Q-polynomial of Pretzel Links

Masao HARA

Waseda University

Abstract. We find a formula for the Q-polynomial of a pretzel link $L(p_1, p_2, \dots, p_n)$. The formula describes the Q-polynomial as a polynomial in $H_{p_1}(x)$, $H_{p_2}(x)$, \dots , $H_{p_n}(x)$, where $H_{p_1}(x)$, $H_{p_2}(x)$, \dots , $H_{p_n}(x)$ are Laurent polynomials in x and $H_{p_1}(x)$ depends on only p_i .

1. Introduction.

Brandt-Lickorish-Millett [BLM] and Ho [H] defined a polynomial invariant for unoriented links, and the invariant is called the Q-polynomial. Kauffman [K] defined a polynomial invariant, called the F-polynomial, for oriented links and he remarked that $Q_{\bar{L}}(x) = F_L(1, x)$ for any oriented link L, where \bar{L} is the unoriented link obtained from L by forgetting about the orientation.

Lickorish calculated F-polynomial of two-bridge links. In this paper, we calculate O-polynomial of pretzel links.

For an integer p we denote an integral tangle diagram depicted in Fig. 1 by \tilde{I}_p . Let $\tilde{L}(p_1, p_2, \dots, p_n)$ be a link diagram that is a numerator of a tangle diagram obtained

FIGURE 1

FIGURE 2

by summing integral tangle diagrams $\tilde{I}_{p_1}, \tilde{I}_{p_2}, \dots, \tilde{I}_{p_n}$ (see Fig. 2). We call a link represented by a diagram $\tilde{L}(p_1, p_2, \dots, p_n)$ a pretzel link $L(p_1, p_2, \dots, p_n)$.

We set $\lambda_+ = (x + \sqrt{x^2 - 4})/2$ and $\lambda_- = (x - \sqrt{x^2 - 4})/2$. It is clear that

(1)
$$\begin{cases} \lambda_{+} + \lambda_{-} = x, \\ \lambda_{+} \lambda_{-} = 1. \end{cases}$$

For an integer p let

$$H_p(x) = \frac{\lambda_+^p - \lambda_-^p}{\lambda_+^2 - \lambda_-^2}.$$

We note that the two facts that λ_+ and λ_- satisfy (1) and that $H_p(x)$ is a symmetric polynomial in λ_+ and λ_- imply that $H_p(x)$ is a Laurent polynomial in x.

Let \mathcal{M}_n be the set of mappings from $\{1, 2, \dots, n\}$ to $\{-1, 0, 1\}$. For $\mu \in \mathcal{M}_n$ we set

$$S\mu=\sum_{i=1}^n\mu(i)\;,$$

and denote the number of elements of $\mu^{-1}(0)$ by $N\mu$.

THEOREM. For nonzero integers p_1, p_2, \dots, p_n , we have

$$Q_{L(p_1, p_2, \dots, p_n)}(x) = \sum_{\mu \in \mathcal{M}_n} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, p_2, \dots, p_n](x),$$

where

$$G_{p}(x) = \left(1 - \frac{x}{2 - x}\right) (H_{1+p}(x) + H_{1-p}(x)) + \frac{x}{2 - x},$$

$$\pi[\mu; p_{1}, p_{2}, \dots, p_{n}](x)$$

$$= \prod_{i \in \mu^{-1}(1)} H_{1+p_{i}}(x) \prod_{i \in \mu^{-1}(-1)} H_{1-p_{i}}(x) \prod_{i \in \mu^{-1}(0)} (1 - H_{1+p_{i}}(x) - H_{1-p_{i}}(x)),$$

and $\prod_{i \in \emptyset} = 1$.

Since all $H_p(x)$'s are Laurent polynomials in x, we know that each $\pi[\mu; p_1, p_2, \dots, p_n](x)$ is also a Laurent polynomial. We shall show that all $G_s(x)$'s are Laurent polynomials.

2. Proof.

In order to prove Theorem we need to show some properties of the polynomials $H_p(x)$ and $G_p(x)$.

