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Q-polynomial of Pretzel Links

Masao HARA

Waseda University

Abstract. We find a formula for the Q-polynomial of a pretzel link L(py,p;," " *, Pn)- The formula
describes the Q-polynomial as a polynomial in H,,(x), H,,(x) ,* -, H, (x) , where H, (x), H,,(x) ,* - -, H, (%)
are Laurent polynomials in x and H,(x) depends on only p;.

1. Introduction.

Brandt-Lickorish-Millett [BLM] and Ho [H] defined a polynomial invariant for
unoriented links, and the invariant is called the Q-polynomial. Kauffman [K7] defined
a polynomial invariant, called the F-polynomial, for oriented links and he remarked
that Qr(x)=Fy(1, x) for any oriented link L, where L is the unoriented link obtained
from L by forgetting about the orientation.

Lickorish calculated F-polynomial of two-bridge links. In this paper, we calculate
Q-polynomial of pretzel links.

For an integer p we denote an integral tangle diagram depicted in Fig.1 by I~p. Let
E(py,ps»- -, p,) be a link diagram that is a numerator of a tangle diagram obtained
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FIGURE 2
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by summing integral tangle diagrams 7, ,7, , - -, Tp., (see Fig. 2). We call a link re-
presented by a diagram L(p,, p, ,* * -, p,) a pretzel link L(py, D25 "5 Pn)-
We set 4, =(x++/ x*—4)/2 and A_=(x—+/ x>—4 )/2. It is clear that

(1) {}..*. +l_=x,
l+l_ =1 .
For an integer p let
AR — 27
HP(X)=W .

We note that the two facts that A, and A_ satisfy (1) and that H »(X) is a symmetric
polynomial in A, and A_ imply that H (x) is a Laurent polynomial in x.
Let .#, be the set of mappings from {1,2,---,n} to {—1, 0, 1}. For ue .#, we set

Su= 3. u@),

and denote the number of elements of u~*(0) by Nu.

THEOREM. For nonzero integers p,, D5, * *, Dn» W€ have

x '
QL(p..pz p,.)(x)= 2 Gsu(x)(‘i_—_‘;) nlu; p1, P2 - 05 Pa)(X)

pe My

where

X

G,,(x)=(1 -3 )(H,+,(x)+H1-,<x))+% ,

nly; py, P25 75 Pal(X)
= [l Hip® [l H_,®» Il 0-Hy,,(0)—H _,(x),

iep—1(1) iep~1(—-1) ieu=1(0)

—X
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and [ ], . ,=1. O

Since all H,(x)’s are Laurent polynomials in x, we know that each

nlu; py, P2, ", Pul(X) is also a Laurent polynomial. We shall show that all G,(x)’s are
Laurent polynomials.

2. Proof.

In order to prove Theorem we need to show some properties of the polynomials
H,(x) and G (x).

LeMMA 1. For an integer p we have
Hy () +H_ 4 (x)=xHy(x) .
PrOOF. By (1) we have 1, +A7'=x and A_ +A-!=x. It follows that
AYtP_jlte  Ti%p_j-i4p
2oz T m_x
_ MGy +ATHD—AP(A_+AIYH

I{1+1:(-x:)"'11—1+p(x)=

A2 —A%
_ X(AB —22)
T
=xH,(x) .

O

We now recall the definition of the Q-polynomial of links. That is the Laurent
polynomial invariant for unoriented links defined inductively by

{ Qo(x)=l s
0L, (X)+0, ()= xQLo(x) + xQLw(x) s

where O is the trivial knot and L,, L_, L, and L, are idential except in the
neighbourhood of one crossing point where they look as in Fig. 3.

