Homogeneous Symplectic Manifolds and Dipolarizations in Lie Algebras

Soji KANEYUKI

Sophia University

Introduction.

A parakähler manifold is, by definition, a symplectic manifold with a pair of transversal Lagrangian foliations. A parakähler manifold was originally introduced by P. Libermann [10] from a different point of view (See also [3]). Let M be a parakähler manifold. By an automorphism of M we mean a symplectomorphism which preserves each of the two foliations. It turns out that the totality of automorphisms of M becomes a finite-dimensional Lie group (Section 1). If that group Aut M acts transitively on M, then M is called a homogeneous parakähler manifold. In our previous paper [3], we have introduced a class of homogeneous parakähler manifolds, called parahermitian symmetric spaces. A parahermitian symmetric space is a homogeneous parakähler manifold M which can be represented as an affine symmetric coset space with respect to the identity component of Aut M. Under the assumption that the automorphism groups are semisimple, parahermitian symmetric spaces were classified up to local isomorphisms ([3, 4]). Under the same assumption, we have constructed a natural compactification \tilde{M} of a parahermitian symmetric space M and have studied geometric properties of $\tilde{M}([5])$. It should be noted that this compactification has some applications to harmonic analysis on a parahermitian symmetric space M (cf. Ørsted [13]).

The first aim of this paper is to give a simple algebraic method of constructing homogeneous parakähler manifolds. First we introduce a parakähler algebra which is an intermediate algebraic interpretation of a homogeneous parakähler structure (Section 2). A parakähler algebra occupies the same situation as a Kähler algebra (Vinberg-Gindikin [12]) does for a homogeneous Kähler manifold. In Section 3, we introduce much simpler algebraic object, called a weak dipolarization and a dipolarization in a Lie algebra \mathfrak{g}. A homogeneous parakähler structure is perfectly described by a weak dipolarization (Theorem 3.6). A dipolarization is a stronger concept than a weak dipolarization. But, if the Lie algebra \mathfrak{g} is semisimple, then a weak dipolarization is always a dipolarization. Our second aim is to study homogeneous parakähler manifolds

[^0]which are obtained from semisimple graded Lie algebras. First of all we prove that a semisimple graded Lie algebra has a natural dipolarization, called the canonical dipolarization (Theorem 4.2). Let G be a connected semisimple Lie group with finite center and L be the Levi subgroup of a parabolic subgroup of G. We prove that the coset space G / L has a G-invariant parakähler structure corresponding to a canonical dipolarization coming from a gradation in the Lie algebra Lie G (Theorem 4.3). Finally we construct an equivariant compactification of the G-homogeneous parakähler manifold G / L (Theorem 4.7), which is a generalization of the compactification constructed in [5] for a parahermitian symmetric space.

We refer terminologies and basic facts on graded Lie algebras to our previous paper [7]. Throughout the present paper, Lie algebras are finite-dimensional. We abbreviate a "graded Lie algebra" as a GLA. $C^{\infty}(M)$ denotes the ring of smooth functions of class C^{∞} on a manifold M.

1. Parakähler Manifolds.

Definition 1.1. Let M be a symplectic manifold with symplectic form ω. Let (F^{+}, F^{-}) be a pair of transversal foliations on M. The triple $\left(M, \omega, F^{ \pm}\right)$is then called a parakähler manifold, if each leaf of $F^{ \pm}$is a Lagrangian submanifold of M.

Let $\left(M, \omega, F^{ \pm}\right)$be a $2 n$-dimensional parakähler manifold. Let $p \in M$. Then there exist two Lagrangian leaves $F^{+}(p)$ of F^{+}and $F^{-}(p)$ of F^{-}both passing through p. Note that $\operatorname{dim} F^{ \pm}(p)=n$. Let \hat{I}_{p} be the linear endomorphism of the tangent space $T_{p} M$ at p to M such that $\hat{I}_{p}= \pm 1$ on the tangent spaces $T_{p} F^{ \pm}(p)$, respectively. Then the tensor field $\hat{I}:=\left(\hat{I}_{p}\right)_{p \in M}$ is a paracomplex structure [3] on M. Also \hat{I} satisfies the integrability condition [3]:

$$
\begin{equation*}
[\hat{I} X, \hat{I} Y]=\hat{I}[\hat{I} X, Y]+\hat{I}[X, \hat{I} Y]-[X, Y] \tag{1.1}
\end{equation*}
$$

where X and Y are vector fields on M. We need the following
Lemma 1.2. Let (M, ω) be a symplectic manifold and $F^{ \pm}$be two foliations on M. Suppose that the tangent bundle $T M$ of M is expressed as the Whitney sum of F^{+}and F^{-}. Let $\hat{I}=\left(\hat{I}_{p}\right)_{p \in M}$ be a $(1,1)$-tensor field on M such that $\hat{I}_{p}= \pm 1$ on the fibers $F_{p}^{ \pm}$of $F^{ \pm}$through a point $p \in M$. Then each leaf of $F^{ \pm}$is a Lagrangian submanifold of M if and only if we have the equality

$$
\begin{equation*}
\omega(\hat{I} X, Y)+\omega(X, \hat{I} Y)=0 \tag{1.2}
\end{equation*}
$$

for any vector fields X, Y on M.
Proof. Suppose that leaves of $F^{ \pm}$are Lagrangian submanifolds, or equivalently, the fibers $F_{p}^{ \pm}, p \in M$, are Lagrangian subspaces of the tangent space $T_{p} M$. Let X_{p}, $Y_{p} \in F_{p}^{+}\left(\operatorname{resp} . F_{p}^{-}\right)$. Then $\omega\left(\hat{I}_{p} X_{p}, Y_{p}\right)=\omega\left(X_{p}, \hat{I}_{p} Y_{p}\right)=\omega\left(X_{p}, Y_{p}\right)=0\left(\right.$ resp. $=-\omega\left(X_{p}, Y_{p}\right)$
$=0)$. Suppose that $X_{p} \in F_{p}^{+}$and $Y_{p} \in F_{p}^{-}$. Then $\omega\left(\hat{I}_{p} X_{p}, Y_{p}\right)=\omega\left(X_{p}, Y_{p}\right)=-\omega\left(X_{p}, \hat{I}_{p} Y_{p}\right)$. Thus we have (1.2). Conversely suppose that (1.2) is valid. Then it follows that $F_{p}^{ \pm}$are two totally isotropic subspaces of $T_{p} M$. Since $T_{p} M=F_{p}^{+} \oplus F_{p}^{-}$(direct sum), $F_{p}^{ \pm}$are Lagrangian subspaces of $T_{p} M$.
Q.E.D.

