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Introduction.

Let $k$ be a finite extension of the field of rational numbers $Q$ and $p$ a fixed prime
number. A Galois extension $K$ of $k$ is called a $Z_{p}$-extension if the Galois group $Ga1(K/k)$

is topologically isomorphic to the additive group $Z_{p}$ ofthep-adic integers. Every number
field $k$ has at least one $Z_{p}$-extension, namely the cyclotomic $Z_{p}$-extension which is
contained in the field obtained by adjoining all p-power roots of unity to $k$ .

For a $Z_{p}$-extension

$k=k_{0}\subset k_{1}\subset k_{2}\subset\cdots\subset k_{n}\subset\cdots\subset K=\bigcup_{n=1}^{\infty}k_{n}$

with Galois groups $Ga1(k_{n}/k)\simeq Z/p^{n}Z$, let $h_{n}$ be the class number of $k_{n}$ and $p^{e_{n}}$ the exact
power of $p$ dividing $h_{n}$ . Then Iwasawa has proved that there exist integers $\lambda,$

$\mu$ and $v$ ,
depending only on $K/k$ and $p$ , such that $e_{n}=\lambda n+\mu p^{n}+v$ for all sufficiently large $n$ . The
integers $\lambda=\lambda_{p}(K/k),$ $\mu=\mu_{p}(K/k)$ and $v=v_{p}(K/k)$ are called the Iwasawa invariants of $K/k$

for $p$ . For convenience, the Iwasawa invariants of the cyclotomic $Z_{p}$-extension of $k$ for
$p$ will be denoted by $\lambda_{p}(k),$ $\mu_{p}(k)$ and $v_{p}(k)$ .

In [6], Greenberg stated the following conjecture concerning the Iwasawa
invariants:

“If $k$ is totally real, then both $\lambda_{p}(k)$ and $\mu_{p}(k)$ vanish.”

It seems quite difficult to decide whether this conjecture is true, even for real quadratic
fields.

Recently in [2], [3], [4] and [5], Fukuda and Komatsu studied Greenberg’s
conjecture in some real quadratic cases. They defined two invariants $n_{1}$ and $n_{2}$ in [4]
(cf. Section 1), and treated the cases where $2\leq n_{1}<n_{2}$ and $n_{1}=1$ in [3], [4] and the case
where $n_{1}=n_{2}=2$ in [2], [5] (See Addendum).
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In this paper, we shall make further investigation in the real quadratic case, and
treat mainly the case $n_{2}\geq 2$ (including the case $n_{1}=n_{2}$). Let $A_{n}$ be the p-primary part
of the ideal class group of $k_{n}$ and $D_{n}$ the subgroup of $A_{n}$ consisting of ideal classes
which contain products of prime ideals of $k_{n}$ lying over $p$ . It should be noted that the
order of $D_{n}$ has a close relation to Greenberg’s conjecture (see [6]). After recalling
the known results in Section 1, we shall give in Section 2 a necessary and sufficient
condition for $D_{m}|=p|D_{n}|$ for some $m>n\geq 0$ (Theorem 1), and using this, give in
Section 3 a sufficient condition for $\lambda_{p}(k)=\mu_{p}(k)=0$ (Theorem 2). Further, in Appendix
we treat the case $n_{2}=1$ and give another proof of a special case of Theorem 1 in [4].

Finally we make the following remark. If $k$ is an arbitrary number field and if $p$

splits completely in $k$, then $\lambda_{p}(k)\geq r_{2}$ , where $r_{2}$ is the number of complex archimedean
primes of $k$ (see [6]). So, for a prime $p$ , we can find $k$ for which $\lambda_{p}(k)$ is arbitrarily

large.

\S 1. Preliminaries.

Let $k$ be a real quadratic field with class number $h,$ $\epsilon(>1)$ the fundamental unil
of $k$, and $p$ an odd prime number which splits in $k$, namely $(p)=p\mathfrak{p}^{\prime}$ in $k$ where $\mathfrak{p}\neq \mathfrak{p}^{\prime}$

Then we can choose $\alpha\in k$ such that $p^{h}=(\alpha)$ . Fukuda and Komatsu [4] defined $n_{1}$ tc
be the maximal integer such that $\alpha^{p-1}\cong 1(mod p^{n_{1}}Z_{p})$ and $n_{2}$ to be the maximal intege]

such that $\epsilon^{p-1}\equiv 1(mod p^{n_{2}}Z_{p})$ . Here, $n_{1}$ is uniquely determined under the condition
$n_{1}\leq n_{2}$ .

