrm{AI}(8) / \boldsymbol{Z}_{4}$ and $\operatorname{AII}(4)^{*}$, but the last two cannot be polars of $\mathrm{SU}(8) / \boldsymbol{Z}_{4}$.
3.15b. Remark. We have shown that the centrosome $C\left(1, \delta_{6}\right)$ in $\mathrm{E}_{7}$ is the disjoint union of EV and EVII. Since these are not isomorphic with each other, the projection $\pi$ of $E_{7}$ onto $E_{7}^{*}$ restricts to double covering maps of EV and EVII. Therefore the polars in $\mathrm{E}_{7}^{*}$ are $\pi(\mathrm{EV})$, EVI and $\pi(\mathrm{EVII})$. Moreover $\pi(\mathrm{EV})$ and $\pi(\mathrm{EVII})$ are the bottoms $\mathrm{EV}^{*}$ and EVII* by 1.9.
3.16. Remark. The polars EVI and $S^{2} \cdot \mathrm{EV}$ of 1 in $\mathrm{Sp}(1) \cdot \mathrm{E}_{7}$ are contained in the polar EVIII in $\mathrm{E}_{8}$, while the polars EVI and $S^{2} \cdot$ EVII are in EIX. The ratio $d(1, \mathrm{EVIII})^{2}: d(1, \text { EIX })^{2}$ of the distance squared from the unit element to the polars is $2: 1$, by 2.14 and $\left\|\omega_{1}\left(\mathrm{E}_{8}\right)\right\|^{2}:\left\|\omega_{8}\left(\mathrm{E}_{8}\right)\right\|^{2}=2: 1$.
3.17. Proposition (Case of $\mathrm{E}_{6}$ ). $\mathrm{E}_{6}$ admits four group-involutions $\sigma^{\mathrm{I}}, \sigma^{\mathrm{II}}$, $\sigma^{\text {III }}$ and $\sigma^{\mathrm{IV}}$ which constitute a complete system of the conjugate classes. Here $\sigma^{1}:=$ $\operatorname{ad}\left(K_{8}\right)\left|\mathrm{E}_{6}=\sigma^{\mathbf{v}}\right| \mathrm{E}_{6} ; \sigma^{\mathrm{II}}:=\operatorname{ad}\left(P_{2}\right) \mid \mathrm{E}_{6} ; \sigma^{\text {III }}$ is the restriction $\operatorname{ad}(\varepsilon) \mid \mathrm{E}_{6} ;$ and $\sigma^{\mathbf{I V}}:=\operatorname{ad}\left(Q_{2}\right) \mid \mathrm{E}_{6}$, $Q_{2}$ denoting the member of $\mathrm{SO}(16)^{\#}$ which corresponds to $K \otimes\left(1_{4} \oplus 0_{4}\right)+1_{2} \otimes\left(0_{4} \oplus 1_{4}\right)$ in $\mathrm{SO}(16)$ if $\mathrm{E}_{6}$ is located in $F\left(\sigma^{\mathrm{VII}}, \mathrm{E}_{7}\right)$. The inner ones among these are $\sigma^{\mathrm{II}}$ and $\sigma^{\mathrm{III}}$. These $\sigma^{\mathrm{I}}, \sigma^{\mathrm{II}}, \sigma^{\mathrm{III}}$ and $\sigma^{\mathrm{IV}}$ commute with each other. $Q_{2}$ is conjugate with $P_{2}$ and $I_{4}$ in $\mathrm{SO}(16)^{\ddagger}$.