LEMMA 1. For an integer p we have

$$H_{1+p}(x) + H_{-1+p}(x) = xH_p(x)$$
.

PROOF. By (1) we have $\lambda_+ + \lambda_+^{-1} = x$ and $\lambda_- + \lambda_-^{-1} = x$. It follows that

$$H_{1+p}(x) + H_{-1+p}(x) = \frac{\lambda_{+}^{1+p} - \lambda_{-}^{1+p}}{\lambda_{+}^{2} - \lambda_{-}^{2}} + \frac{\lambda_{+}^{-1+p} - \lambda_{-}^{-1+p}}{\lambda_{+}^{2} - \lambda_{-}^{2}}$$

$$= \frac{\lambda_{+}^{p}(\lambda_{+} + \lambda_{+}^{-1}) - \lambda_{-}^{p}(\lambda_{-} + \lambda_{-}^{-1})}{\lambda_{+}^{2} - \lambda_{-}^{2}}$$

$$= \frac{x(\lambda_{+}^{p} - \lambda_{-}^{p})}{\lambda_{+}^{2} - \lambda_{-}^{2}}$$

$$= xH_{p}(x).$$

We now recall the definition of the Q-polynomial of links. That is the Laurent polynomial invariant for unoriented links defined inductively by

$$\begin{cases} Q_{\odot}(x) = 1, \\ Q_{L_{+}}(x) + Q_{L_{-}}(x) = xQ_{L_{0}}(x) + xQ_{L_{\infty}}(x), \end{cases}$$

where \bigcirc is the trivial knot and L_+ , L_- , L_0 and L_∞ are idential except in the neighbourhood of one crossing point where they look as in Fig. 3.

We note that a link $L(\underbrace{1, 1, \dots, 1}_{s})$ is a (2, s)-torus link and denote it by T[s].

FIGURE 3

LEMMA 2. Let s be an integer. Then

$$Q_{T[s]}(x) = G_s(x) .$$

PROOF. We consider a sequence $\{X_s(x)\}_{s\in\mathbb{Z}}$ in $\mathbb{Z}[x^{\pm 1}]$, and a system of equations

$$\begin{cases} X_{1+s}(x) + X_{-1+s}(x) = xX_s(x) + x, \\ X_1(x) = X_{-1}(x) = 1, \end{cases}$$

where Z is the set of integers. The system has a unique solution. Therefore to prove Lemma 2 we need to verify that both sequences $\{Q_{T[s]}(x)\}_{s\in Z}$ and $\{G_s(x)\}_{s\in Z}$ are solutions of the system.

By the definition of the Q-polynomial we have

$$Q_{T[1+s]}(x) + Q_{T[-1+s]}(x) = xQ_{T[s]}(x) + xQ_{O}(x)$$

= $xQ_{T[s]}(x) + x$.

Since both T[1] and T[-1] are the trivial knots, $Q_{T[\pm 1]}(x) = 1$. Hence $\{Q_{T[s]}(x)\}_{s \in \mathbb{Z}}$ is a solution of the system.

By Lemma 1 we have

$$G_{1+s}(x) + G_{-1+s}(x)$$

$$= \left(1 - \frac{x}{2-x}\right) (H_{2+s}(x) + H_{-s}(x) + H_{s}(x) + H_{2-s}(x)) + \frac{2x}{2-x}$$

$$= \left(1 - \frac{x}{2-x}\right) (xH_{1+s}(x) + xH_{1-s}(x)) + \frac{2x}{2-x}$$

$$= xG_{s}(x) - \frac{x^{2}}{2-x} + \frac{2x}{2-x}$$

$$= xG_{s}(x) + x.$$

By $H_0(x) = 0$, $H_2(x) = 1$ we have $G_{\pm 1}(x) = 1$. Hence we conclude that $\{G_s(x)\}_{s \in \mathbb{Z}}$ is a solution of the system. This completes the proof.

By Lemma 2 we know that all $G_s(x)$'s are Laurent polynomials in x. We denote the Q-polynomial of $L(p_1, p_2, \dots, p_n)$ by $Q[p_1, p_2, \dots, p_n](x)$.