For the cyclotomic $Z_{p}$-extension

$k=k_{0}\subset k_{1}\subset k_{2}\subset\cdots\subset k_{n}\subset\cdots\subset k_{\infty}=\bigcup_{n=1}^{\infty}k_{n}$

with Galois group $Ga1(k_{\infty}/k)=\overline{\langle\sigma\rangle}$, as stated in the introduction, let $A_{n}(=A_{n}(k))bf$

the p-primary part of the ideal class group of $k_{n}$ and $D_{n}(=D_{n}(k))$ the subgroup of $A_{I}$

consisting of ideal classes which contain products of prime ideals of $k_{n}$ lying over $p$

and $E_{n}(=E_{n}(k))$ the unit group of $k_{n}$ . We also denote by $\mathfrak{p}_{n}$ (resp. $p_{n}^{\prime}$) the unique prime
ideal of $k_{n}$ lying above $p$ (resp. $p^{\prime}$). In this case we have

$D_{n}=\langle Cl(\mathfrak{p}_{n})\rangle\cap A_{n}$ ,

where $Cl(p_{n})$ denotes the ideal class represented by $p_{n}$ . Let $B_{n}(=B_{n}(k))$ be the subgroup
of $A_{n}$ consisting of ideal classes which are invariant under the action of $Ga1(k_{n}/k)ane$

$g_{n}(=E_{n}(k))$ the subgroup of $A_{n}$ consisting of ideal classes which contain ideals invarian
under the action of $Ga1(k_{n}/k)$ . For $n\geq r\geq 0$ , we put

$B_{n}^{(r)}=\{a\in A_{n}|a^{\sigma_{r}-1}=1\}$ ,

where $\sigma_{r}=\sigma^{p^{r}}$ . Then we see that
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$D_{n}\subset B_{n}^{\prime}\subset B_{n}=B_{n}^{\langle 0)}\subset B_{n}^{\langle 1)}\subset B_{n}^{\langle 2)}\subset\cdots\subset B_{n}^{\langle n)}=A_{n}$

and

$B_{n}^{\prime}=i_{0,n}(A_{0})D_{n}$ ,

where $i_{0,n}$ denotes the induced map by the inclusion of the ideal group of $k$ in the ideal
group of $k_{n}$ . For each $m\geq n\geq 0$ , we will let $N_{m,n}$ be the norm map from $k_{m}$ to $k_{n}$ and
$N_{m,n}$ will also denote the induced maps from $A_{m}$ to $A_{n}$ , from $E_{m}$ to $E_{n}$ .

The following formulae are well-known and play an important role in the rest of this
paper:

(i) $B_{n}/B_{n}^{\prime}\simeq(E_{0}\cap N_{n,0}(k_{n}^{x}))/N_{n,0}(E_{n})$ for all $n\geq 0$ ,

(ii) $|B_{n}^{\prime}|=|A_{0}|\frac{p^{n}}{(E_{0}:N_{n,0}(E_{n}))}$ for all $n\geq 0$ ,

(iii) $|B_{n}|=|A_{0}V^{2^{-1}}$ for all $n\geq n_{2}-1$ .
For details refer to the paper of Fukuda and Komatsu [3], [4], Greenberg [6],
and Yokoi [9]. Finally we note that, if $k$ has only one prime lying over $p$ and if $A_{0}$ is
trivial, then $\lambda_{p}(k),$ $\mu_{p}(k)$ and $v_{p}(k)$ are zero (see [7]).

All the notation defined above will be used in the same meaning throughout this
paper.