Let $\left(M, \omega, F^{ \pm}\right)$be a parakähler manifold. We say that a symplectomorphism φ of M is an automorphism of $\left(M, \omega, F^{ \pm}\right)$if φ leaves the associated paracomplex structure \hat{I} invariant (or equivalently, φ permutes respective leaves of the foliations $F^{ \pm}$). We denote by $\operatorname{Aut}(M, \omega, \hat{I})$ the group of automorphisms of $\left(M, \omega, F^{ \pm}\right)$. Then the group $\operatorname{Aut}(M, \omega, \hat{I})$ is a Lie group. In fact, if we put $g(X, Y)=\omega(\hat{I} X, Y)$ for vector fields X, Y on M, then it follows from Lemma 1.2 that g is an $\operatorname{Aut}(M, \omega, \hat{I})$-invariant pseudo-riemannian metric on M. Thus $\operatorname{Aut}(M, \omega, \hat{I})$ is a closed subgroup of the isometry group of M with respect to g. If the group $\operatorname{Aut}(M, \omega, \hat{I})$ acts transitively on M, then the parakähler manifold M is called homogeneous. Let G be a connected Lie group and H be a closed subgroup of G. Suppose that the coset space G / H has a parakähler structure $\left\{\omega, F^{ \pm}\right\}$. Let \hat{I} denote the paracomplex structure associated with $F^{ \pm}$. If \boldsymbol{G} leaves both ω and \hat{I} invariant, then we say that G / H is a parakähler coset space.

Examples 1.3. (i) Let N be a complete simply connected Riemannian manifold whose sectional curvature is less than or equal to -1 everywhere. Let M be the smooth manifold of unit speed geodesics on N. Then M is a parakähler manifold (Kanai [2]). (ii) Parahermitian symmetric spaces are homogeneous parakähler manifolds ([3]).

2. Parakähler algebras.

Definition 2.1. Let \mathfrak{g} be a real Lie algebra, \mathfrak{h} a subalgebra of \mathfrak{g}, I a linear endomorphism of \mathfrak{g} and ρ be an alternating 2-form on \mathfrak{g}. Then the quadruple $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ is called a parakähler algebra, if the following conditions (2.1)-(2.6) are satisfied:
$I(\mathfrak{h}) \subset \mathfrak{h}$ and $I^{2} \equiv 1 \bmod \mathfrak{h}$. The ± 1-eigenspaces under the operator on $\mathrm{g} / \mathfrak{h}$ induced by I are equi-dimensional,

$$
\begin{gather*}
{[X, I Y] \equiv I[X, Y] \bmod \mathfrak{h}, \quad X \in \mathfrak{h}, Y \in \mathfrak{g},} \tag{2.2}\\
{[I X, I Y] \equiv I[I X, Y]+I[X, I Y]-[X, Y] \quad \bmod \mathfrak{h}, \quad X, Y \in \mathfrak{g},} \tag{2.3}\\
\rho(X, \mathfrak{g})=0 \quad \text { if and only if } \quad X \in \mathfrak{h}, \tag{2.4}\\
\rho(I X, I Y)=-\rho(X, Y), \quad X, Y \in \mathfrak{g}, \tag{2.5}
\end{gather*}
$$

If the 2 -form ρ is a coboundary $d f$ of a linear form f in the sense of the Lie algebra cohomology, then the parakähler algebra $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ is said to be nondegenerate. In this case (2.4)-(2.6) can be replaced by

$$
\begin{align*}
& f([X, \mathrm{~g}])=0 \quad \text { if and only if } \quad X \in \mathfrak{h}, \tag{2.7}\\
& f([I X, I Y])=-f([X, Y]), \quad X, Y \in \mathfrak{g} . \tag{2.8}
\end{align*}
$$

Proposition 2.2. Let G be a connected Lie group and H be a closed subgroup of G. Let $\mathfrak{g}=$ Lie G and $\mathfrak{h}=$ Lie H. Suppose that G / H is a parakähler coset space. Then there exist a linear endomorphism I of \mathfrak{g} and an alternating 2 -form ρ on \mathfrak{g} such that $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ is a parakähler algebra.

Proof. Let $\operatorname{dim} G / H=2 n$, and let \hat{I} be the associated (G-invariant) paracomplex structure on G / H and ω be the symplectic form. Choose a local coordinate system ($u^{1}, \cdots, u^{2 n}, u^{2 n+1}, \cdots, u^{m}$) around the unit element $e \in G$ satisfying the two conditions: (1) $u^{i}(e)=0(1 \leq i \leq m)$, (2) there exists a cubic neighborhood U of e with respect to (u^{1}, \cdots, u^{m}) which satisfies

$$
U \cap H=\left\{g \in U: u^{1}(g)=\cdots=u^{2 n}(g)=0\right\} .
$$

Let F be the set of elements $g \in U$ satisfying $u^{i}(g)=0,2 n+1 \leq i \leq m$. Let π be the natural projection of G onto G / H. The restriction $\left.\pi\right|_{F}$ is a diffeomorphism of F onto an open neighborhood of the origin o in G / H. We identify g with the tangent space $T_{e} G$. Let m be the subspace of g corresponding to the tangent space $T_{e} F$ under the above identification. Obviously we have $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ (a vector space direct sum). The differential $\pi_{* e}$ is a linear surjection of g onto the tangent space $T_{o}(G / H)$, whose kernel is \mathfrak{h}. We define a linear endomorphism I on g by putting

$$
I= \begin{cases}0 & \text { on } \mathfrak{h} \tag{2.9}\\ \left(\left(\left.\pi\right|_{F}\right)_{* e}^{-1} \hat{I}_{o} \pi_{* e}\right. & \text { on } \mathfrak{m}\end{cases}
$$

where \hat{I}_{o} denotes the value of \hat{I} at the point o. Then, making use of the same technique as in the case of a homogeneous complex structure (Fröhlicher [1]), we get

$$
\begin{gather*}
\pi_{* e} I=\hat{I}_{o} \pi_{* e}, \tag{2.10}\\
\pi_{* e}(I[X, Y])=\pi_{* e}([X, I Y]), \quad X \in \mathfrak{h}, \quad Y \in \mathfrak{g}, \tag{2.11}\\
\pi_{* e}([I X, I Y]-I[I X, Y]-I[X, I Y]+[X, Y])=0, \quad X, Y \in \mathfrak{g} . \tag{2.12}
\end{gather*}
$$

