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On the Galois Group of x?+ p’b(x+1)=0
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1. In [3] we discussed the Galois group of
xP+ax+a=0

over the rational number field Q, where p is a prime number, and ae Z, (p, a)=1. The
situation becomes much more complicated when a is divisible by p. In this paper we
deal with three special cases:

1. a=p'b, 0<t<p, (p,b)=1, |(p—1)P"1b+pP | is not a square;

2. a=pk? (p,k)=1;

3. a=p®™b,0<2m<p, (p,b)=1.

We begin by proving the following theorem (cf. [3]).

THEOREM 1. Let ay, a,, - -, a,_, be rational integers such that
fX)=x"+a,_x" '+ -+ +a;x+a,
is irreducible over the rational number field Q. Let o be a root of f(x)=0, and let
o=f"(0), D=normé (in Q(2)),
D/d=xo+x0+ "+ +x,_,0"" ',  xeZ.

Let D, and D, denote any rational integers which satisfy the following conditions:

(1.1) D=D1D2 Py
(1.2) (Dy, Dy)=1,
(1.3) (D Xy Xgs s Xp—)=1.

Let G denote the Galois group of f(x)=0 over Q; G is a transitive permutation group on
the set {1,2, - - -, n}. Then we have:

I. If | D,] is not a square, G contains a transposition.

II. If | D,| is a square, D, is divisible by the discriminant of Q().

PROOF. Suppose first that | D, | is not a square. Then there exists a prime number
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g such that (D,), is odd, where the symbol (D,), means the largest integer M such that
D, is divisible by g™ (cf. [1]). Since D, is divisible by g, it follows from (1.3) that gt x;
for some i. Clearly, (D), is also odd. Hence, by Theorem 1 of [1], we see that the
discriminant d of Q(a) is exactly divisible by g. Therefore G contains a transposition
([4]). Suppose next that | D, | is a square. Let ¢ denote a prime factor of D,. Then, by
(1.3), we see that gt x; for some i. Since (D),=(D,), is even, it follows from Theorem
1 of [1] that d is not divisible by g. Hence we obtain (d, D,)=1. Since D is divisible
by d, we see that D, is divisible by 4.

2. Now we prove the following theorem.

THEOREM 2. Let p denote an odd prime, and let t and b denote rational integers
such that 0<t<p, (p, b)=1. Suppose that |(p—1)* " 'b+p?~!| is not a square. Then the
Galois group of

xP+p'b(x+1)=0
over Q is the symmetric group S,
PROOF. Since 0<<p, t is not divisible by p. It is easily seen that
JxX)=xP+p'b(x+1)

is irreducible over Q ([2], Lemma 1). Let « be a root of f(x)=0, and let 6= f(2),

D=normJ (in «)). Then ([1], Theorem 2)
2.1 D=(p—1y""(p'b)* +p*(p'b)*~*
=pb*" H{(p—1)P"b+pP 7} .
Now let
D,=p"bP~ 1, D,=(p—1)P"1b4pPt,
Then
D=D,D,, (D,,D,)=1.

By Theorem 2 of [1] we see that the condition (1.3) of Theorem 1 is also satisfied.
Since p is a prime, the Galois group of f(x)=0 is primitive. Theorem 1 implies that
the Galois group is the symmetric group S, ([5], Theorem 13.3).

3. Consider now the case
a=pk?, (p, k)=1.

From Theorem 2 we obtain
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THEOREM 3. Let p denote a prime number, and k a rational integer such that
(p, k)=1. Then the Galois group of
3.1 xP+pk?*(x+1)=0
over Q is the symmetric group S,.

PrROOF. We may assume that p>2, k>0. When p=3, the Galois group of (3.1)
is the symmetric group S}, since the discriminant of (3.1) is negative. So we may assume
that

(3.2) p>3, k>0.
Now suppose that
(p—DP k24 pP1=c2, ceZ, ¢>0.
Then we have
(3.3) pPl=cr—(p—1)P"1k?
={c—(p— 1P V2k}{c+(p—1)® " Vk} .

