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1. Introduction.

In a famous paper, [3], Cheng and Yau solved the Bernstein problem in the
Lorentz-Minkowski space $L^{n+1}$ showing that the only entire maximal hypersurfaces are
hyperplanes. Maximal and constant mean curvature (CMC) hypersurfaces play a chief
role in relativity theory as it is pointed out in a series of papers by Choquet, Fischer
and Marsden, [4], Stumbles, [15], and Marsden and Tipler, [13]. CMC hypersurfaces
are often closely related to either an eigenvalue problem or a differential equation
stemming from the Laplacian. Perhaps the most remarkable case is that concerning to
vanishing constant mean curvature. Let $x$ denote an isometric immersion of a
hypersurface $M$ in the Lorentz-Minkowski space $L^{n+1}$ and let $H$ be the mean curvature
vector field. In a recent paper, Markvorsen, [12], gives a pseudo-Riemannian version
of the well-known Takahashi’s theorem showing that the coordinate functions of the
immersion $x$ are eigenfunctions of the Laplacian $\Delta$ of $M$, associated to the same
eigenvalue $\lambda$ , if and only if $M$ is a vanishing CMC hypersurface $(\lambda=0)$ , a de Sitter space
$S_{1}^{n}(r)(\lambda>0)$ or a hyperbolic space $H^{n}(r)(\lambda<0)$ . That means that vanishing mean curvature
hypersurfaces in $L^{n+1}$ are the only ones having harmonic coordinate functions.

More recently, Garay and Romero, [8], ask for hypersurfaces in $L^{n+1}$ satisfying
the condition $\Delta H=C,$ $C$ being a constant vector of $L^{n+1}$ which is normal to $M$ at every
point, and show that $C$ should vanish. As for surfaces in $L^{3}$ , we have shown in [7]

that vanishing mean curvature surfaces are the only ones satisfying $\Delta H=0$ , so that it
seems natural to ask for the following geometric question:

Does the equation $\Delta H=0$ characterize the vanishing CMC hypersurfaces of
$L^{n+1}$ ?

That equation motivates ourselves to study a certain generalization of Takahashi’s
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condition in order to deal with hypersurfaces whose mean curvature vector field is
eigenvector for the Laplacian, in short, $\Delta H=\lambda H,$ $\lambda\in R$ (see [5], [7]). This equati $($

jointly with constant mean curvature yields to $M$ has zero mean curvature everywhe
or $M$ has constant scalar curvature. On the other hand, putting together the constan
of both mean and scalar curvatures the hypersurface must satisfy $\Delta H=\lambda H$, for a re
constant $\lambda$ . Therefore, the following problem also arises in a natural way:

Are the non-vanishing constant mean curvature and constant scalar curvature
hypersurfaces of the Lorentz-Minkowski space characterized by the equation
$\Delta H=\lambda H$?

An interesting class ofhypersurfaces to which the above two problems can be $consider|$

is that of the Einstein ones. It is not difficult to see that the shape operator $S$ of $|$

Einstein hypersurface $M$ satisfies the equation $S^{2}-tr(S)S+\epsilon\rho I=0$ , being $\epsilon$ the sign of
and $\rho$ the constant involved when you write down the proportionality between the $Rie$

curvature of $M$ and the metric. Then, in a more general situation, it is worth studyi]
the family $\mathscr{C}_{\lambda}$ of those hypersurfaces in $L^{n+1}$ satisfying the condition $\Delta H=\lambda H$, for
real constant $\lambda$ , and such that the minimal polynomial of the shape operator is at mc
of degree two. Throughout this paper we shall deal with hypersurfaces in $\mathscr{C}_{\lambda}$ and $g$

the size of this family.

2. Basic results.

Let $M_{s}^{n}$ be a hypersurface in $L^{n+1}$ with index $s=0,1$ . Denote by $\sigma,$ $A,$ $H,$ $\nabla a\iota$

V the second fundamental form, the shape operator, the mean curvature vector fiel
the Levi-Civita connection of $M$ and the usual flat connection of $L^{n+1}$ , respectivel
Let $N$ be a unit normal vector field of $M$ and let $\alpha$ denote the mean curvature wi
respect to $N$, i.e., $H=\alpha N$.