Proof. We place $\mathrm{E}_{6}$ at the position in $\mathrm{E}_{7}$ as stated; thus our Cartan subalgebra $\mathfrak{a}\left(\mathrm{E}_{6}\right)$ of $\mathrm{E}_{6}$ is given by the equation $p^{2}=p^{3}$ in $\mathfrak{a}\left(\mathrm{E}_{7}\right)$, that is, $\mathfrak{a}\left(\mathrm{E}_{6}\right)=\left\{p^{1} \varepsilon_{1}+\cdots+\right.$ $\left.p^{8} \varepsilon_{8} \mid p^{1}=p^{2}=p^{3}\right\}$. We choose a system of simple roots $\alpha_{1}, \cdots, \alpha_{6}$, just omitting $\alpha_{7}$ from those in $R\left(\mathrm{E}_{7}\right)$. One has the fundamental weights $\omega_{1}\left(\mathrm{E}_{6}\right)=-(2 / 3) \omega_{3}$, $\omega_{2}\left(\mathrm{E}_{6}\right)=\omega_{8}-\omega_{3}, \omega_{3}\left(\mathrm{E}_{6}\right)=\omega_{7}-(4 / 3) \omega_{3}, \omega_{4}\left(\mathrm{E}_{6}\right)=\omega_{6}-2 \omega_{3}, \omega_{5}\left(\mathrm{E}_{6}\right)=\omega_{5}-(5 / 3) \omega_{3}$ and $\omega_{6}\left(\mathrm{E}_{6}\right)=\omega_{4}-(4 / 3) \omega_{3}$, where the right hand sides involve fundamental weights of $\mathrm{D}_{8}$
only. The highest root $\alpha^{\sim}\left(\mathrm{E}_{6}\right)$ is $\omega_{2}\left(\mathrm{E}_{6}\right)=\alpha(1,2,2,3,2,1)$. G-Aut $\left(\mathrm{E}_{6}\right)$ is the extension of $\mathrm{G}-\operatorname{Aut}\left(\mathrm{E}_{6}\right)_{(1)}$ by $\left\{1, \sigma^{1}\right\}$; in fact the composite $\sigma^{1} \circ w_{o}$ realizes the symmetry of the Dynkin diagram, where $w_{o}$ denotes the member of the Weyl group that has the greatest length [B]. This outer involution makes $\omega_{1}\left(\mathrm{E}_{6}\right)$ conjugate with $\omega_{6}\left(\mathrm{E}_{6}\right)$ and $\omega_{3}\left(\mathrm{E}_{6}\right)$ with $\omega_{5}\left(\mathrm{E}_{6}\right)$. One sees that the center of $\mathrm{E}_{6}$ has order 3 and is generated by a member in the direction of $2 \omega_{1}\left(\mathrm{E}_{6}\right) ; \mathrm{E}_{6}$ has no pole.

The first coefficient 1 in $\alpha^{\sim}\left(E_{6}\right)$ indicates the meridian $U(1) \cdot S O(10)^{\sim}$ and the corresponding involutive member $b$ lies in $\mathrm{U}(1)$ which has a tangent vector $\omega_{1}\left(\mathrm{E}_{6}\right)$. The subgroup $\mathrm{U}(1) \cdot \mathrm{SO}(10)^{\sim}$ of $\mathrm{E}_{6}$ is contained in $\mathrm{SO}(6)^{\sim} \cdot \mathrm{SO}(10)^{\sim}$, that of $\mathrm{SO}(16)^{\sharp}$. Hence one finds $b=\varepsilon$; thus $3 \omega_{1}\left(\mathrm{E}_{6}\right) \mapsto \varepsilon$. We might add that the subgroup $\mathrm{U}(1) \cdot \mathrm{SO}(10)^{\sim}$ projects onto the isomorphic group $\left(\mathrm{U}(1) / \boldsymbol{Z}_{3}\right) \cdot \mathrm{SO}(10)^{\sim}$ of $\mathrm{E}_{6}^{*}$. The polar is denoted by EIII, which is a subspace of EVIII.