In fact, (2.11) and (2.12) follow from the G-invariance of \hat{I} and (1.1), respectively. It follows from (2.10)-(2.12) that I satisfies the conditions (2.1)-(2.3). The pull-back $\rho=\pi^{*} \omega$ is a G-invariant closed 2 -form on G and hence it is viewed as an alternating 2-form on g. (2.4) and (2.5) are obtained from the nondegeneracy of ω and (1.2), respectively.
Q.E.D.

As for the converse assertion of Proposition 2.2, we have the following

Proposition 2.3. Let G, H, \mathfrak{g} and \mathfrak{h} be the same as in Proposition 2.2. Suppose that the pair $\{\mathfrak{g}, \mathfrak{h}\}$ has the structure of a parakähler algebra $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$. Suppose further that

$$
\begin{align*}
{[\operatorname{Ad} a, I] \equiv 0 \quad \bmod \mathfrak{h}, } & a \in H, \tag{2.13}\\
\rho((\operatorname{Ad} a) X,(\operatorname{Ad} a) Y)=\rho(X, Y), & a \in H, X, Y \in \mathfrak{g} . \tag{2.14}
\end{align*}
$$

Then G / H has the structure of a parakähler coset space.
Proof. We identify $\mathfrak{g} / \mathfrak{h}$ with the tangent space $T_{o}(G / H)$ to G / H at the origin $o \in G / H$. Let \hat{I}_{o} be the linear endomorphism on $\mathfrak{g} / \mathfrak{h}$ induced by I (cf. (2.1)). Then (2.13) implies that \hat{I}_{o} commutes with $\operatorname{Ad}_{\mathfrak{g} / \mathfrak{h}} a, a \in H$. Hence \hat{I}_{o} extends to a G-invariant almost paracomplex structure on G / H, which will be denoted by \hat{I}. The torsion T of \hat{I} is given by [3]

$$
\begin{equation*}
T(X, Y)=[\hat{I} X, \hat{I} Y]-\hat{I}[\hat{I} X, Y]-\hat{I}[X, \hat{I} Y]+[X, Y] \tag{2.15}
\end{equation*}
$$

where X, Y are vector fields on G / H. We have to show that T vanishes identically on G / H ([3]). For this purpose we extend the original endomorphism I on g to a left-invariant tensor field \tilde{I} on G. Denoting the natural projection $G \rightarrow G / H$ by π, we have

$$
\begin{equation*}
\pi_{*} \tilde{I}=\hat{I} \pi_{*} \tag{2.16}
\end{equation*}
$$

Let us put

$$
\begin{equation*}
\tilde{T}(X, Y)=[\tilde{I} X, \tilde{I} Y]-\tilde{I}[\tilde{I} X, Y]-\tilde{I}[X, \tilde{I} Y]+[X, Y] \tag{2.17}
\end{equation*}
$$

X and Y being vector fields on G. Then it follows that

$$
\begin{equation*}
\tilde{T}(X, \xi Y)=\xi \tilde{T}(X, Y)-(X \xi)\left(\tilde{I}^{2} Y-Y\right) \tag{2.18}
\end{equation*}
$$

where $\xi \in C^{\infty}(G)$. In view of (2.1), the equality (2.18) implies that $\tilde{T}(X, Y)$ is $C^{\infty}(G)$-bilinear in X and Y modulo $C^{\infty}(G) \mathfrak{h}$ ($=$ the submodule, generated by \mathfrak{b}, of the $C^{\infty}(G)$-module of all vector fields on G). Consequently it follows from (2.3) that $\tilde{T}(X, Y) \in C^{\infty}(G) \mathfrak{h}$. Hence, as in the case of a homogeneous complex structure (Koszul [9]), one can conclude that T vanishes identically on G / H. We have thus proved that \hat{I} is a (G-invariant) paracomplex structure ([3]). In other words, the ± 1-eigenspaces of \hat{I} determine transversal foliations $F^{ \pm}$on G / H such that the Whitney sum $F^{+} \oplus F^{-}$ is the whole tangent bundle of G / H. By (2.4), there exists a unique alternating 2-form ω_{o} on $\mathfrak{g} / \mathfrak{h}$ such that $\pi^{*} \omega_{o}=\rho . \omega_{o}$ is nondegenerate and $\mathrm{Ad}_{\mathrm{g} / \mathfrak{b}} H$-invariant (cf. (2.4), (2.14)). Hence it extends to a G-invariant symplectic form ω on G / H (cf. (2.6)). (2.5) implies that ω satisfies (1.2), and so $F^{ \pm}$are Lagrangian foliations.
Q.E.D.

Remark 2.4. If H is connected, then the assertion of Proposition 2.3 holds without assuming (2.13) and (2.14).