Our first task will be to compute $\Delta H$ at a point $p$ of $M$. To do that, let $\{E_{1},$ $\cdots,$
$E$

be a local orthonormal frame such that $\nabla_{E_{l}}E_{j}(p)=0$ . Then we have
$\overline{\nabla}_{E_{t}}\nabla_{E_{i}}H=E_{i}E_{i}(\alpha)N-2E_{i}(\alpha)AE_{i}-\alpha(\nabla_{E_{i}}A)E_{i}-\alpha\sigma(AE_{i}, E_{i})$ ,

from which we deduce

(2.1) $\Delta H=2A(\nabla\alpha)+\alpha tr\nabla A+\{\Delta\alpha+\epsilon\alpha tr(A^{2})\}N$ ,

where $\epsilon=\langle N, N\rangle,$ $tr\nabla A=trace\{(X, Y)\rightarrow(\nabla_{X}A)Y\}$ and $\nabla\alpha$ is the gradient of $\alpha$ .
In order to find a good expression of $tr\nabla A$ , let $h_{ij}$ be the components of the secon

fundamental form, i.e., $ h_{jj}=\langle\sigma(E_{i}, E_{j}), N\rangle=\langle AE_{i}, E_{j}\rangle$ . Then we have

$AE_{i}=\sum_{j=1}^{n}\epsilon_{j}h_{ij}E_{j}$ , $\alpha=\frac{\epsilon}{n}$ tr $A=\frac{\epsilon}{n}\sum_{i=1}^{n}\epsilon_{i}h_{ii}$ .

Now, from the Codazzi equation we get
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$E_{i}(h_{ij})=E_{j}(h_{ii})$ ,

and therefore we deduce

trVA $=\sum_{i}\epsilon_{i}(\nabla_{E_{i}}A)E_{i}=\sum_{i}\epsilon_{i}\nabla_{E_{i}}(AE_{i})$

$=\sum_{i,j}\epsilon_{i}\epsilon_{j}E_{i}(h_{ij})E_{j}=\sum_{i,j}\epsilon_{i}\epsilon_{j}E_{j}(h_{ii})E_{j}$

$=\sum_{j}\epsilon_{j}E_{j}(n\epsilon\alpha)E_{j}=n\epsilon\nabla\alpha$ .

From here and equation (2.1) we obtain the following useful result (see [7]).

LEMMA 2.1. Let $M_{s}^{n}$ be a hypersurface in $L^{n+1}$ with index $s=0,1$ . Then

$\Delta H=2A(\nabla\alpha)+\frac{n\epsilon}{2}\nabla\alpha^{2}+\{\Delta\alpha+\epsilon\alpha tr(A^{2})\}N$ ,

where $\nabla\alpha$ is the gradient of $\alpha$ and $\epsilon=\langle N, N\rangle$ .

From this lemma, we get the following easy consequence.

COROLLARY 2.2. Let $M^{n}$ be a hypersurface in $L^{n+1}$ such that $\Delta H=\lambda H$ for a real
constant $\lambda$ . Then $\nabla\alpha^{2}$ is a principal direction with associatedprincipal curvature $-(n\epsilon/2)\alpha$

in the open set $\mathcal{U}=\{p\in M:\nabla\alpha^{2}(p)\neq 0\}$ .
Throughout this paper the method of moving frames will be used, so we are going

to give the structure equations because they look slightly different in Lorentz space with
regard to the Riemannian case. Let $\{E_{1}, \cdots, E_{n+1}\}$ be a local orthonormal frame in
$L^{n+1}$ and let $\{\omega^{1}, \cdots, \omega^{n+1}\}$ and $\{\omega_{i}^{j}\}_{i,j}$ be the dual frame and the connection forms,
respectively, given by

$\omega^{i}(X)=\langle X, E_{i}\rangle$ , $\omega_{i}^{j}(X)=\langle\overline{\nabla}_{X}E_{i}, E_{j}\rangle$ .
Then we have the structure equations

$d\omega^{i}=-\sum_{j=1}^{n+1}\epsilon_{j}\omega_{j}^{i}\wedge\omega^{j}$ ,

where $\epsilon_{i}=\langle E_{i}, E_{i}\rangle$ .