The second coefficient 2 in $\alpha^{\sim}\left(\mathrm{E}_{6}\right)$ indicates the meridian $\operatorname{Sp}(1) \cdot \mathrm{SU}(6) . \omega_{2}\left(\mathrm{E}_{6}\right)$ is tangent to $\operatorname{Sp}(1)$. The polar which $\omega_{2}\left(\mathrm{E}_{6}\right)=\alpha^{\sim}\left(\mathrm{E}_{6}\right)$ defines is denoted by EII; EII is a subspace of EIX.

The third coefficient 2 gives the same polar EII. In fact $3 \omega_{3}\left(\mathrm{E}_{6}\right)$ is congruent with the root $\alpha_{1}\left(\mathrm{E}_{6}\right)$ modulo the unit lattice of $\mathrm{E}_{6}$. Similarly for $\omega_{5}\left(\mathrm{E}_{6}\right) ; 3 \omega_{5}\left(\mathrm{E}_{6}\right)$ is congruent with the root $\alpha_{6}\left(\mathrm{E}_{6}\right)$. Also $\omega_{6}\left(\mathrm{E}_{6}\right)$ is congruent with $\alpha_{2}\left(\mathrm{E}_{6}\right)+\alpha_{5}\left(\mathrm{E}_{6}\right)$; hence it leads to the polar $G_{8}^{\circ}\left(\boldsymbol{R}^{10}\right)$ in $\operatorname{SO}(10)^{\sim} . G_{8}^{\circ}\left(\boldsymbol{R}^{10}\right)$ is contained in EIII; in fact $w_{o}$ carries $\omega_{1}\left(\mathrm{E}_{6}\right)$ to $-\omega_{6}\left(\mathrm{E}_{6}\right)$.

Therefore $\mathrm{E}_{6}$ and $\mathrm{E}_{6}^{*}$ have exactly two polars ( $\neq\{1\}$ ) EII and EIII; EII corresponds to $\omega_{2}\left(\mathrm{E}_{6}\right), \omega_{3}\left(\mathrm{E}_{6}\right)$ and $\omega_{5}\left(\mathrm{E}_{6}\right)$, while EIII corresponds to $\omega_{1}\left(\mathrm{E}_{6}\right)$ and $\omega_{6}\left(\mathrm{E}_{6}\right)$. (As to the Euler numbers, one has $\chi \mathrm{EII}+\chi \mathrm{EIII}+1=36+27+1=2^{6}$.) We have classified the inner involutions of $\mathrm{E}_{6}$.

We turn to the outer involutions. We have to determine the polars of G-Aut( $\mathrm{E}_{6}$ ). To do it, we look at $F:=F\left(\sigma^{\mathrm{VII}}, \mathrm{E}_{7}^{*}\right)$. This is not connected, since, on one hand, $F\left(\sigma^{\mathrm{VII}}, \mathrm{E}_{7}\right)$ is $T \cdot \mathrm{E}_{6}$, where $T$ is the circle $\mathrm{U}(1)$ with the initial tangent $\omega_{7}\left(\mathrm{E}_{7}\right)$ and, on the other hand, $\operatorname{ad}\left(K_{8}\right)$ acts on $T$ as the point symmetry $s_{1}$; thus the centrosome $C\left(1, \delta_{6}\right)$ in $T$ projects into $F$, giving another component. For another proof, the group $T \cdot \mathrm{E}_{6}$ in $\mathrm{E}_{7}^{*}$ meets the polar EVII* at a point $p$ and EIII, while the space EVII* having the root system $\mathrm{C}_{3}$ must have another polar of $p$, which is $T \cdot$ EIV by definition. We have also proved that $F$ acts on $\mathrm{E}_{6}$ through the adjoint action as $\mathrm{G}-\mathrm{Aut}\left(\mathrm{E}_{6}\right)$; recall $\mathrm{G}-\operatorname{Aut}\left(\mathrm{E}_{6}\right)$ has two components. The component $F_{(q)}$ has to meet the polar EV* of the same root system as $\mathrm{E}_{7}$ exactly for the reason why $F$ is disconnected; one has $F_{(1)} \cap \mathrm{EV}^{*}=\mathrm{EII}$ and $F_{(q)} \cap \mathrm{EV}^{*}=T \cdot \mathrm{EI}$. Now the picture is complete for our purpose; G-Aut $\left(\mathrm{E}_{6}\right)$ contains exactly two conjugate classes of outer involutions. We will show that these are represented respectively by $\sigma^{1}$ and $\sigma^{\mathrm{IV}}=\operatorname{ad}\left(Q_{2}\right)$ as defined in the proposition, after some study of $Q_{2}$.
$Q_{2}$ is conjugate with $P_{2} \in G_{4}^{\circ}\left(R^{16}\right) \subset \operatorname{EIX}$ in $\operatorname{SO}(16)^{\#} . \operatorname{ad}\left(Q_{2}\right)$ acts on $\mathfrak{a}\left(\mathrm{E}_{8}\right)$ carrying $\varepsilon_{j}$ into $-\varepsilon_{j}, j \leqq 4$, and fixing $\varepsilon_{k}, k>4$. Hence a straightforward calculation shows that EIX has the root system $\mathrm{F}_{4}=\mathrm{F}_{4}(8,1)$, which means the shorter roots have multiplicity 8 and the longer ones have multiplicity 1 . In particular the space EIX has rank 4.