3. Dipolarizations in Lie algebras.

Definition 3.1. Let \mathfrak{g} be a real Lie algebra, $\mathfrak{g}^{ \pm}$be two subalgebras of \mathfrak{g} and ρ be an alternating 2-form on \mathfrak{g}. The triple $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, \rho\right\}$ is called a weak dipolarization in \mathfrak{g}, if the following conditions are satisfied:

$$
\begin{equation*}
\mathbf{g}=\mathbf{g}^{+}+\mathbf{g}^{-} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\text { Put } \mathfrak{h}:=\mathfrak{g}^{+} \cap \mathfrak{g}^{-} \text {. Then } \rho(X, \mathfrak{g})=0 \text { if and only if } X \in \mathfrak{h}, \tag{3.2}
\end{equation*}
$$

$$
\begin{gather*}
\rho\left(\mathfrak{g}^{+}, \mathfrak{g}^{+}\right)=\rho\left(\mathfrak{g}^{-}, \mathfrak{g}^{-}\right)=0, \tag{3.3}\\
\rho([X, Y], Z)+\rho([Y, Z], X)+\rho([Z, X], Y)=0, \quad X, Y, Z \in \mathfrak{g} . \tag{3.4}
\end{gather*}
$$

It follows from (3.1)-(3.3) that in the above definition g^{+}and g^{-}are equidimensional (cf. Proof of Lemma 3.4).

Definition 3.2. Let g be a real Lie algebra and $g^{ \pm}$be two subalgebras of g, and let f be a linear form on g . The triple $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, f\right\}$ is called a dipolarization in g if the following conditions are satisfied:

$$
\begin{equation*}
\mathbf{g}=\mathbf{g}^{+}+\mathbf{g}^{-}, \tag{3.5}
\end{equation*}
$$

Put $\mathfrak{h}:=\mathfrak{g}^{+} \cap \mathfrak{g}^{-}$. Then $f([X, \mathfrak{g}])=0$ if and only if $X \in \mathfrak{h}$,

$$
\begin{equation*}
f\left(\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]\right)=f\left(\left[\mathfrak{g}^{-}, \mathfrak{g}^{-}\right]\right)=0 \tag{3.6}
\end{equation*}
$$

Note that a dipolarization $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, f\right\}$ is a weak dipolarization just by taking $d f$ as ρ. We wish to find a relation between parakähler algebras and weak dipolarizations.

Lemma 3.3. Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ be a parakähler algebra, and let

$$
\begin{equation*}
\mathfrak{g}^{ \pm}=\{X \in \mathfrak{g}: I X \equiv \pm X \bmod \mathfrak{h}\} . \tag{3.8}
\end{equation*}
$$

Then $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ is a weak dipolarization in \mathfrak{g} satisfying $\mathfrak{g}^{+} \cap \mathfrak{g}^{-}=\mathfrak{h}$.
Proof. We prove first that \mathfrak{g}^{+}is a subalgebra of \mathfrak{g}. Let $X, Y \in \mathfrak{g}^{+}$. Then one can write

$$
\begin{equation*}
I X=X+h, \quad I Y=Y+h^{\prime} \tag{3.9}
\end{equation*}
$$

where $h, h^{\prime} \in \mathfrak{h}$. By (2.1), (2.2), (2.3) and (3.9) we get

$$
\begin{align*}
I[X, Y] & \equiv[I X, Y]+[X, I Y]-I[I X, I Y] \\
& =2[X, Y]+[h, Y]+\left[X, h^{\prime}\right]-I[X, Y]-I\left[X, h^{\prime}\right]-I[h, Y]-I\left[h, h^{\prime}\right] \\
& \equiv 2[X, Y]+[h, Y]+\left[X, h^{\prime}\right]-I[X, Y]-\left[X, h^{\prime}\right]-[h, Y] \bmod \mathfrak{h} . \tag{3.10}
\end{align*}
$$

Therefore we have $I[X, Y] \equiv[X, Y] \bmod \mathfrak{h}$, which implies that \mathfrak{g}^{+}is a subalgebra of \mathfrak{g}. Similarly \mathfrak{g}^{-}is a subalgebra of \mathfrak{g}. Let \hat{I}_{o} be the linear endomorphism on $\mathfrak{g} / \mathfrak{h}$ induced
by I. By (2.1) we have $\hat{I}_{o}^{2}=1$. Let $(\mathfrak{g} / \mathfrak{h})_{ \pm}$be the ± 1-eigenspaces in $\mathfrak{g} / \mathfrak{h}$ under \hat{I}_{o}. Then we have that $\mathrm{g}^{ \pm}$coincide with the complete inverse images of $(\mathrm{g} / \mathfrak{h})_{ \pm}$under the canonical projection of \mathfrak{g} onto $\mathfrak{g} / \mathfrak{h}$, from which (3.1) follows. Let $X, Y \in \mathfrak{g}^{+}$and write them in the form (3.9). We then have from (2.5) and (2.4) that $\rho(X, Y)=-\rho(I X, I Y)=-\rho(X, Y)$, and hence we have (3.3). We next show that $\mathfrak{g}^{+} \cap \mathrm{g}^{-}=\mathfrak{h}$. Since $\mathrm{g}^{ \pm}$are the complete inverse images of $(\mathfrak{g} / \mathfrak{h})_{ \pm}$under the projection $\mathfrak{g} \rightarrow \mathfrak{g} / \mathfrak{h}, \mathfrak{h}$ is contained in $\mathfrak{g}^{ \pm}$. By this and (3.3) we see $\rho(\mathfrak{h}, \mathfrak{g})=0$. Let $Z \in \mathfrak{g}$ and write $Z=Z^{+}+Z^{-}, Z^{ \pm} \in \mathfrak{g}^{ \pm}$. Choose $X \in \mathfrak{g}^{+} \cap \mathfrak{g}^{-}$. Then, since ρ satisfies (3.3), one has $\rho(X, Z)=\rho\left(X, Z^{+}\right)+\rho\left(X, Z^{-}\right)=0$. Z being arbitrary, we conclude by (2.4) that $X \in \mathfrak{h}$. Thus we have proved (3.2). Q.E.D.

Conversely we have

Lemma 3.4. Let \mathfrak{g} be a real Lie algebra and let $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, \rho\right\}$ be a weak dipolarization in \mathfrak{g}. Put $\mathfrak{h}:=\mathfrak{g}^{+} \cap \mathfrak{g}^{-}$. Then the pair $\{\mathfrak{g}, \mathfrak{h}\}$ has the structure of a parakähler algebra.