Wenotethatalink L(1, 1, - - -, 1) is a (2, s)-torus link and denote it by T[s].
[ ——
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FIGURE 3
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LEMMA 2. Let s be an integer. Then

Or(x)=G(x) .
PrROOF. We consider a sequence {X(x)},.z in Z[x*'], and a system of equations
{Xl +s(x)+X—1+s(x)=st(x)+x >
X (x)=X_,(x)=1,
where Z is the set of integers. The system has a unique solution. Therefore to prove
Lemma 2 we need to verify that both sequences {Qr)(%)}scz and {Gy(x)},.z are solu-
tions of the system.
By the definition of the Q-polynomial we have
Or1+5(X) + O1-1+5(X) =XQ71(X) + xQ ()
=XQT[s](x) +x.
Since both T[1] and T —1] are the trivial knots, Qr(41(x)=1. Hence {Qr(*)};cz is

a solution of the system.
By Lemma 1 we have

Gl +s(x) + G-— 1 +s(x)

=(1 -3 x )(H2+,(x)+H_,(x)+H,(x)+Hz-s(x))+ 22x

—X

x 2
=(1 - )(XH1+s(x)+XH1-—s(x))+ ad
2—x 2—
x? 2x
=xGy(x)— +
) 2—-x 2—x

=xG(x)+x.
By Hy(x)=0, Hy(x)=1 we have G.,(x)=1. Hence we conclude that {G(x)},.z is a
solution of the system. This completes the proof. O

By Lemma 2 we know that all G,(x)’s are Laurent polynomials in x.
WC denOte the Q-pOIynomial Of L(pls p2 s '9pn) by Q[pb p2 s " "pn](x)'

LEMMA 3. For integers py,p,, -, P, (n=2),

OLp1, P25 "5 Pal(®)
=H1+p,,(x)Q[p1 5" s Pu—1> 1](x)+H1—pn(x)Q[p1 5" s Pn—1> —1](X)

(1= Hy )= Hyp (NQLP1 D25, 2o 1)

PROOF. Fix py,p,, -, p,—1. We consider a sequence {X,(x)},.z in Z[x*],




O-POLYNOMIAL 187

and the system of equations
X1+p(x)+X—1+p(x)=xXp(x)+xQ[p19p2 5" .9pn—1](x) ’

Xl(x)=Q[p1 5" s Pn—15 1](x) s
X—l(x)=Q[p1 2" s Pn—1 —1](x) .

The system has a unique solution. By the definition of the Q-polynomial the sequence
{Q[py, s Pn-1,P1(X)},cz is a solution of the system. By Lemma 1 we obtain that
the sequence

{H1+p(x)Q[p1 5" " s Pn-1> 1](x)+H1—p(x)Q[p1 5" s Pn-1> *1](.76)

X

+
2

(1—H1+p(X)—H1_p(X))Q[p1,p2 5" 'spn-l:l(x)}

peZ
is a solution of the system. | O

Now we restate and prove Theorem.

THEOREM. For nonzero integers pi,Ps ," " ", Pn

Q[Pppz " Pl (X)= Z GSu(x)( al ) uﬂ[ll; P1sP25 " "5 Pl (X) .

peM 2—x

PROOF. We prove Theorem by induction on |p, |+|p,|+ - +|p,|—n.
If |py | +|pal+ - - +|p,| —n=0, then each p; (i=1,2, -, n) is either 1 or —1. It

follows that the pretzel link L(p,, p,," - -, p,) is the (2, p; +p,+ - - - +p,)-torus link. By
Lemma 2 we have

)] Olpi,ps, - .spn](x)-:QT[p1+p2+---+p,.](x)=G(p‘+p2+"'+pn)(x) .

On the other hand let v be the mapping in .#, with v(i)=p, for i=1,2,---, n. If
u#v for ue #,, then there exists an integer j(j=1,2, -, n) with u(j)#p; We note
that

Hyop(0)=0 it uG)=1,
{ Hy_p0)=0 it uG)=—1,
1= Hyyp () —Hy,0)=0 if u(j)=0.

Therefore we have n[p,, p,, -, p,J(x)=0 if u#v. It follows that

Nu
3) Y Gs,.(x)(Tf‘_;) 2l p1, P2y s P(X)

neMy

=GSv(x)(—2_§’;) vn[‘,; P, P25 °$pn](x) °




188 MASAO HARA

By the defintion of v and by H,(x)=1 we have

Sv=pi+ps+ - +p,,

Nv=0,

nlv; P1, P25 5 Pal(X)=1.
It follows that |

X
2—x

By (2), (3) and (4) we conclude that the formula of Theorem holds.

Next we prove in the case that |p, |+ |p, |+ - +]|p,| —n>0.