LEMMA 3. For integers $p_1, p_2, \dots, p_n (n \ge 2)$,

$$Q[p_{1}, p_{2}, \dots, p_{n}](x)$$

$$= H_{1+p_{n}}(x)Q[p_{1}, \dots, p_{n-1}, 1](x) + H_{1-p_{n}}(x)Q[p_{1}, \dots, p_{n-1}, -1](x)$$

$$+ \frac{x}{2-x}(1 - H_{1+p_{n}}(x) - H_{1-p_{n}}(x))Q[p_{1}, p_{2}, \dots, p_{n-1}](x).$$

PROOF. Fix p_1, p_2, \dots, p_{n-1} . We consider a sequence $\{X_p(x)\}_{p \in \mathbb{Z}}$ in $\mathbb{Z}[x^{\pm 1}]$,

and the system of equations

$$\begin{cases} X_{1+p}(x) + X_{-1+p}(x) = xX_p(x) + xQ[p_1, p_2, \dots, p_{n-1}](x), \\ X_1(x) = Q[p_1, \dots, p_{n-1}, 1](x), \\ X_{-1}(x) = Q[p_1, \dots, p_{n-1}, -1](x). \end{cases}$$

The system has a unique solution. By the definition of the Q-polynomial the sequence $\{Q[p_1, \dots, p_{n-1}, p](x)\}_{p \in \mathbb{Z}}$ is a solution of the system. By Lemma 1 we obtain that the sequence

$$\left\{ H_{1+p}(x)Q[p_1, \dots, p_{n-1}, 1](x) + H_{1-p}(x)Q[p_1, \dots, p_{n-1}, -1](x) + \frac{x}{2-x} (1 - H_{1+p}(x) - H_{1-p}(x))Q[p_1, p_2, \dots, p_{n-1}](x) \right\}_{p \in \mathbb{Z}}$$

is a solution of the system.

Now we restate and prove Theorem.

THEOREM. For nonzero integers p_1, p_2, \dots, p_n ,

$$Q[p_1, p_2, \dots, p_n](x) = \sum_{\mu \in \mathcal{M}} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, p_2, \dots, p_n](x).$$

PROOF. We prove Theorem by induction on $|p_1|+|p_2|+\cdots+|p_n|-n$.

If $|p_1|+|p_2|+\cdots+|p_n|-n=0$, then each p_i $(i=1,2,\cdots,n)$ is either 1 or -1. It follows that the pretzel link $L(p_1,p_2,\cdots,p_n)$ is the $(2,p_1+p_2+\cdots+p_n)$ -torus link. By Lemma 2 we have

(2)
$$Q[p_1, p_2, \dots, p_n](x) = Q_{T[p_1+p_2+\dots+p_n]}(x) = G_{(p_1+p_2+\dots+p_n)}(x)$$
.

On the other hand let v be the mapping in \mathcal{M}_n with $v(i) = p_i$ for $i = 1, 2, \dots, n$. If $\mu \neq v$ for $\mu \in \mathcal{M}_n$, then there exists an integer $j(j=1, 2, \dots, n)$ with $\mu(j) \neq p_j$. We note that

$$\begin{cases} H_{1+p_j}(x) = 0 & \text{if } \mu(j) = 1, \\ H_{1-p_j}(x) = 0 & \text{if } \mu(j) = -1, \\ 1 - H_{1+p_j}(x) - H_{1-p_j}(x) = 0 & \text{if } \mu(j) = 0. \end{cases}$$

Therefore we have $\pi[p_1, p_2, \dots, p_n](x) = 0$ if $\mu \neq v$. It follows that

(3)
$$\sum_{\mu \in \mathcal{M}_n} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, p_2, \cdots, p_n](x)$$
$$= G_{S\nu}(x) \left(\frac{x}{2-x}\right)^{N\nu} \pi[\nu; p_1, p_2, \cdots, p_n](x).$$

By the defintion of v and by $H_2(x) = 1$ we have

$$Sv = p_1 + p_2 + \cdots + p_n$$
,
 $Nv = 0$,
 $\pi[v; p_1, p_2, \cdots, p_n](x) = 1$.