Therefore the space EIV $\subset$ EVII $\subset$ EIX has rank $\leqq 4$ ( $=2$ actually). On the other hand EI corresponding to $\sigma^{1}$ clearly has rank $6=\operatorname{rank}\left(\mathrm{E}_{6}\right)$.

Finally, $Q_{2}$ commutes with $K_{8}$, both of which commute with every involutive member of our maximal torus $A\left(\mathrm{E}_{8}\right)$. QED
3.18. Remark. It does not take too much work to see that $F\left(\sigma^{1}, \mathrm{E}_{6}\right)=\mathrm{Sp}(4)^{*}$, $F\left(\sigma^{\mathrm{II}}, \mathrm{E}_{6}\right)=\mathrm{Sp}(1) \cdot \mathrm{SU}(6), F\left(\sigma^{\mathrm{III}}, \mathrm{E}_{6}\right)=\mathrm{U}(1) \cdot \mathrm{SO}(10)^{\sim}$ and $F\left(\sigma^{\mathbf{I V}}, \mathrm{E}_{6}\right)=\mathrm{F}_{4}$ (See the next proof for $\mathrm{F}_{4}$ ). Their c-orthogonal spaces are EI, EII, EIII and EIV respectively.
3.19. Proposition (Case of $\mathrm{F}_{4}$ ). Two involutions $\sigma_{\mathrm{F}}^{\mathrm{I}}$ and $\sigma_{\mathrm{F}}^{\mathrm{II}}$ make a representative system of the conjugacy classes of the group involutions of the group $\mathrm{F}_{4}$; here $\sigma_{\mathrm{F}}^{\mathrm{I}}:=\operatorname{ad}\left(\mathrm{P}_{2}\right)$, $P_{2} \in \mathrm{SO}(8) \sim \subset \mathrm{F}_{4}$, and $\sigma_{\mathrm{F}}^{\mathrm{II}}:=\operatorname{ad}(\varepsilon) \mid \mathrm{F}_{4}$ if $\mathrm{F}_{4}$ is positioned at $\boldsymbol{F}\left(\sigma^{\mathrm{IV}}, \mathrm{E}_{6}\right)$ in $\mathrm{E}_{6}$. The system $\left\{\sigma_{\mathrm{F}}^{\mathrm{I}}, \sigma_{\mathrm{F}}^{\mathrm{II}}\right\}$ is commutative.