\S 2. Relation between a new invariant and the order of $D_{n}$ .
Throughout this section, we assume that $A_{0}$ is trivial and that $n_{2}\geq 2$ . In this case

we note that $B_{n}^{\prime}=D_{n}$ . We shall give a necessary and sufficient condition for $D_{m}|=p|D_{n}|$

for some $m>n\geq 0$ .
Now fix $r\geq 0$ for a while and put $|D_{r}|=p^{j}$ . Assume that $0\leq j\leq n_{2}-2$ . (Ifj $=n_{2}-1$ ,

then $B_{n}=D_{n}$ for large $n\geq 0$ from (iii), hence Greenberg’s criterion implies that
$\lambda_{p}(k)=\mu_{p}(k)=0$ (cf. Appendix).) Then we can choose $\alpha_{r}\in k_{r}$ such that $p_{r}^{\prime hp^{j}}=(\alpha_{r})$ . We
define a new invariant $m,eN$ for $k_{r}/k$ and $p$, by

$p^{m_{r}}||(N_{r,0}(\alpha_{r})^{p-1}-1)$ in $k$ .
Since $N_{r,0}(\alpha_{r})^{p-1}\in(1+pZ_{p})^{p^{r}}$ , we have $r+1\leq m_{r}$ . On the other hand, it follows from
(ii) that $N_{r,0}(E_{r})=E_{0}^{p^{r-j}}$ . Thus there exists $\epsilon_{r}\in E_{r}$ such that $p^{r+n_{2}-j}||(N_{r,0}(\epsilon_{r})^{p-1}-1)$ ,
therefore we can choose $\alpha_{r}\in k_{r}$ such that $m_{r}\leq r+n_{2}-j$. Hence we see that $m_{r}$ is uniquely
determined under the condition $r+1\leq m_{r}\leq r+n_{2}-j$.

Here we should mention that if we put $n_{2}=2$ and $j=0$ , then $m_{r}$ is equal to $n_{1}^{(r)}$

which was defined by Fukuda [2], and that if we put $r=0$ , then $j=0$ , so $m_{0}$ is equal
to $n_{1}$ . Now we prove the following theorem.

THEOREM 1. Let $k$ be a real quadratic field and $p$ an odd prime number which
splits in $k$ . Assume that $A_{n}$ is cyclic for each $n\geq 0$ , that $A_{0}$ is trivial, and that $|D_{r}|=p^{j}$
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for some $r\geq 0$ . Then

$m_{r}=r+s\Leftrightarrow|D_{r+t}|=\left\{\begin{array}{ll}p^{j+1} & ift=s,\\p^{j} & if0<t<s,\end{array}\right.$

for $1\leq s\leq n_{2}-1-j$.

Before proceeding to the proof, we prepare two lemmas. Let $k_{p_{n}}$ be the completion
$ofk_{n}$ at $\mathfrak{p}_{n}andE_{p_{n}}theunitgroupofk_{p_{n}}$ . We put

$U_{n}=$ { $u\in E_{p_{n}}|u\equiv 1$ (mod $p_{n}$)}

and

$U_{n}^{\langle r)}=\{u\in U_{n}|N_{n.0}(u)\equiv 1(mod p^{n+r+1})\}$

for $0\leq r\leq n$ , respectively.

LEMMA 1. Let $k$ and $p$ be as in Theorem 1. Then we have $N_{n+j.n}(U_{n+j})=U_{n}^{U)}$ for
all $n\geq j$.

$PR\infty F$ . Let $\epsilon_{n}=N_{n+j.n}(\epsilon_{n+j})\in N_{n+j.n}(U_{n+j})$ . Then we see that

$N_{n.0}(\epsilon_{n})=N_{n+j,0}(\epsilon_{n+j})\cong 1(mod p^{n+j+1})$ .
Hence we have $\epsilon_{n}\in U_{n}^{U)}$ , so $N_{n+j,n}(U_{n+j})\subset U_{n}^{01}$ for all $n\geq j$.

We now consider the composite map $\varphi$ of

$N_{n.0}$ : $U_{n}\rightarrow 1+p^{n+1}Z_{p}$ and $1+p^{n+1}Z_{p}\rightarrow(1+p^{n+1}Z_{p})/(1+p^{n+j+1}Z_{p})$ .