3. Some examples.

$d\omega_{i}^{j}=-\sum_{k=1}^{n+1}\epsilon_{k}\omega_{k}^{j}\wedge\omega_{i}^{k}$ ,

In this section we are describing some examples of hypersurfaces in $L^{n+1}$ satisfying
the condition $\Delta H=\lambda H,$ $\lambda\in R$ .

EXAMPLE 3.1. Take $k\in\{1,2, \cdots, n-1\}$ and let $f:L^{n+1}\rightarrow R$ be a real function
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defined by

$f(x_{1}, \cdots, x_{n+1})=\delta_{1}(-x_{1}^{2}+x_{2}^{2}+\cdots+x_{k}^{2})+x_{k+1}^{2}+\delta_{2}(x_{k+2}^{2}+\cdots+x_{n+1}^{2})$ ,

where $\delta_{1}$ and $\delta_{2}$ belong to the set $\{0,1\}$ and they do not vanish simultaneously. Taki]

$r>0$ and $\epsilon=\pm 1$ , the set $M=f^{-1}(\epsilon r^{2})$ is a hypersurface of $L^{n+1}$ provided $(\delta_{1},$ $\delta_{2}$ ,
$\neq(0,1, -1)$ .

A straightforward computation shows that the unit normal vector field is writtt
as $N=(1/\prime X\delta_{1}x_{1}, \cdots, \delta_{1}x_{k}, x_{k+1}, \delta_{2}x_{k+2}, \cdots, \delta_{2}x_{n+1})$ , and the principal curvatures a
$\mu_{1}=-\delta_{1}/r$ and $\mu_{2}=-\delta_{2}/r$ with multiplicities $k$ and $n-k$, respectively. Thus $M$ is :
isoparametric hypersurface of $L^{n+1}$ and therefore, by Lemma 2.1, we get $\Delta H=\epsilon tr(A^{2})_{l}$

with $tr(A^{2})=(k\delta_{1}+(n-k)\delta_{2})/r^{2}$ . The adjoint table shows all possibilities (see [1]):

EXAMPLE 3.2. In [9], L.K.Graves constructs a new surface in $L^{3}$ as follows. $L$

$x(s)$ be a null curve in $L^{3}$ with Cartan frame $\{A, B, C\}$ , i.e., $\{A, B, C\}$ is a pseud
orthonormal frame of vector fields along $x(s)$ satisfying:

$\dot{x}=A$ ,
$\dot{A}=k(s)C$ , $k(s)\neq 0$ ,

(3.1)
$\dot{B}=aC$ , $a$ being a nonzero constant,
$\dot{C}=aA+k(s)B$ .

If we define $\Psi(s, u)=x(s)+uB(s)$ , then $\Psi$ determines a Lorentz surface which is $call|$

a B-scroll. An easy computation leads to $N(s, u)=-auB(s)-C(s)$ and $H=aN$. Then 1

have $\Delta H=2a^{2}H$.
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As a generalization of that surface we construct the following hypersurface (see
[10]). Let $x(s)$ be a null curve in $L^{n+1}$ with local pseudo-orthonormal frame
$\{A, B, C, X_{1}, \cdots, X_{n-2}\}$ along $x(s)$ satisfying (3.1). Let $M$ be the hypersurface in $L^{n+1}$

locally defined as follows:

$\Psi(s, u, x_{1}, , . x_{n-2})=x(s)+uB(s)+\sum_{j=1}^{n-2}x_{j}X_{j}(s)-\frac{1}{a}C(s)+\sqrt{\frac{1}{a^{2}}-\sum_{j--1}^{n-2}x_{j}^{2}}C(s)$ .