Proof. Recall that ad $\left(Q_{2}\right)$ acts on $\mathfrak{a}\left(\mathrm{D}_{8}\right)$ with the fixed point set $F\left(\operatorname{ad}\left(Q_{2}\right), a\left(\mathrm{D}_{8}\right)\right)$ spanned by $\varepsilon_{k}, 5 \leqq k \leqq 8$. This is also spanned by the roots $\alpha_{5}=\varepsilon_{5}-\varepsilon_{6}, \alpha_{6}=\varepsilon_{6}-\varepsilon_{7}$, $\alpha_{7}=\varepsilon_{7}-\varepsilon_{8}, \alpha_{8}=\varepsilon_{7}+\varepsilon_{8}$ of $\operatorname{SO}(16)^{\#}$, which form a system of simple roots of the Lie algebra $\mathrm{D}_{4}$ of a subgroup $\mathrm{SO}(8)^{\sim}$. One has $F\left(\operatorname{ad}\left(Q_{2}\right), R\left(\mathrm{E}_{6}\right)\right)=R\left(\mathrm{D}_{4}\right)$. We write $\mathfrak{a}\left(\mathrm{F}_{4}\right)$ for $F\left(\operatorname{ad}\left(Q_{2}\right), \mathfrak{a}\left(\mathrm{D}_{8}\right)\right)$; in fact, the projection of $R\left(\mathrm{E}_{6}\right)$ onto $\mathfrak{a}\left(\mathrm{F}_{4}\right)$ is $R\left(\mathrm{~F}_{4}\right)$, that is, $F\left(\operatorname{ad}\left(Q_{2}\right), R\left(\mathrm{E}_{6}\right)\right)=\mathrm{F}_{4}$. Thus $R\left(\mathrm{~F}_{4}\right)$ consists of $R\left(\mathrm{D}_{4}\right), \pm \varepsilon_{k}, 5 \leqq k \leqq 8$, and $\frac{1}{2} \varepsilon(0,0,0,0, \pm 1, \pm 1, \pm 1, \pm 1)$ in our setting. The highest root is $\alpha(2,3,4,2)$ (in the numbering of [B]). Hence $\mathrm{F}_{4}$ has two polars, FI and FII; the meridians are isomorphic with $\mathrm{Sp}(1) \cdot \mathrm{SP}(3)$ and $\mathrm{SO}(9)^{\sim}$ respectively. Now the proposition is obvious. QED
3.20. Remark. We explain more about the polars of $F_{4}$. FII has rank 1 , since none of the roots $\frac{1}{2} \varepsilon(0,0,0,0, \pm 1, \pm 1, \pm 1, \pm 1)$ (which make $R\left(\mathrm{~F}_{4}\right)-R\left(\mathrm{~B}_{4}\right)$ ) is strongly orthogonal to any one among themselves. On the other hand, the polars of $\operatorname{SO}(9)^{\sim}$ are $G_{4}^{\circ}\left(R^{9}\right), G_{8}^{\circ}\left(R^{9}\right)=S^{8}$ and the pole $\varepsilon$. Thus $S^{8}$ is the only polar in FII, the Cayley projective plane, and $G_{4}^{\circ}\left(R^{9}\right)$ is a subspace of FI. Hence the Euler number $\chi \mathrm{FI}=\chi G_{4}^{\circ}\left(\boldsymbol{R}^{9}\right)=12$, while $\chi \mathrm{FII}=1+\chi S^{8}=3$ obviously. The polars of $P_{2}$ in FI are $S^{2} \cdot \mathrm{CI}(3)$ and $G_{2}\left(H^{3}\right)$, which make those of 1 in $\operatorname{Sp}(1) \cdot \operatorname{Sp}(3)$ together with $P_{2}$ and $G_{1}\left(H^{3}\right) \subset$ FII.