It is easy to see that $\varphi$ is $su\dot{q}\propto tive$ and its kemel is $U_{n}^{U)}$ . Therefore we obtain

$U_{n}/U_{n}^{U)}\simeq(1+p^{n+1}Z_{p})/(1+p^{n+j+1}Z_{p})\simeq Z/p^{j}Z$ .
On the other hand, since $k_{n+j}/k_{n}$ is totally ramified at $p_{n}$ , we obtain, by local class field
theory,

$U_{n}/N_{n+j,n}(U_{n+j})\simeq Ga1(k_{p_{n+j}}/k_{p_{n}})\simeq Z/p^{j}Z$ .
It follows that $N_{n+j.n}(U_{n+j})=U_{n}^{D}$ . This completes the proof of Lemma 1.

LEMMA 2. Let $k$ and $p$ be as in Theorem 1. Assume that $A_{n}$ is cyclic for each $n\geq 0$

and $A_{0}$ is trivial. $If|D_{r}|=p^{j}$for some $r\geq 0$ , then we have $A_{r+t}=B_{r+t}^{\langle r)}$ for $0\leq t\leq n_{2}-1-j$.
$PR\infty F$ . First, we consider the case $t=n_{2}-1-j$. We have to show that

$A_{r+n_{2}-1-j}=B_{r+n_{2}-1-j}^{(r)}$ . Let $\epsilon_{r}\in E_{r}$ . Since $|D_{r}|=p^{l}$, it follows from (ii) that $N_{0}(E_{r})=$

$E_{0}^{F^{-j}}$ . Thus we have $N_{r,O}(\epsilon_{r}^{p-1})\equiv 1(mod p^{r+n_{2}-j})$ , hence

$\epsilon_{r}^{p-1}\in U_{r}^{(n_{2}-1-j)}=N_{r+n_{2}-1-j.r}(U_{+n_{2}-1-j})$

from Lemma 1. It follows that $\epsilon_{r}$ is a local norm from $k_{r+n_{2}-1-j}$ at $p_{r}$ . Since any place
which does not lie above $p$ is unramified in $k_{r+n_{2}-1-j}/k_{r}$, the product formula for the
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norm residue symbol and Hasse’s norm theorem imply that $\epsilon_{r}$ is a global norm from
$k_{r+n_{2}-1-j}$, so that

$E_{r}\subset N_{r+n_{2}-1-j,r}(k_{r+n_{2}-1-j}^{x})$ .

Then by the genus formula for $k_{r+n_{2}-1-j}/k_{r}$, we obtain

$|B_{r+n_{2}-1-j}^{(r)}|=\frac{|A_{r}|p^{n_{2}-1-j}p^{n_{2}-1-j}}{p^{n_{2}-1-j}(E_{r}:E_{r}\cap N_{r+n_{2}-1-j.r}(k_{r+n_{2}-1-j}^{x}))}=|A_{r}|p^{n_{2}-1-j}$ .

Now we assume that $H_{r+n_{2}-1-j}^{r)}\subsetneqq A_{r+n_{2}-1-j}$ . Then there exists $a\in A_{r+n_{2}-1-j}$

such that $a^{\sigma_{r}-1}\neq 1$ and $a^{(\sigma_{r}-1)^{2}}=1$ . It follows from the remark mentioned below that
there exist $u\in Z_{p}[Ga1(k_{r+n_{2}-1-j}/k_{r})]^{x}$ and $v\in Z_{p}[Ga1(k_{r+n_{2}-1-j}/k_{r})]$ such that

$1+\sigma_{r}+\cdots+\sigma_{r}^{p^{*2^{-1-j}}-1}=(\sigma_{r}-1)^{2}v+p^{n_{2}-1-j}u$ .

Hence
$a^{|A_{r}|\langle 1+\sigma,+\cdots+\sigma^{p^{*2-\prime}-J-1})}=a^{|A_{r}|(\sigma_{r}-1)^{2}v+|A,|p^{*2^{-1-j}}u}$

Therefore we have
$a^{|A,|p^{z-1-j}}=1$ .