Proof. Let π be the natural projection of g onto g / \mathfrak{h}. Then by (3.1), $\mathfrak{g} / \mathfrak{h}=\pi\left(\mathrm{g}^{+}\right)+\pi\left(\mathfrak{g}^{-}\right)$. The right-hand side is a direct sum of the vector spaces, since $\pi^{-1}\left(\pi\left(\mathrm{~g}^{ \pm}\right)\right)=\mathrm{g}^{ \pm}$holds. Define an alternating 2 -form ω_{o} on g / h by putting $\omega_{o}(\pi(X), \pi(Y))=\rho(X, Y), X, Y \in \mathfrak{g}$. (3.2) implies that ω_{o} is well-defined and nondegenerate on g / h. It follows from (3.2) and (3.3) that $\pi\left(\mathrm{g}^{ \pm}\right)$are maximal totally isotropic subspaces with respect to ω_{o}. This implies that $\pi\left(\mathfrak{g}^{+}\right)$and $\pi\left(\mathfrak{g}^{-}\right)$are equi-dimensional. Define a linear endomorphism \hat{I}_{o} on g / h by setting $\hat{I}_{0}= \pm 1$ on $\pi\left(\mathrm{g}^{ \pm}\right)$, respectively. Let I be a linear endomorphism on g satisfying $\pi I=\hat{I}_{0} \pi$. Then I satisfies (2.1). On the other hand, it is easily seen that, with respect to the endomorphism $I, \mathfrak{g}^{ \pm}$ are given by

$$
\begin{equation*}
\mathfrak{g}^{ \pm}=\{X \in \mathfrak{g}: I X \equiv \pm X \bmod \mathfrak{h}\} \tag{3.11}
\end{equation*}
$$

In order to prove (2.2), one can assume, in view of (3.1), that Y in (2.2) lies either in \mathfrak{g}^{+}or in \mathfrak{g}^{-}. Suppose first that $Y \in \mathfrak{g}^{+}$. One can then write $I Y=Y+h^{\prime}$, where $h^{\prime} \in \mathfrak{h}$. Therefore, if $X \in \mathfrak{h}$, then $[X, I Y]=\left[X, Y+h^{\prime}\right] \equiv[X, Y] \bmod \mathfrak{h}$. Since $[X, Y]$ lies in \mathfrak{g}^{+}, we have $I[X, Y] \equiv[X, Y] \bmod \mathfrak{h}\left(c f\right.$. (3.11)). Thus (2.2) is valid for $Y \in \mathfrak{g}^{+}$. Similarly (2.2) is valid for $Y \in \mathfrak{g}^{-}$. Next we wish to prove that the linear endomorphism I satisfies (2.3). We break up into three cases: (i) $X, Y \in \mathfrak{g}^{+}$, (ii) $X \in \mathfrak{g}^{+}, Y \in \mathfrak{g}^{-}$, and (iii) $X, Y \in \mathfrak{g}^{-}$. Let us first consider the case (i). By (3.11) one can write X, Y in the form (3.9). Thus, by using (3.11) and (2.2) just proved, we have

$$
\begin{align*}
{[I X, I Y] } & =\left[X+h, Y+h^{\prime}\right] \\
& \equiv[X, Y]+\left[X, h^{\prime}\right]+[h, Y] \quad \bmod \mathfrak{h} \tag{3.12}
\end{align*}
$$

and so

$$
\begin{align*}
I[I X, Y] & +I[X, I Y]-[X, Y] \\
& =I[X+h, Y]+I\left[X, Y+h^{\prime}\right]-[X, Y] \\
& =I[X, Y]+I[h, Y]+I[X, Y]+I\left[X, h^{\prime}\right]-[X, Y] \\
& \equiv[X, Y]+[h, I Y]+[X, Y]+\left[I X, h^{\prime}\right]-[X, Y] \\
& =[X, Y]+\left[h, Y+h^{\prime}\right]+\left[X+h, h^{\prime}\right] \\
& \equiv[X, Y]+[h, Y]+\left[X, h^{\prime}\right] \equiv[I X, I Y] \bmod \mathfrak{h} . \tag{3.13}
\end{align*}
$$

By similar arguments, one can prove (2.3) for the two remaining cases. We shall show (2.5). In the case where $X, Y \in \mathfrak{g}^{ \pm}$, it follows from (3.3) that both sides of (2.5) are zero. Suppose that $X \in \mathfrak{g}^{+}$and $Y \in \mathfrak{g}^{-}$. Then, by (3.11), we have $I X=X+h, I Y=-Y+h^{\prime}$, where $h, h^{\prime} \in \mathfrak{h}$. Therefore, by (3.2),

$$
\begin{aligned}
\rho(I X, I Y) & =\rho\left(X+h,-Y+h^{\prime}\right) \\
& =-\rho(X, Y)+\rho\left(X, h^{\prime}\right)-\rho(h, Y)+\rho\left(h, h^{\prime}\right)=-\rho(X, Y),
\end{aligned}
$$

which proves (2.5).
Q.E.D.

Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ and $\left\{\mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}, I^{\prime}, \rho^{\prime}\right\}$ be two parakähler algebras. They are said to be isomorphic if there exists a Lie isomorphism φ of g onto g^{\prime} satisfying the conditions:

$$
\begin{align*}
& \varphi(\mathfrak{h})=\mathfrak{h}^{\prime}, \\
& \varphi I \equiv I^{\prime} \varphi \quad \bmod \mathfrak{h}^{\prime}, \tag{3.14}\\
& \varphi^{*} \rho^{\prime}=\rho,
\end{align*}
$$

where φ^{*} denotes the isomorphism, induced by φ, between the tensor algebras on \mathbf{g} and \mathfrak{g}^{\prime}. Let \mathfrak{g} and \mathfrak{g}^{\prime} be two Lie algebras, and let $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ and $\left\{\mathfrak{g}^{\prime+}, \mathfrak{g}^{\prime-}, \rho^{\prime}\right\}$ be weak dipolarizations in \mathfrak{g} and \mathfrak{g}^{\prime}, respectively. They are said to be isomorphic if there exists a Lie isomorphism φ of g onto g^{\prime} satisfying the conditions

$$
\begin{gather*}
\varphi\left(\mathrm{g}^{+}\right)=\mathrm{g}^{\prime+}, \quad \varphi\left(\mathrm{g}^{-}\right)=\mathrm{g}^{\prime-}, \tag{3.15}\\
\varphi^{*} \rho^{\prime}=\rho
\end{gather*}
$$

Combining Lemmas 3.3 and 3.4, we finally obtain
Theorem 3.5. Let \mathfrak{g} be a real Lie algebra. Then there exists a bijection between the set of isomorphism classes of parakähler algebra structures on g and the set of isomorphism classes of weak dipolarizations in g .