Clearly,

c+(p—1@~ V2
is positive, and prime to

c—(p—1)P~ b2k,

Hence
c+(p—1D)@ " V2k=pr=1  c—(p—DFP"V2k=1.
Therefore
pp- 1_1 =2k(p— 1)(p— 1)/2 ,

and so

-1
3.4 T2p—1)F- D2’
Now let

ﬂ__1=3 ,
2

so that
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Then (3.4) becomes
2B+1)?2—1
=28+ -1

3.5) 22B)
Since p>3, we have B>2. When B=2, (3.5) gives
-1
2:4*°

which is not an integer. So we may assume that B> 3. Then, by (3.5) we see that

(2B+1)%2—1
(2B)®

is an integer. On the other hand,

4 @Bes)

=(2B)>(2B*—B+1) (mod(2B)3).

Hence (2B+1)?2—1 is not divisible by (2B)3.
A contradiction shows that

(p—1)"" k> +pr~!

is not a square. By Theorem 2 we see that the Galois group of (3.1) over Q is the
symmetric group S,.

(2B+1)*2—1=(2B)*2+ -- (2B)*+(2B)(2B)

As a special case (k=1) of Theorem 3, we obtain
THEOREM 4. For any prime number p, the Galois group of
xP+px+p=0

over Q is the symmetric group S,

4. Now we discuss the case
a=p*"b, 0<2m<p, (p,b)=1.

THEOREM S. Let p (p>3) denote a prime number and let b and m denote rational
integers such that 0<2m<p, (p, b)=1. Let G denote the Galois group of the equation

xP+p*™b(x+1)=0

over Q.
1. Ifp=3orS5or7(mod8), then G is the symmetric group S,.
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2. Suppose that p=1 (mod 8). Then G=S, if and only if (p—1)?~*b+p?~>" is not
a square. If (p—1)* b+ pP~ 2™ is a square, then G is contained in the alternating group
A,, where G is regarded as a permutation group on {1,2, - -, p}-

PrROOF. We have

4.1 pPm=p (mod 8) .
Also, for every prime factor g of p—1,
4.2) prim=1 (mod gq) .

If p=3 or 5 or 7 (mod 8), then
|(p—1)P~b+p?~2"|

is not a square ([3], the proof of Theorem 1), and so G=S, (Theorem 2).
Now suppose that p=1 (mod 8). It follows from (4.1) that —{(p—1)?~1b+ p?~ 2™}
is not a square. Hence, if (p— 1)~ 1o+ pP~ 2™ is not a square, then G=S, (Theorem 2).

Suppose further that (p—1)?~1b+pP~ 2™ is a square. Let a,, a5, - - -, a, denote the roots
of

f(x)=x?+p>"b(x+1)=0,

and let 6 = f'(a,), D=normé (in Q(x,)). Then, by (2.1) we see that D is also a square.
Now let 4 denote the following matrix:

A=(a;), ay=af"' (1<i<p; 1<j<p).
Then we have
(det A)2=(—1)P?~V2p=D.
Hence det 4 is a rational integer. If ge G is an odd permutation, then
(det 4)?= —(det 4),
which is impossible. Hence G is contained in 4,,.
Finally we prove

THEOREM 6. For any prime number p=1 (mod 8) and any rational integer m with
0 <2m < p, there exist infinitely many rational integers b satisfying the following conditions:

1. (p,b)=1
2. (p—1DP b+pP~2™ is a square.

ProOF. The congruence
4.3) x2=ppP~2m (mod(p—1)P~1)

has a solution x ((4.1), (4.2)). We may assume that x is not divisible by p, since
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x+(p—1)?"! is also a solution of (4.3). Now let
x2—pPTm=y(p—1y1L.
Then y is not divisible by p. For every ne Z,
b=y+2xnp+n?p*(p—1)r!
satisfies the conditions of Theorem 6, since

(P—1)?" b+ pP "= (x+np(p—1)r~1)2
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