But $A_{r+n_{2}-1-j}$ is cyclic, so it follows that $a\in B_{r+n_{2}-1-j}^{r)}$, which is a contradiction.
Next, we assume that $0\leq t\leq n_{2}-2-j$. Since

$E_{r}\subset N_{r+n_{2}-1-j,r}(k_{r+n_{2}-1-j}^{x})\subset N_{r+t.r}(k_{r+t}^{x})$ ,

the genus formula for $k_{+t}/k$, implies that $|B_{r+t}^{\prime)}|=|A_{r}|p^{t}$ . Therefore we can show that
$A_{r+t}=B_{r+t}^{r)}$ by the above argument. This completes the proof of Lemma 2. $\square $

REMARK. Let $G$ be a cyclic group with generator $\rho$ , and $g$ the order of $G$ . It is
easy to see that, for each positive integer $N$,

$1+\rho+\rho^{2}+\cdots+\rho^{N}=(\rho-1)^{2}v+\frac{1}{2}(N+1)(N\rho+2-N)$ ,

where

$v=\sum_{i=0}^{N-2}(N-1-\iota)(\rho^{i}+\rho^{i-1}+\cdots+\rho+1)$ .

In particular, if we put $N=p^{r}-1$ and $g=p^{\prime}$, then we have

$1+\rho+\rho^{2}+\cdots+\rho^{p^{r}-1}=(\rho-1)^{2}v+p^{r}(\frac{p^{\prime}-1}{2}\rho+\frac{3-p^{r}}{2})$ .

We let
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$p^{r}-3$ $p^{r}-1$

$\alpha=\overline{2}$
, $\beta=\overline{2}$ and $ u=\beta\rho-\alpha$ .

Then it follows that

$(\beta\rho-\alpha)\{(\beta\rho)^{p^{r-}1}+(\beta\rho)^{p^{r}-2}\alpha+\cdots+\alpha^{p^{r}-1}\}=\beta^{p^{r}}-\alpha^{p^{r}}\equiv\beta-\alpha\cong 1$ $(mod p)$ .
Hence we have $\beta^{p^{\prime}}-\alpha^{\gamma}\in Z_{p}^{x}$ , so $u\in Z_{p}[G]^{x}$ . Consequently there exist $u\in Z_{p}[G]^{x}$ and
$v\in Z_{p}[G]$ such that

$1+\rho+\rho^{2}+\cdots+\rho^{p^{r}-1}=(\rho-1)^{2}v+p^{r}u$ .

In particular, for each $a\in A_{n},$ $a^{p^{i}u}=1$ implies that $a^{p^{t}}=1$ .
$PR\infty F$ OF THEOREM 1. If $|D_{n+1}|\neq|D_{n}|$ for some $n\geq 0$ , then $|D_{n+1}|=p|D_{n}|$ .

Therefore it is sufficient to prove that

$m_{r}\geq r+t+1$ if and only if $|D_{r+t}|=|D,|$

for $1\leq t\leq n_{2}-1-j$.
Assume now that $|D_{r+t}|=|D_{r}|=p^{i}$ where $1\leq t\leq n_{2}-1-j$. Then we have

$p_{r+t}^{\prime hp^{j}}=(\alpha_{r+t})$ for some $\alpha_{r+t}\in k_{r+t}$ . Let $\alpha,=N_{r+t,r}(\alpha_{r+t})$ , so that $p_{r}^{\prime hp^{j}}=(\alpha_{r})$ . Thus we obtain
$N_{0}(\alpha^{p-1})=N_{+t,0}(\alpha_{+t}^{p-1})\in 1+p^{r+i+1}Z_{p}$ .

Hence $m_{r}\geq r+t+1$ .
Conversely, we assume that $m,\geq r+t+1$ where $1\leq t\leq n_{2}--1-j$. Let $\alpha_{r}$ be an element

of $k$, such that $p^{\prime hp^{j}}=(\alpha_{r})$ . We then have $N_{r,O}(\alpha,)^{p-1}\in 1+p^{r\star t+1}Z_{p}$, hence
$\alpha_{r}^{p-1}\in U^{(t)}=N_{r+t.r}(U_{+t})$

from Lemma 1. Therefore it follows that there $exist\iota\alpha_{r+t}\in k_{+t}$ such that $\alpha_{r}^{p-1}=$