It follows that

(4)
$$G_{S_{\nu}}(x) \left(\frac{x}{2-x}\right)^{N_{\nu}} \pi[\nu; p_1, p_2, \cdots, p_n](x) = G_{(p_1+p_2+\cdots+p_n)}(x).$$

By (2), (3) and (4) we conclude that the formula of Theorem holds.

Next we prove in the case that $|p_1|+|p_2|+\cdots+|p_n|-n>0$.

If n=1, then $L(p_1)$ is the trivial knot. We have $Q[p_1](x)=1$. Since \mathcal{M}_1 contains exactly three mappings, the right side of the formula in Theorem is the sum of three polynomials $H_{1+p_1}(x)$, $H_{1-p_1}(x)$ and $1-H_{1+p_1}(x)-H_{1-p_1}(x)$. Therefore we conclude that the formula holds.

If $n \ge 2$, then there exists an integer $j (j = 1, 2, \dots, n)$ with $|p_j| \ge 2$. Since both sides of the formula in Theorem do not depend on the order of p_1, p_2, \dots, p_n , we may assume that $|p_n| \ge 2$. By Lemma 3 we have

(5)
$$Q[p_{1}, p_{2}, \dots, p_{n}](x) = H_{1+p_{n}}(x)Q[p_{1}, \dots, p_{n-1}, 1](x) + H_{1-p_{n}}(x)Q[p_{1}, \dots, p_{n-1}, -1](x) + \left(\frac{x}{2-x}\right)(1-H_{1+p_{n}}(x)-H_{1-p_{n}}(x))Q[p_{1}, p_{2}, \dots, p_{n-1}](x).$$

Since

$$|p_1|+|p_2|+\cdots+|p_{n-1}|+1-n<|p_1|+|p_2|+\cdots+|p_n|-n$$

by the induction hypothesis we have

(6)
$$Q[p_1, \dots, p_{n-1}, 1](x) = \sum_{\mu \in \mathcal{M}_n} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, \dots, p_{n-1}, 1](x).$$

We set

$$\mathcal{M}_n^+ = \left\{ \mu \in \mathcal{M}_n \mid \mu(n) = 1 \right\},$$

$$\mathcal{M}_n^0 = \left\{ \mu \in \mathcal{M}_n \mid \mu(n) = 0 \right\},$$

$$\mathcal{M}_n^- = \left\{ \mu \in \mathcal{M}_n \mid \mu(n) = -1 \right\}.$$

Then \mathcal{M}_n^+ , \mathcal{M}_n^0 and \mathcal{M}_n^- are mutually disjoint and $\mathcal{M}_n = \mathcal{M}_n^+ \cup \mathcal{M}_n^0 \cup \mathcal{M}_n^-$. The two equations $H_0(x) = 0$ and $H_2(x) = 1$ imply that

(7)
$$\begin{cases} H_{1+p_n}(x)\pi[\mu; p_1, \dots, p_{n-1}, 1](x) = \pi[\mu; p_1, p_2, \dots, p_n](x) & \text{if } \mu \in \mathcal{M}_n^+, \\ \pi[\mu; p_1, \dots, p_{n-1}, 1](x) = 0 & \text{otherwise}. \end{cases}$$

By (6) and (7) we have

(8)
$$H_{1+p_{n}}(x)Q[p_{1}, \dots, p_{n-1}, 1](x)$$

$$= H_{1+p_{n}}(x) \sum_{\mu \in \mathcal{M}_{n}} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_{1}, \dots, p_{n-1}, 1](x)$$

$$= H_{1+p_{n}}(x) \sum_{\mu \in \mathcal{M}_{n}^{+}} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_{1}, \dots, p_{n-1}, 1](x)$$

$$= \sum_{\mu \in \mathcal{M}_{n}^{+}} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_{1}, p_{2}, \dots, p_{n}](x).$$