Proof. Let $\{\mathfrak{g}, \mathfrak{h}, I, \rho\}$ be a parakähler algebra and let $\mathfrak{g}^{ \pm}$be the ones given in (3.8). By Lemma 3.3, $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ is a weak dipolarization in \mathfrak{g}. In view of Lemmas 3.3 and 3.4 the correspondence $\{\mathfrak{g}, \mathfrak{h}, I, \rho\} \mapsto\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ induces a bijection between the respective isomorphism classes.
Q.E.D.

We finally have
Theorem 3.6. Let G be a connected Lie group and H be a closed subgroup of G. Let $\mathfrak{g}=\operatorname{Lie} G$ and $\mathfrak{h}=$ LieH. Suppose that G / H is a parakähler coset space. Then \mathfrak{g} admits a weak dipolarization $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, \rho\right\}$ such that

$$
\begin{equation*}
\mathfrak{h}=\mathfrak{g}^{+} \cap \mathfrak{g}^{-} \tag{3.16}
\end{equation*}
$$

Conversely, suppose that there exists a weak dipolarization $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ in \mathfrak{g} satisfying the conditions (3.16) and

$$
\begin{gather*}
\left(\operatorname{Ad}_{\mathfrak{g}} H\right) \mathfrak{g}^{ \pm} \subset \mathfrak{g}^{ \pm} \tag{3.17}\\
\rho \text { is } \operatorname{Ad}_{\mathfrak{g}} H \text {-invariant } . \tag{3.18}
\end{gather*}
$$

Then G / H has the structure of a parakähler coset space.
Proof. The first assertion is immediate from Proposition 2.2 and Lemma 3.3. Suppose that $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$ is a weak dipolarization in \mathfrak{g} satisfying (3.16)-(3.18). Let $a \in H$. Then, under the notations in the proof of Lemma 3.4, we have that $\mathrm{Ad}_{\mathfrak{g} / \mathfrak{h}} a$ leaves $\pi\left(\mathrm{g}^{ \pm}\right)$ stable and that $\left[\operatorname{Ad}_{\mathfrak{g} / \mathfrak{h}} a, \hat{I}_{o}\right]=0$. This implies that $\left[\operatorname{Ad}_{\mathfrak{g}} a, I\right] \equiv 0 \bmod \mathfrak{h}$, or equivalently, (2.13) is valid. Therefore the second assertion follows from Lemma 3.4 and Proposition 2.3.
Q.E.D.

The above manifold G / H is called the parakähler coset space corresponding to a weak dipolarization $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, \rho\right\}$.

4. Parakähler manifolds associated with graded Lie algebras.

4.1. Let \mathfrak{g} be a real semisimple Lie algebra and B be the Killing form of \mathfrak{g}. Note that a weak dipolarization in g is always a dipolarization, since the second cohomology group of \mathfrak{g} vanishes.

Lemma 4.1. Let $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\right\}$ be a dipolarization in \mathfrak{g}. Then $\mathfrak{h}:=\mathfrak{g}^{+} \cap \mathfrak{g}^{-}$coincides with the centralizer $\mathfrak{c}(Z)$ in \mathfrak{g} of an element $Z \in \mathfrak{g}$.

Proof. Let $Z \in \mathrm{~g}$ be a unique element satisfying

$$
\begin{equation*}
B(Z, X)=f(X), \quad X \in \mathrm{~g} \tag{4.1}
\end{equation*}
$$

Choose an element $X \in \mathfrak{h}$. Then for any element $Y \in \mathfrak{g}$, we have

$$
\begin{equation*}
B([Z, X], Y)=B(Z,[X, Y])=f([X, Y]) \tag{4.2}
\end{equation*}
$$

The last member of (4.2) is zero by (3.6) and consequently $[Z, X]=0$ or equivalently $\mathfrak{h} \subset \mathfrak{c}(Z)$. The converse inclusion follows from (4.2) and (3.6).
Q.E.D.

Theorem 4.2. Let $\mathfrak{g}=\sum_{k=-v}^{v} \mathfrak{g}_{k}$ be a semisimple GLA of the $v-$ th kind, and $Z \in \mathfrak{g}$
be its characteristic element. Let $\mathfrak{g}^{ \pm}=\sum_{k=0}^{v} \mathfrak{g}_{ \pm k}$. Define a linear form f on g by $f(X)=B(Z, X), X \in \mathfrak{g}$. Then $\left\{\mathrm{g}^{+}, \mathrm{g}^{-}, f\right\}$ is a dipolarization in g .

Proof. (3.5) is trivially satisfied. Note that $\mathrm{g}^{+} \cap \mathrm{g}^{-}=\mathrm{g}_{0}=\mathrm{c}(Z)$. Let $X \in \mathfrak{g}_{0}$. Then we have $[Z, X]=0$. Consequently, by (4.2) we have $f([X, g])=0$. Conversely, let $X \in g$ and suppose that $f([X, Y])=0$ for any $Y \in \mathfrak{g}$. Then, by (4.2) we have $X \in \mathfrak{c}(Z)=g_{0}$. Thus (3.6) is valid. Next we claim

$$
\begin{equation*}
\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]=\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]+\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{v} \tag{4.3}
\end{equation*}
$$

Indeed, the inclusion \subset is trivial. We have $\left[\mathrm{g}^{+}, \mathrm{g}^{+}\right] \supset\left[\mathrm{g}_{0}, \mathrm{~g}_{0}\right]+\sum_{k=1}^{v}\left[Z, \mathfrak{g}_{k}\right]=\left[\mathfrak{g}_{0}, \mathfrak{g}_{0}\right]$ $+\sum_{k=1}^{v} \mathrm{~g}_{k}$, which shows (4.3). By using (4.3) we have

$$
\begin{align*}
f\left(\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]\right) & =B\left(Z,\left[\mathfrak{g}^{+}, \mathfrak{g}^{+}\right]\right) \\
& =B\left(\left[Z, g_{0}\right], g_{0}\right)+\sum_{k=1}^{v} B\left(Z, g_{k}\right) . \tag{4.4}
\end{align*}
$$

The first term of the third member of (4.4) is zero. By a well-known property $B\left(\mathrm{~g}_{p}, \mathrm{~g}_{q}\right)=0$ for $p+q \neq 0$, it follows that $B\left(Z, g_{k}\right)=0$ for $k>0$. Hence, by (4.4) we obtain $f\left(\left[\mathrm{~g}^{+}, \mathrm{g}^{+}\right]\right)=0$. Similarly we have $f\left(\left[\mathrm{~g}^{-}, \mathrm{g}^{-}\right]\right)=0$.
Q.E.D.