It is not difficult to see that

$N(s, u, x_{1}, \cdots, x_{n-2})=-auB(s)-\sqrt{1-a^{2}\sum_{j=1}^{n-2}x_{j}^{2}}C(s)-a\sum_{j=1}^{n-2}x_{j}X_{j}(s)$

is the unit normal vector field to $M$ and the shape operator can be put, in the usual
frame, in the form

$\left\{\begin{array}{lll}a & 0 & 0\\k(s) & a & \\0 & & a\end{array}\right\}$

Thus the minimal polynomial of $A$ is $p(t)=(t-a)^{2}$ and we get $\alpha=a$ and $tr(A^{2})=na^{2}$ .
Therefore Lemma 2.1 allows us to write $\Delta H=na^{2}H$. Then $M$ is said to be a generalized
umbilical hypersurface.

4. The characterization theorems.

In this section we are going to describe the set $\mathscr{C}_{\lambda}$ . Then the shape operator of a
hypersurfaceM in $\mathscr{C}_{\lambda}$ takes one of the following forms (see [11]):

I. $\left\{\begin{array}{llll}\mu_{1} & & & 0\\ & \mu_{1} & & \\ & & \mu_{2} & \\0 & & & \mu_{2}\end{array}\right\}$ II. $\left\{\begin{array}{llll}\beta & 0 & & 0\\1 & \beta & & \\ & & \beta & \\ & 0 & & \beta\end{array}\right\}$ III. $\left\{\begin{array}{ll}\beta & \gamma\\-\gamma & \beta\end{array}\right\}$

LEMMA 4.1. Let $M$ be a hypersurface of $L^{n+1}$ in the set $\mathscr{C}_{\lambda}$ . Then $M$ has constant
mean curvature or, at the points of the open set $\mathcal{U}$ , the shape operator $A$ is diagonalizable.
Moreover, if this is the case, $-(n\epsilon/2)\alpha$ is a principal curvature with multiplicity one.

PROOF. Let us suppose $\mathcal{U}$ is not empty and let $p$ be any point of $\mathcal{U}$ . By Corollary
2.2 we know that $-(n\epsilon/2)\alpha$ is a principal curvature of $M$ and therefore case III cannot
hold. If $A_{p}$ falls in case II, then it must be $\beta=\epsilon\alpha=-(n\epsilon/2)\alpha$ and so $\alpha(p)=0$ , which is
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a contradiction with the choice of $p$ . Thus $A_{p}$ always falls in case I. As for last statemen
if $\mathcal{U}$ is not empty there are exactly two distinct principal curvatures $\mu_{1}\neq\mu_{2}$ , wil
$\mu_{1}=-(n\epsilon/2)\alpha$ . Let $D$ be the distribution associated with $\mu_{1}$ and let $\{E_{1}, \cdots, E_{n}\}$ be
local orthonormal frame of principal directions such that $E_{1}$ is in the direction of $\nabla\alpha$

If we assume dim$D>1$ , we can work as in [14] and we deduce $X(\mu_{1})=0$ , for any $vect\langle$

field $X$ in $D$ . In particular, $E_{1}(\alpha)=0$ on $\mathcal{U}$ , so that, $E_{1}$ and $\nabla\alpha^{2}$ being parallel, we get
is constant on $\mathcal{U}$ , which is a contradiction. Therefore $-(n\epsilon/2)\alpha$ is a principal curvatu
with multiplicity one.

Now, we are going to show the following major result.

THEOREM 4.2. Let $M$ be a hypersurface of $L^{n+1}$ in the set $\mathscr{C}_{\lambda}$ . Then $M$ is a CM
hypersurface.