$N_{r+t,r}(\alpha_{r+t})$ from Hasse’s norm theorem and the product formula. Since
$N_{r+t.r}(p_{r+t}^{\prime\langle p-1)hp^{j}}(\alpha_{r+t}^{-1}))=p_{r}^{\prime\{p-1)hp^{j}}(\alpha^{-1})^{\langle p-1)}=(1)$ ,

we see that
$p_{r+t}^{\prime\langle p-1)\hslash p^{j}}(\alpha_{r+t}^{-1})=\mathfrak{a}_{+t}^{\sigma_{r}-1}$

for some ideal $\mathfrak{a}_{r+t}$ of $k_{r+t}$ . This implies that $D_{r+t}^{p^{j}}\subset A_{r+t}^{\sigma_{r}-1}$ . Hence, by Lemma 2
$D_{r+t}^{p^{j}}\subset\Lambda_{r+t}^{\sigma,-1}=B_{r+t}^{\prime)\sigma_{r}-1}=1$ .

Since $D_{m}$ has a subgr$0$up which is isomorphic to $D_{n}$ for $m\geq n\geq 0$ , it follows that
$|D_{r+t}|=p^{j}=|D,$ $|$ . This completes the proof of Theorem 1. $\square $
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\S 3. Application to $\lambda$-invariants of real quadratic fields.

In this section, we shall apply our result of the previous section to the Iwasawa
$\lambda$-invariant of $k$ . We first prove the following lemma.

LEMMA 3. Let $k$ and $p$ be as in Theorem 1. If $A_{n}$ is cyclic for all $n\geq 0$ and $D_{r}$ is
non-trivial for some $r\geq 0$ , then $\lambda_{p}(k)=\mu_{p}(k)=0$ .

PROOF. Since $D_{n}|$ remains bounded as $ n\rightarrow\infty$ from (iii), it suffices to prove that
if $D_{n}|=|D_{n+1}|$ , then $A_{n}|=|A_{n+1}|$ for all sufficiently large $n$ . We now assume that
$|A_{n}|<|A_{n+1}|$ for all sufficiently large $n$ . Since $k_{n+1}/k_{n}$ is totally ramified at $\mathfrak{p}_{n},$ $N_{n+1.n}$ :
$A_{n+1}\rightarrow A_{n}$ is surjective. Thus $Ker(N_{n+1,n})$ is non-trivial. Since $A_{n}$ is cyclic and $D_{n}$ is
non-trivial, this implies that $Ker(N_{n+1,n})\cap D_{n+1}$ is non-trivial. Therefore we have
$|D_{n}|<|D_{n+1}|$ , because $N_{n+1,n}$ : $D_{n+1}\rightarrow D_{n}$ is surjective. This completes the proof of
Lemma 3. $\square $

REMARK. Let $K$ be a finite totally real extension of $Q$ and $p$ an odd prime number
which is totally ramified in $K_{\infty}/K$. If Leopoldt’s conjecture is valid for $K$, then $|B_{n}(K)|$

remains bounded as $ n\rightarrow\infty$ (see [6]). Hence, in general, it follows from the above proof
that Lemma 3 holds for such a field $K$ under the same assumptions.

From Lemma 3, we have only to consider the case $|D_{r}|=1$ for some $r\geq 0$ . Now
we prove the following theorem, which gives a sufficient condition for the Iwasawa
invariants $\lambda_{p}(k)$ and $\mu_{p}(k)$ to vanish in the case $n_{2}\geq 2$ .

THEOREM 2. Let $k$ and $p$ be as in Theorem 1, and $k^{*}=k(\zeta_{p})$ where $\zeta_{p}$ is a primitive
p-th root ofunity. Put $\lambda_{p}^{-}(k^{*})=\lambda_{p}(k^{*})-\lambda_{p}((k^{*})^{+})$ where $(k^{*})^{+}is$ the maximal real subfield
of $k^{*}$ . Assume that

(1) $n_{2}\geq 2$ ,
(2) $A_{0}=1$ ,
(3) $\lambda_{p}^{-}(k^{*})=1$ ,
(4) $|D_{r}|=1$ for some $r\geq 0$ .

Then $m,=r+s$ if and only $\iota f|D_{r+s}|=p$ and $|D_{r+s-1}|=1$ for $1\leq s\leq n_{2}-1$ . In particular,
if $m_{r}\neq r+n_{2}$ , then $\lambda_{p}(k)=\mu_{p}(k)=0$ .