The dipolarization $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\right\}$ in Theorem 4.2 is called the canonical dipolarization in the GLA g.

Theorem 4.3. Let $\mathfrak{g}=\sum_{k=-v}^{v} \mathrm{~g}_{k}$ be a semisimple GLA of the v-th kind with characteristic element Z. Let G be a connected Lie group generated by g and $C(Z)$ be the centralizer of Z in G. Then $M:=G / C(Z)$ has the structure of a parakähler coset space.

Proof. Let $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\right\}$ be the canonical dipolarization in the GLA \mathfrak{g}. We have $\mathrm{g}^{+} \cap \mathrm{g}^{-}=\mathrm{g}_{0}=$ Lie $C(Z)$. Since $\mathrm{Ad}_{\mathrm{g}} C(Z)$ consists of grade-preserving automorphisms of g , the subalgebras $\mathrm{g}^{ \pm}$are stable under $\mathrm{Ad}_{\mathrm{g}} C(Z)$. By using (4.1), we see that f is $\operatorname{Ad}_{\mathrm{g}} C(Z)$-invariant. Therefore the assertion follows from Theorem 3.6. Q.E.D.

The above parakähler coset space $G / C(Z)$ is called a semisimple parakähler coset space (of the v-th kind). If G is simple, then it is called a simple parakähler coset space.

Remark 4.4. (1) The space $G / C(Z)$ is the coadjoint orbit of G through f, and so it is a Hamiltonian G-space in the sense of Kostant [8]. (2) Let $G / C(Z)$ be a semisimple parakähler coset space. One can assume that the center of G is finite. Then the subgroup $C(Z)$ can be characterized as the Levi subgroup of a parabolic subgroup of G. (3) A semisimple parakähler coset space of the v-th kind is a parahermitian symmetric space if and only if $v=1$ ([3]).
4.2. Let g be a real semisimple Lie algebra. A gradation $g=\sum_{k=-v}^{v} g_{k}$ is said to be of type α_{0}, if $\mathfrak{m}^{+}=\sum_{k=1}^{v} g_{k}$ and $m^{-}=\sum_{k=1}^{v} g_{-k}$ are generated by g_{1} and g_{-1}, respectively. The subalgebra $\mathrm{g}^{+}=\sum_{k=0}^{v} \mathfrak{g}_{k}$ is called the parabolic part of the GLA $\mathfrak{g} \cdot \mathrm{m}^{ \pm}$are
called the positive and negative parts of \mathfrak{g}, respectively.
Lemma 4.5. Let $\mathfrak{g}=\sum_{k=-v}^{v} \mathfrak{g}_{k}$ be a gradation of \mathfrak{g} which is not of type α_{0}. Then there exists a gradation of type α_{0} of g with the same parabolic and positive parts as those for the original gradation.

Proof. Let Π be the restricted fundamental system of roots for \mathfrak{g}. It is known [7] that every gradation of g is described by a partition $\Pi=\Pi_{0} \cup \Pi_{1} \cup \cdots \cup \Pi_{n}$. Put $\Pi_{1}^{\prime}=\Pi_{1} \cup \cdots \cup \Pi_{n}$. Then the gradation of g corresponding to the partition $\Pi=\Pi_{0} \cup \Pi_{1}^{\prime}$ is of type α_{0} (Theorem 2.6 [7]) and satisfies the required properties. Q.E.D.

Under the notations and assumptions in Theorem 4.3, we assume further without loss of generality that the center of G is finite. Let us consider the subgroups of G

$$
\begin{equation*}
U^{ \pm}=C(Z) \exp m^{ \pm} \tag{4.5}
\end{equation*}
$$

where $\mathfrak{m}^{ \pm}$are the positive and negative parts of \mathfrak{g}, respectively. Then we have the R-spaces $M^{ \pm}=G / U^{ \pm}$which can be expressed as one and the same coset space of a maximal compact subgroup of $G . M^{ \pm}$are not symmetric R-spaces in general. If G is complex semisimple, then $M=G / C(Z)$ has the natural G-invariant complex structure, and $M^{ \pm}=G / U^{ \pm}$are Kähler C-spaces in the sense of H. C. Wang.

Proposition 4.6. The semisimple parakähler coset space $M=G / C(Z)$ is diffeomorphic to the cotangent bundle of the R-space $M^{+}=G / U^{+}$(or $M^{-}=G / U^{-}$). If G is complex semisimple, then $G / C(Z)$ is holomorphically equivalent to the cotangent bundle of the Kähler C-space G / U^{+}(or G / U^{-}).

Proof. By Lemma 4.5, one can assume that the gradation $\mathfrak{g}=\sum_{k=-v}^{v} \mathfrak{g}_{k}$ corresponding to M is of type α_{0}, and hence the corresponding partition of Π is given by $\Pi=\Pi_{0} \cup \Pi_{1}$ (Theorem $2.6[7]$). Thus the characteristic element Z of the gradation is determined by ([7])

$$
B\left(Z, \alpha_{i}\right)= \begin{cases}0, & \alpha_{i} \in \Pi_{0}, \tag{4.6}\\ 1, & \alpha_{i} \in \Pi_{1}\end{cases}
$$

Therefore the first assertion follows from a result of Takeuchi [11]. Note that if G is complex semisimple, then everything is done within the complex category. Q.E.D.