$PR\infty F$ . We aim to show $\mathcal{U}$ is empty. Otherwise, from Lemma 4.1 we know tha
at the points of $\mathcal{U},$ $-(n\epsilon/2)\alpha$ is the principal curvature of multiplicity one with princip
direction $\nabla\alpha^{2}$ . Thus, on $\mathcal{U}$ , we can choose a local orthonormal frame $\{E_{1},$ $\cdots,$ $E_{n+}$

adapted to $M$, such that $\{E_{1}, \cdots, E_{n}\}$ are eigenvectors of $A$ with associated eigenvalu
$\{\mu_{1}, \cdots, \mu_{n}\}$ , with $E_{1}$ in the direction of $\nabla\alpha^{2}$ and $E_{n+1}$ normal to $M$. Therefo
$\mu_{1}=-(n\epsilon/2)\alpha$ and $\mu_{2}=\cdots=\mu_{n}=(3n\epsilon/2(n-1))\alpha$ . Let $\{\omega^{1}, \cdots, \omega^{n}\}$ and $\{\omega_{i}^{j}\}_{i,j}$ be the du
frame and the connection forms of the chosen frame, respectively. Then we have

(4.1) $\omega_{n+1}^{1}=\frac{n\epsilon}{2}\alpha\omega^{1}$ ,

(4.2) $\omega_{n+1}^{j}=-\frac{3n\epsilon}{2(n-1)}\alpha\omega^{j}$ , $j=2,$ $\cdots,$ $n$ ,

(43) $d\alpha=\epsilon_{1}E_{1}(\alpha)\omega^{1}$

If we take exterior diferentiation in (4.1) and use the well-known structure equatio
we deduce $d\omega^{1}=0$ . Thus one locally has $\omega^{1}=du$, for a certain function $u$ , which $alol$

with (4.3) implies $d\alpha\wedge du=0$ . Then $\alpha$ depends on $u,$ $\alpha=\alpha(u)$ , and we obtain $d\alpha=\alpha_{(}^{\prime}$

$=\alpha^{\prime}(u)\omega^{1}$ which implies $E_{1}(\alpha)=\epsilon_{1}\alpha^{\prime}$ .
Taking exterior diferentiation in (4.2) and the structure equations we have

(4.4) $(n+2)\alpha\omega_{j}^{1}=3\epsilon_{1}\alpha^{\prime}\omega^{j}$ , $j=2,$ $\cdots,$ $n$ .
Now, taking once more exterior diferentiation in (4.4) and using (4.1) and (4.2) 1

obtain the following second order differential equation:

(4.5) $4\alpha\alpha^{\prime\prime}-\frac{4(n+5)}{n+2}(\alpha^{\prime})^{2}+\frac{n^{2}(n+2)}{n-1}\epsilon\epsilon_{1}\alpha^{4}=0$ .

If we put $y=(d\alpha/du)^{2}$ , the above equation tums into
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$2\alpha\frac{dy}{d\alpha}-\frac{4(n+5)}{n+2}y=-\epsilon\epsilon_{1}\frac{n^{2}(n+2)}{n-1}\alpha^{4}$ ,

whose solution is given by

(4.6) $\mathcal{Y}(\alpha)=c_{\alpha^{2\langle n+5)/(n+2)}-\epsilon\epsilon_{1}}(\frac{n(n+2)}{2(n-1)})^{2}\alpha^{4}$ ,

where $C$ is a constant.
Now we use the definition of $\Delta\alpha$ , the fact that $E_{1}$ is parallel to $\nabla\alpha^{2}$ and equation

(4.4) to get

$\alpha\Delta\alpha=-\epsilon_{1}\alpha\alpha^{\prime\prime}+\frac{3(n-1)\epsilon_{1}}{n+2}(\alpha^{\prime})^{2}$

On the other hand, since $M$ is a hypersurface in $\mathscr{C}_{\lambda}$ , one has $\alpha\Delta\alpha=(\lambda-\epsilon tr(A^{2}))\alpha^{2}$ and
therefore we obtain

$\alpha\Delta\alpha=\lambda\alpha^{2}-\frac{\epsilon n^{2}(n+8)}{4(n-1)}\alpha^{4}$

Putting together the two last displayed equations we have

(4.7) $\alpha\alpha^{\prime\prime}-\frac{3(n-1)}{n+2}(\alpha^{\prime})^{2}=-\lambda\epsilon_{1}\alpha^{2}+\frac{\epsilon\epsilon_{1}n^{2}(n+8)}{4(n-1)}\alpha^{4}$

We deduce, by using (4.5), (4.6) and (4.7), that $\alpha$ is locally constant on $\mathcal{U}$ , which is a
contradiction with the definition of $\mathcal{U}$ .