If n=1, then L(p,) is the trivial knot. We have Q[p,](x)=1. Since .#, contains
exactly three mappings, the right side of the formula in Theorem is the sum of three
polynomials H, , , (x), H,_,(x) and 1-H, ,, (x)—H, _,(x). Therefore we conclude
that the fomula holds.

If n>2, then there exists an integer j(j=1, 2, ,- - -, n) with | p;| > 2. Since both sides
of the formula in Theorem do not depend on the order of p,, p, ,* * -, p,, WE may assume
that | p,|>2. By Lemma 3 we have

(5) Q[Pbpz »" " ',P,J(JC)
=H1+p,.(x)Q[p1 5" "5 Pn-1> 1](x)+H1—p,.(x)Q[p1 »* " s Pn—15 _1](x)

+(2 a )(1 —Hy,p(X)—H,_p,(x))QLP1, P25 "> Pa-11(X) .

—X

(4) GSV(x)( ) vn[V; D1sP2>5" ‘,p,.:l(X)=G(m +p2+---+p,,)(x) .

Since
1Py +1P2l+ - +1Paci |+ 1=n<|py | +|ps |+ - +|pal—n,
by the induction hypothesis we have
©) S Q@Lp1s s Pa-1, 11(X)
x M
= z GSu(x)( ) 1'5[#; pl P "pn—ls IJ(X) .

uneMy 2—x

We set
M={peH,|pm)=1},
MY={pe M, | pm)=0},
M7 ={peH,|pm)=—1}.

Then .#}, #° and .#, are mutually disjoint and #,=.#, U #2 U #, . The two
equations Hy(x)=0 and H,(x)=1 imply that
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(7) H1+pn(x)7t[#;p1 5" s Pn—1> IJ(X)=7C[ﬂ;p1,p2 "”,pn](x) if ﬂE./”: ’
nlus pyst s Pamyy 11(x)=0 otherwise .

By (6) and (7) we have

(8) H1+pn(x)Q[p1 3" s Pn-15 1](x)
Nu
=Hy,p,(x) Gsn(x)( a ) nlu; pys s Pam1s 11(2)
ne My 2—x

. Nu
=H1+p,,(x)' Z+G5u(x)( x ) n[”’pl 9.“9pn—13 1](x)

ne M, 2——x

Nu
= Z+ Gsy,,(x)<2—j;) nlu; prs P2y s Pal(X) .

pne My,

By the argument similar to that in case H, ., (x)Q[p1," ", Pn-1, 11(x), we can
prove that

(9) Hl—p,.(x)Q[pl 3" s Pn—1> —1](X)
Nu
= 2 Gs;:(-")(%) nlu; p1sp2 s s Pal(X)
ne My —X

We define the mapping f: 40— .#,_, as fW=n|(1,2,--n-1), then f is a
bijection. For pe .#2, we have

71:[[1, PPz "pn](x)

=(1—=Hy4p,(x)—Hy_, CNELf(1); P1>P2>" " "5 Pn-11(X)
Nf(W)=Nu+1,
Sf(p)=Su.

(10)

Since

|Pil+1p2] 4+ + i [ —(r =D <|py | +|P2 |+ +|Pal =1,

by the induction hypothesis we have

(2—J-C—x)(1 _H1+”"(x)—H1-pn(x))Q[P1’ P25 " s Pn-11(%)

2—x

=( x )u—HH,,(x)—HI_,,,,(x»

Np
X Z GSp(x)(ﬁ) 75[[1,; pl: p2 s '9pn—1](x) .

peEMn-~1

By (10) we have
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Np
(2x )(1-H1+pn(x)—H1—pn(x)) Z GSp(x)<2x ) L p; P, Pas s Pr-11(X)
- peMn—1 : —X
x x Mt
=(2 ) > Gs,.(x)( ) nlw; p1, P2y s Pal()
— X/ ueul 2—x

R Nu
=2 GS““”(?%) nlu; p1, P2y Pal(X) -

pe My

Therefore it follows that

an (2 a )(l —Hyp,(X)—H,_p,,(N2LP1, P2, " Pa-11(X)

—X

ne My

Np
= Z GSu("O(i) 1![[1., D1sP2 > 9pn](x) .

By (5), (8), (9) and (11) we conclude that the formula of Theorem holds. This
completes the proof. O
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