Now we come to the last exceptional group $G_{2}$. The subgroup $\operatorname{SO}(8)^{\sim}$ of $F_{4}$ admits a group automorphism of $\mathrm{SO}(8)^{\sim}, \mathrm{T}$, such that (1) $\mathrm{T}^{3}=1$ and (2) T cyclically permutes the three poles of 1 in $\mathrm{SO}(8)^{\sim}$. One has $\mathrm{G}_{2}=F\left(\mathrm{~T}, \mathrm{SO}(8)^{\sim}\right)$ by definition. T is outer; in fact $T$ acts on the fundamental group of $\operatorname{SO}(8)^{*}$ nontrivially. One may assume that $T$ stabilizes $\mathfrak{a}\left(D_{4}\right)=\mathfrak{a}\left(F_{4}\right)$. By (2), T cyclically permutes the three simple roots $\alpha_{5}, \alpha_{7}$ and $\alpha_{8}$ of $D_{4}$ and fixes $\alpha_{6}$ (See the proof of 3.19 for these roots). It follows that the group $\mathrm{G}_{2}$ does have the root system $\mathrm{G}_{2} ; \beta_{1}:=\alpha_{6}$ and $\beta_{2}:=\alpha_{5}+\alpha_{7}+\alpha_{8}$ make a system of simple roots. The highest root $\alpha^{\sim}\left(\mathrm{G}_{2}\right)$ is $3 \beta_{1}+2 \beta_{2}$.
3.21. Proposition (Case of $\mathrm{G}_{2}$ ). Every group involution $\neq 1$ of $\mathrm{G}_{2}$ is conjugate with $\operatorname{ad}\left(P_{2}\right)$ of $\mathrm{SO}(8) *$ restricted to $\mathbf{G}_{2}$.

Proof. The automorphism T stabilizes the only remaining polar $G_{4}^{\circ}\left(\boldsymbol{R}^{8}\right)$ in $\mathrm{SO}(8)^{\sim}$, which has the root system of $\mathrm{SO}(8)^{\sim}$. Therefore the only polar in $\mathrm{G}_{2}$ is $\mathrm{GI}:=$ $F\left(\mathrm{~T}, G_{4}^{\mathrm{o}}\left(\boldsymbol{R}^{8}\right)\right)$. The meridian is $\mathrm{SO}(4) \cong F\left(\operatorname{ad}\left(P_{2}\right), G_{2}\right) \subset \mathrm{SO}(4)^{\sim} \cdot \mathrm{SO}(4)^{\sim}$. QED

We summarize the above discussions on the involutions of exceptional spaces from a different angle; we describe the effect of each of the involutions given by the involutive members $\varepsilon, P_{2}, K_{8}$ and $Q_{2}$ of $\mathrm{SO}(16)^{\#}$ or its appropriate subgroups. This will elucidate the interrelationship between exceptional spaces and the effects of involutions. Some inclusions in the diagrams below may be different from those defined earlier.
3.22. Proposition (Effect of $\varepsilon$ ). One has the commutative diagram of monomorphisms:

in which $\operatorname{ad}(\varepsilon), \varepsilon \in \operatorname{SO}(9)^{\sim}$, stabilizes and so acts on all the spaces above equivariantly. On each column, the second space $B$ is the fixed point set $F(\operatorname{ad}(\varepsilon), C)$ of $\operatorname{ad}(\varepsilon)$ acting on the third space $C$ which is a group. And $B$ is $c$-orthogonal to $D=C / B$ at 1 in $C$.
3.23. Corollary.' The isotropy representations for FII, EIII, EVI and EVIII are the restrictions of the half-spin representation of $\mathrm{SO}(16)^{*}$ to the corresponding subgroups in the second row; in particular these spaces have dimensions $2^{4}, 2^{5}, 2^{6}$ and $2^{7}$ respectively.
3.24. Proposition (Effect of $P_{2}$ ). One has the commutative diagram of monomorphisms:

in which $\operatorname{ad}\left(P_{2}\right), P_{2} \in F\left(\mathrm{~T}, \mathrm{SO}(8)^{\sim}\right) \subset \mathrm{SO}(8)^{\sim}$, acts on all the spaces equivariantly. On
each column, the groups $A$ above $B$ in the second row are the centralizers $F\left(\operatorname{ad}\left(P_{2}\right), B\right)$. The orthogonal space $B / A$ is the space $C$ in the third row. Take a member $q$ of $F_{4}$ which is conjugate with $P_{2}$ and commutes with $P_{2}$. Then the connected fixed point set $F(\operatorname{ad}(q), C)_{(1)}$ is the space $D=G_{4}^{0}\left(R^{n}\right)$ below $C$ in the diagram.
3.25. Remark. The spaces $C$ in the third row with GI replaced by $F_{4}$ are all of the spaces that have the root system $\mathrm{F}_{4}$. The spaces $C$ in the third row are all polars in the groups in the second row. Except for $G_{2}$, those 1-connected groups in the second row have exactly two polars $\neq 1$ of 1 in them; the other polars appear in the fourth row of the diagram in the preceding proposition 3.22. The spaces $G_{4}^{\circ}\left(\boldsymbol{R}^{n}\right)$ in the fourth row have the root system $\mathbf{B}_{4}$.
3.26. Proposition (Effect of $K_{8}$ ). ad $\left(K_{8}\right)$ stabilizes all the spaces in the commutative diagram below and commutes with the monomorphisms (indicated by the arrows) in it:

| $\mathrm{Sp}(1) \cdot \mathrm{Sp}(3)$ | $\rightarrow$ | $\mathrm{Sp}(4)^{*}$ | $\rightarrow$ | $\mathrm{SU}(8) / Z_{2}$ | $\rightarrow$ | $\mathrm{SO}(16)^{*}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\downarrow$ |  | $\downarrow$ |  | $\downarrow$ |  | $\downarrow$ |
| $\mathrm{~F}_{4}$ | $\rightarrow$ | $\mathrm{E}_{6}$ | $\rightarrow$ | $\mathrm{E}_{7}$ | $\rightarrow$ | $\mathrm{E}_{8}$ |
| $\uparrow$ |  | $\uparrow$ |  | $\uparrow$ |  | $\uparrow$ |
| FI |  | $\rightarrow$ | EI | $\rightarrow$ | EV | $\rightarrow$ |
| EVIII. |  |  |  |  |  |  |

On each column, the first space $A$ is the fixed point set $F\left(\operatorname{ad}\left(K_{8}\right), B\right)$ in the second space $B$ which is a group. The third space $C$ is the component $F\left(s_{1} \circ \operatorname{ad}\left(K_{8}\right), B\right)_{(1)}$ through 1 of the fixed point set of the space involution acting on $B$. $A$ is orthogonal to $C$ at 1 . And $C$ has the isomorphic root system with that of $B$, with multiplicity 1 . (Inclusions such as $\mathrm{SO}(16)^{\sharp} \rightarrow \mathrm{E}_{8}$ in the diagram are different from those defined earlier.)
3.27. Proposition (Effect of $\left.Q_{2}\right)$. $\quad \operatorname{ad}\left(Q_{2}\right), Q_{2}=K \otimes\left(1_{4} \oplus 0_{4}\right)+1_{2} \otimes\left(0_{4} \oplus 1_{4}\right) \in$ $\mathrm{SO}(16)^{\sharp}$, acts on the spaces in this commutative diagram of monomorphisms:

| $\mathrm{F}_{4}$ |  | $\mathrm{~F}_{4}$ |  | $T \cdot \mathrm{E}_{6}$ |  | $T \cdot \mathrm{E}_{6}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $S^{3} \cdot \mathrm{E}_{7}$ |  |  |  |  |
| $\downarrow$ |  | $\downarrow$ |  | $\downarrow$ |  | $\downarrow$ |
|  | $\downarrow$ |  |  |  |  |  |
| $\mathrm{E}_{6}$ | $\rightarrow$ | $T \cdot \mathrm{E}_{6}$ | $\rightarrow$ | $\mathrm{E}_{7}$ | $\rightarrow$ | $S^{3} \cdot \mathrm{E}_{7}$ |
| $\uparrow$ | $\uparrow$ | $\mathrm{E}_{8}$ |  |  |  |  |
| $\uparrow$ | $\uparrow$ |  | $\uparrow$ |  | $\uparrow$ |  |
| $\uparrow$ | $\uparrow$ |  |  |  |  |  |
| EIV | $\rightarrow$ | $T \cdot$ EIV | $\rightarrow$ | EVII $\rightarrow$ | $S^{2} \cdot$ EVII | $\rightarrow$ |
| EIX, |  |  |  |  |  |  |

in which the groups in the first row are the fixed point sets of $\operatorname{ad}\left(Q_{2}\right)$ acting on the groups below them, the second row shows monomorphisms as the fixed point sets of single involutions and the spaces in the third row are the completely orthogonal spaces to those in the first row at 1.
3.28. Remark. In the Satake diagrams of EIV, EVII and EIX, the black vertices are $\alpha_{5}, \alpha_{6}, \alpha_{7}$ and $\alpha_{8}$ (of $D_{8}$ ) and there are no arrows.
3.29. Remark. The diagram below exhibits all the 1 -connected spaces $G / K$ whose automorphism groups $G$ are simple and exceptional (and which are not groups) along with monomorphisms between them. (FII is the unique polar in EIV.)


## Bibliography

[A] S. Araki, On root systems and an infinitesimal classification of irreducible symmetric spaces, J. Math. Osaka City Univ., 13 (1962), 1-34.
[At] K. Atsuyama, The connection between the symmetric space $\mathrm{E}_{8} / \mathrm{Ss}(16)$ and projective planes, preprint.
[B] N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4-8.
[C] J.-H. Cheng, Graded Lie algebras of the second kind, Trans. Amer. Math. Soc., 302 (1987), 467488.
[CN-1] B.-Y. Chen and T. Nagano, Totally geodesic submanifolds of symmetric spaces, I, Duke Math. J., 44 (1977), 745-755.
[CN-2] ——, Totally geodesic submanifolds of symmetric spaces, II, Duke Math. J., 45 (1978), 405425.
[CN-3] - A Riemannian invariant and its applications to a problem of Borel and Serre, Trans. Amer. Math. Soc., 308 (1988), 273-297.
[H] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press (1978).
[KN] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vols. 1 \& 2, Interscience Publ. (1963, 1969).
[N] T. Nagano, The involutions of compact symmetric spaces, Tokyo J. Math., 11 (1988), 57-79.
[NS-1] T. Nagano and M. Sumi, The spheres in symmetric spaces, Hokkaido Math. J., 20 (1991), 331352.
[NS-2] ——, The structure of the symmetric space with applications, Geometry of Manifolds, K. Shiohama, ed., Academic Press (1989), 111-128.
[OS] T. Oshima and J. Sekiguchi, The restricted root system of a semisimple symmetric pair, Adv. Studies Pure Math., 4 (1984), 433-497.
[T-1] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, 12 (1984), 81-192.
[T-2] M. Takeuchi, Basic transformations of symmetric R-spaces, Osaka J. Math., 25 (1988), 259297.
[T-3] M. Takeuchi, Two-number of symmetric $R$-spaces, Nagoya Math. J., 115 (1989), 43-46.
[U] K. Uhlenbeck, Harmonic maps into Lie groups (Classical solutions of the chiral model), J. Diff. Geom., 30 (1989), 1-50.

Present Address:<br>Department of Mathematics, Sophia University<br>Kioicho, Chiyoda-ku, Tokyo 102, Japan


[^0]:    Received September 25, 1990

[^1]:    2.10. Corollary. (i) In the setting of (ii) of (2.9), $\mathfrak{m}^{\mathbf{t}}(\lambda)$ is contained in