Let us consider the product manifold

$$
\begin{equation*}
\tilde{M}=M^{-} \times M^{+} . \tag{4.7}
\end{equation*}
$$

The group G acts on \tilde{M} diagonally, that is, $g(p, q)=(g p, g q)$, where $g \in G$ and $(p, q) \in \tilde{M}$. Let $o^{ \pm}$denote the origins of the coset spaces $M^{ \pm}$, respectively.

Theorem 4.7. Let $M=G / C(Z)$ be a semisimple parakähler coset space. Then M is equivariantly imbedded in \tilde{M} as the G-orbit through the point $\left(o^{-}, o^{+}\right)$under the diagonal

G-action. The image of M is open and dense in \tilde{M}. In particular, \tilde{M} is viewed as a G-equivariant compactification of M. If G is complex semisimple, then the above imbedding is holomorphic.

Proof. The isotropy subgroup of G at $\left(o^{-}, o^{+}\right)$is given by $U^{-} \cap U^{+}=C(Z)(c f$. (4.5)), which implies the first assertion. That the image of M is dense in \tilde{M} can be proved in the same way as for Lemma 3.4 [6], and so we can omit the details. We only note that $\left(\exp \mathrm{m}^{-}\right) C(Z)\left(\exp \mathrm{m}^{+}\right)$is open and dense in \boldsymbol{G} (see also Takeuchi [11]).
Q.E.D.

Example 4.8. Let $\mathfrak{g}=\mathfrak{s u}(p, q), p \leq q$. Under the notations in [7], consider the gradation of g of the second kind corresponding to $\Pi_{1}=\left\{\alpha_{k}\right\}, 1 \leq k \leq p$. The simple parakähler coset space (of the second kind) corresponding to this gradation is given by

$$
\begin{equation*}
M_{k}=U(p, q) / G L(k, C) \times U(p-k, q-k), \quad 1 \leq k \leq p \tag{4.8}
\end{equation*}
$$

By Proposition 4.6, M_{k} is diffeomorphic to the cotangent bundle of the R-space

$$
\begin{align*}
M_{k}^{+} & =U(p) \times U(q) / U(k) \times U(p-k) \times U(q-k) \\
& =G_{k, p-k}(C) \times V_{k, q}(C) \tag{4.9}
\end{align*}
$$

where $G_{k, p-k}(C)$ denotes the complex Grassmannian of k-dimensional subspaces in C^{p} and $V_{k, q}(C)$ denotes the complex Stiefel manifold of unitary k-frames in C^{q}. Note that $M_{p}^{+}=U(q) / U(q-p)=V_{p, q}(C)$ is the Silov boundary of the bounded classical symmetric domain of type $I_{p, q}$, and that M_{1}^{+}is the hermitian quadric of index $p-1$ in the complex projective $(p+q-1)$-space. M_{k} is parahermitian symmetric if and only if $k=p=q$, in which case $M_{p}=U(p, p) / G L(p, C)$ ([5]).

Acknowledgement. Shaoqiang Deng at Nankai Institute of Mathematics, Tianjin, China, constructed a dipolarization $\left\{\mathfrak{g}^{+}, \mathfrak{g}^{-}, f\right\}$ in a certain Lie algebra for which g^{+}and g^{-}are not isomorphic ([14]).

Added in Proof. The infinitesimal classification of simple parakähler coset spaces of the second kind has been given in $[15,16]$.

References

[1] A. FröHlicher, Zur Differentialgeometrie der komplexen Strukturen, Math. Ann., 129(1955), 50-95.
[2] M. Kanal, Geodesic flows of negatively curved manifolds with smooth stable and unstable flows, Ergod. Th. Dynam. Sys., 8 (1988), 215-239.
[3] S. Kaneyuki and M. Kozai, Paracomplex structures and affine symmetric spaces, Tokyo J. Math., 8 (1985), 81-98.
[4] S. KANEYUKI, On classification of parahermitian symmetric spaces, Tokyo J. Math., 8(1985), 473-482.
[5] S. Kaneyuki, On orbit structure of compactifications of parahermitian symmetric spaces, Japan. J.

Math., 13 (1987), 333-370.
[6] S. Kaneyuki, A decomposition theorem for simple Lie groups associated with parahermitian symmetric spaces, Tokyo J. Math., 10 (1987), 363-373.
[7] S. Kaneyuki and H. Asano, Graded Lie algebras and generalized Jordan triple systems, Nagoya Math. J., 112 (1988), 81-115.
[8] B. Kostant, Quantization and Unitary Representations, Lecture Notes in Math., 170 (1970), 87-208, Springer-Verlag.
[9] J. L. Koszul, Sur la forme hermitienne canonique des espaces homogènes complexe, Canad. J. Math., 7 (1955), 562-576.
[10] P. Libermann, Sur le probleme d'equivalence de certaines structures infinitesimales, Ann. Mat. Pura Appl., 36 (1954), 27-120.
[11] M. Takeuchi, Cell decompositions and Morse equalities on certain symmetric spaces, J. Fac. Sci. Univ. Tokyo, 12 (1965), 81-192.
[12] E. B. Vinberg and S. G. Gindikin, Kähler manifolds admitting a transitive solvable automorphism group, Mat. Sb., 74 (1967), 333-351.
[13] B. Ørsted, Spherical distributions on symmetric spaces, Kawaguchiko Conference on Representation Theory of Lie Groups and Lie Algebras, Kawaguchiko, Japan, 1990: Seminar Reports on Unitary Representations X, 1990, pp. 61-63.
[14] S. Deng and S. Kaneyuki, An example of nonsymmetric dipolarizations in a Lie algebra, Preprint, 1992.
[15] S. Kaneyuki, On a remarkable class of homogeneous symplectic manifolds, Proc. Japan Acad. Ser. A, 67 (1991), 128-131.
[16] S. KANEYUKI, On the subalgebras g_{0} and $g_{e v}$ of semisimple graded Lie algebras, to appear in J. Math. Soc. Japan, 45 (1993).

Present Address:

Department of Mathematics, Sophia University

Kioicho, Chiyoda-ku, Tokyo 102, Japan

[^0]: Received July 19, 1991