REMARK. In [1], Ferrero and Washington proved that $\mu_{p}(K)$ always vanishes
when $K$ is abelian over $Q$ .

$PR\infty F$ OF THEOREM 2. Let $k_{n}^{*}$ be the n-th layer of the cyclotomic $Z_{p}$-extension
$k_{\infty}^{*}/k^{*}$ and $A_{n}^{*}=A_{n}(k^{*})$ as defined in Section 1. Then $k_{n}^{*}$ is a CM-field, so we can
define $(A_{n}^{*})^{+}$ by the p-primary part of the ideal class group of its maximal real subfield
and $(A_{n}^{*})^{-}$ by the kemel of the norm map from $A_{n}^{*}$ to $(A_{n}^{*})^{+}$ . Since $\mu_{p}(k^{*})$ vanishes,
the assumption (3) implies that $(A_{n}^{*})^{-}$ is cyclic for $n\geq 0$ (cf. Cor. 13.29 in [10]). It
follows from the reflection theorem that $(A_{n}^{*})^{+}$ is cyclic, hence so is $A_{n}$ for $n\geq 0$ . Therefore
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Theorem 1 says that

$m_{r}=r+s\Leftrightarrow|D_{r+t}|=\left\{\begin{array}{l}pift=s\\1if0<t<s\end{array}\right.$

for $1\leq s\leq n_{2}-1$ . We have finished the proof of our theorem. $C$

REMARK. When $n_{2}\geq 3$ , we can replace the assumption (3) of Theorem 2 by the
following:

(3) $A_{0}^{*}$ is an elementary abelian p-group.
Indeed, under the assumption (2) of Theorem 2, this assumption (3) implies that $A_{n}$ is
cyclic for $n\geq 0$ (see [4] or [6]). Hence, applying Theorem 1, we obtain the above result.

By the way, in the proof of Theorem 2, we used the Ferrero-Washington theorem
But if we replace (3) by (3), then it follows immediately that $\lambda_{p}(k)=\mu_{p}(k)=0$ withoul
using the Ferrero-Washington theorem.

In the above theorem, the assumption (2) implies that $|D_{0}|=1$ , so we can put $r=0($

Therefore we obtain the next corollary.

COROLLARY (Fukuda-Komatsu [4]). Let $k,$ $k^{*}andp$ be as in Theorem 2. Assume thaz
(1) $n_{1}\neq n_{2}$ (i.e., $1\leq n_{1}<n_{2}$),
(2) $A_{0}=1$ ,
(3) $\lambda_{p}^{-}(k^{*})=1$ .

Then we have $\lambda_{p}(k)=\mu_{p}(k)=0$ .
REMARK. By this corollary, we know that we need not define $m$, when $n_{1}\neq n_{2}$ .

However, the invariant $m$, plays an important role in Theorem 1, and also in Theorem
2 when $n_{1}=n_{2}\geq 2$ .

Appendix. Another proof of a special case of Thmrem 1 in [4].

In this appendix we treat the case $n_{2}=1$ and give another proof of a special case
of Theorem 1 in [4].

Let $K$ be a finite totally real extension of $Q$ and $p$ an odd prime $nl$]$mber$ which
splits completely in $K$. We will denote by $K_{n}$ the n-th layer of the cyclotomic $Z_{p}$-extension
$K_{\infty}/K$, and $A_{n}(K),$ $E_{n}(K)$ etc., will be as defined in Section 1. When Leopoldt’s conjecture
is valid for $K$, Greenberg [6] proved the following results:

(iv) $B_{n}(K)=D_{n}(K)$ for all sufficiently large $n\Leftrightarrow\lambda_{p}(K)=\mu_{p}(K)=0$ ,
(v) $|B_{n}(K)|$ remains bounded as $ n\rightarrow\infty$ .
First we consider the case where $K$ has the following property:

(’) For all $n\geq 0$ , every unit of $K$, which is a $\mathfrak{p}$-adic $p^{n}$-th powerfor every prime
ideal $p$ of $K$ lying over $p$, is actually a $p^{n}$-th power in $K$.