The following theorem gives the size of $\mathscr{C}_{\lambda}$ .

THEOREM 4.3. Let $M$ be a hypersurface of $L^{n+1}$ in the set $\mathscr{C}_{\lambda}$ . Then one of the
following statements holds:

1) $M$ has zero mean curvature everywhere.
2) $M$ is an open piece of one of the following hypersurfaces: $H^{n}(r),$ $H^{k}(r)\times R^{n-k}$ ,

$L^{k}\times S^{n-k}(r),$ $S_{1}^{k}(r)\times R^{n-k},$ $S_{1}^{n}(r)$ .
3) $M$ is a B-scroll.
4) $M$ is a generalized umbilical hypersurface.

PROOF. Since the mean curvature $\alpha$ is constant, then either $\alpha$ vanishes everywhere
on $M$ or, from Lemma 2.1, $tr(A^{2})=\epsilon\lambda$ . Then $M$ is isoparametric because $tr(A^{2})$ and the
minimal polynomial of $A$ are constant. If the shape operator of $M$ is diagonalizable we
get statement (2) from [1, Theorem 5.1]; otherwise, from [10, Theorem 4.5] we obtain
(3) and (4).
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5. Applications.

From Theorem 4.3 we completely characterize the set $\mathscr{C}_{\lambda}$ for a real constant $\lambda$ . I
particular, it is worthwhile to analize the set $\mathscr{C}_{O}$ . Concretely we obtain the following

COROLLARY 5.1. Let $M$ be a hypersurface in $L^{n+1}$ . Then $M$ is in $\mathscr{C}_{0}$ if and only
$M$ has zero mean curvature everywhere.

This solution is quite similar to that given in the Euclidean case because, accordin
to [6], minimal hypersurfaces in $R^{n+1}$ are the only $0$nes in $\mathscr{C}_{0}$ .

A special and interesting subset of $\mathscr{C}_{\lambda}$ is that of spacelike hypersurfaces. In th
case, we have the following

COROLLARY 5.2. Let $M$ be a spacelike hypersurface of $L^{n+1}$ in $\mathscr{C}_{\lambda}$ . Then one ‘

the following statements holds:
1) $M$ is a maximal hypersurface;
2) $M$ is an open piece of the hyperbolic space $H^{n}(r)$ ;
3) $M$ is an open piece of a hyperbolic cylinder $H^{k}(r)\times R^{n-k}$ .
As a final application, our main result can also be considered under the viewpoi]

of the finite type submanifolds (see [2]). In fact, it can be shown that an immersio
satisfying the equation $\Delta H=\lambda H$ is either of infinite type or has zero mean curvatu]

everywhere when $\lambda=0$ and either of l-type or of null 2-type when $\lambda\neq 0$ . In this contex
we give

COROLLARY 5.3. Let $M$ be a hypersurface of $L^{n+1}$ in $\mathscr{C}_{\lambda}$ . Then $M$ is of null 2-tyj

ifand only if it is an open piece ofone of thefollowing hypersurfaces: a hyperbolic cylind
$H^{k}(r)\times R^{n-k}$ , a Lorentzian cylinder $L^{k}\times S^{n-k}(r)$ , a cylinder over a De Sitter spa $($

$S_{1}^{k}(r)\times R^{n-k}$ .
We finish by noticing that Corollary 5.3 gives us the following characterization $($

the hyperbolic cylinder.

COROLLARY 5.4. Let $M$ be a spacelike hypersurface of $L^{n+1}$ in $\mathscr{C}_{\lambda}$ . Then $M$ is $($

null 2-type if and only if it is an open piece of a hyperbolic cylinder.
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