By the argument similar to that in case $H_{1+p_n}(x)Q[p_1, \dots, p_{n-1}, 1](x)$, we can prove that

(9)
$$H_{1-p_n}(x)Q[p_1, \dots, p_{n-1}, -1](x) = \sum_{\mu \in \mathcal{M}^-} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, p_2, \dots, p_n](x).$$

We define the mapping $f: \mathcal{M}_n^0 \to \mathcal{M}_{n-1}$ as $f(\mu) = \mu \big|_{\{1,2,\dots,n-1\}}$, then f is a bijection. For $\mu \in \mathcal{M}_n^0$, we have

bijection. For
$$\mu \in \mathcal{M}_n^0$$
, we have
$$\begin{cases}
\pi[\mu; p_1, p_2, \dots, p_n](x) \\
= (1 - H_{1+p_n}(x) - H_{1-p_n}(x)) \pi[f(\mu); p_1, p_2, \dots, p_{n-1}](x), \\
Nf(\mu) = N\mu + 1, \\
Sf(\mu) = S\mu.
\end{cases}$$

Since

$$|p_1|+|p_2|+\cdots+|p_{n-1}|-(n-1)<|p_1|+|p_2|+\cdots+|p_n|-n$$
,

by the induction hypothesis we have

$$\left(\frac{x}{2-x}\right)(1-H_{1+p_n}(x)-H_{1-p_n}(x))Q[p_1,p_2,\cdots,p_{n-1}](x)
=\left(\frac{x}{2-x}\right)(1-H_{1+p_n}(x)-H_{1-p_n}(x))
\times \sum_{\rho\in\mathcal{M}_{n-1}}G_{S\rho}(x)\left(\frac{x}{2-x}\right)^{N\rho}\pi[\mu;p_1,p_2,\cdots,p_{n-1}](x).$$

By (10) we have

$$\left(\frac{x}{2-x}\right)(1-H_{1+p_n}(x)-H_{1-p_n}(x))\sum_{\rho\in\mathcal{M}_{n-1}}G_{S\rho}(x)\left(\frac{x}{2-x}\right)^{N\rho}\pi[\mu;p_1,p_2,\cdots,p_{n-1}](x)
=\left(\frac{x}{2-x}\right)\sum_{\mu\in\mathcal{M}_n^0}G_{S\mu}(x)\left(\frac{x}{2-x}\right)^{N\mu-1}\pi[\mu;p_1,p_2,\cdots,p_n](x)
=\sum_{\mu\in\mathcal{M}_n^0}G_{S\mu}(x)\left(\frac{x}{2-x}\right)^{N\mu}\pi[\mu;p_1,p_2,\cdots,p_n](x).$$

Therefore it follows that

(11)
$$\left(\frac{x}{2-x}\right) (1 - H_{1+p_n}(x) - H_{1-p_n}(x)) Q[p_1, p_2, \cdots, p_{n-1}](x)$$

$$= \sum_{\mu \in \mathcal{M}_n^0} G_{S\mu}(x) \left(\frac{x}{2-x}\right)^{N\mu} \pi[\mu; p_1, p_2, \cdots, p_n](x) .$$

By (5), (8), (9) and (11) we conclude that the formula of Theorem holds. This completes the proof.

References

- [BLM] R. B. Brandt, W. B. R. Lickorish and K. C. Millett, A polynomial invariant for unoriented knots and links, Invent. Math., 84, (1986), 563-573.
- [H] C. F. Ho, A new polynomial invariant for knots and links, Abstract Amer. Math. Soc., 64 (1985), 300, 821-57-16.
- [K] L. H. KAUFFMAN, An invariant of regular isotopy, Trans. Amer. Math. Soc., 318 (1990), 417-471.

Present Address:

DEPARTMENT OF MATHEMATICAL SCIENCES, TOKAI UNIVERSITY HIRATSUKA, KANAGAWA 259–12, JAPAN *e-mail*: masao@lemon.ss.u-tokai.ac.jp