Here we note that Leopoldt’s conjecture is valid for $K$ which has the property $(^{*})$ .
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In fact, Leopoldt’s conjecture is equivalent to the following statement: For each positive
integer $s$ , there exists a positive integer $t$ such that if a unit $\epsilon$ of $K$ is a p-adic $p^{t}$-th
power for all prime ideals $p$ of $K$ lying over $p$, then $\epsilon$ is a $p^{s}$-th power in $K$. We first
prepare the following lemma.

LEMMA 4. Let $K$ and $p$ be as above. Assume that $K$ has the property $(^{*})$ and
$A_{0}(K)=D_{0}(K)$ . Then we have $\lambda_{p}(K)=\mu_{p}(K)=0$ .

$PR\infty F$ . Let $c\in B_{n}(K)$ and $\mathfrak{a}$ an ideal of $K_{n}$ such that $\mathfrak{a}\in c$ . Then we $h\dot{a}$ve $\mathfrak{a}^{\rho-1}=(\alpha)$

for some $\alpha\in K_{n}$ , where $\rho$ denotes a generator of $Ga1(K_{n}/K)$ . Let $\epsilon=N_{n,0}(\alpha)$ , then clearly
$\epsilon\in E_{0}(K)$ . Thus $\epsilon$ isap-adic p-th power for every prime idealp ofKlying overp by
local class field theory. It follows from the property $(^{*})$ that $\epsilon$ is actually a $p^{n}$-th power
in $K$, namely $\epsilon=\epsilon_{0}^{p^{n}}$ for some $\epsilon_{0}\in E_{O}(K)$ . Therefore we have $N_{n.0}(\alpha)=N_{n.O}(\epsilon_{O})$ , so
$N_{n,0}(\alpha\epsilon_{0^{-1}})=1$ . Hilbert’s Theorem 90 implies that

$\alpha\epsilon_{0}^{-1}=\beta^{\rho-1}$ for some $\beta\in K_{n}^{x}$

It is easily shown that $\mathfrak{a}(\beta^{-1})$ is a $Ga1(K_{n}/K)$-invariant ideal and $\mathfrak{a}(\beta^{-1})$ is contained
in $c$ . Thus we have $c\in B_{n}^{\prime}(K)$ , which implies that

$B_{n}(K)=B_{n}^{\prime}(K)$ .
On the other hand, since $i_{0,n}(D_{0}(K))\subset D_{n}(K)$ , it follows that

$B_{n}^{\prime}(K)=i_{0,n}(A_{0}(K))D_{n}(K)=i_{0,n}(D_{0}(K))D_{n}(K)=D_{n}(K)$

for all $n\geq 0$ . Therefore

$B_{n}(K)=D_{n}(K)$ .
Now Lemma 4 follows immediately from (iv). $\square $

Applying the above lemma to real quadratic fields, we obtain the following special
case of Theorem 1 in [4].

PROPOSITION (Special case of Theorem 1 [4]). Let $k$ be a real quadraticfield and
$p$ an odd prime number which splits in $k$ . Assume that

(1) $n_{2}=1$ ,
(2) $A_{0}=D_{0}$ .

Then we have $\lambda_{p}(k)=\mu_{p}(k)=0$ .
$PR\infty F$ . By the assumption (1), we have $\epsilon^{p-1}\not\equiv 1(mod p^{2}Z_{p})$ . It follows from local

class field theory that $\epsilon^{p-1}$ is not a p-adic (resp. p’-adic) p-th power, hence $\epsilon$ is not also
a p-adic (resp. p’-adic) p-th power. This shows that $k$ has the property $(^{*})$ . Lemma 4
then implies that $\lambda_{p}(k)=\mu_{p}(k)=0$ , finishing the proof of our proposition. $\square $
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ADDENDUM. We found out a computational error in Theorem of [5]. For
$k=\alpha\sqrt{727})$ , we calculated $n_{1},$ $n_{2}$ and obtained $n_{1}=2,$ $n_{2}=3$ . Hence the lemma in [5]
can not be $\dot{a}pplied$ to $k=\alpha\sqrt{727}$), so we do not know whether $\lambda_{3}(k)=0$ or not. Dr
T. Fukuda told the author that $E_{1,0}(E_{1})=E_{O}$ , which is one of assumptions of the lemma
in [5], is sure to hold.
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