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§1. Introduction.

In the papers of Aomoto [A1][A2], he discovered a generalization of hypergeomet-
ric function of Appell’s hypergeometric function and studied the monodromy of the
differential equation defined by this Aomoto-Gel’fand hypergeometric function. This
generalized hypergeometric function is defined as an integral of differential form on
some topological cycle. Recently, this integral is known to be closely related to a period
analogue of l-adic representation of profinite braid group or generalized braid group.
The explicit formula for the determinant of arithmetic Magnus representation is given
in [O-T]. In this paper we treat the period analog of the above paper.

We explain the results of this paper. Let n be an integer such that n>3,4,, ---, 4,
and «,, - - -, &, be real numbers such that 4; <--- <4, and «;>0 respectively. Let a;;
(1<i,j<n—1) be a singular integral of Jordan-Pochhammer type defined by

Aivr i n

a;= ]-_[l(x—ﬁup)"‘t"1 IT A,—x)*»*xi~1dx.
o

li p=i+1

THEOREM 1. The determinant of A=(a;;); < j<n-1 is given by

2 - 1 T(e)) - T'(x)
d — _ i—1 R LT — A 1, .
ot ;1=—[1{( b jl;Ii(Il] AI)} 1si1-<]jsn(i] %) ey + - +ay,)

This theorem is proved by Varchenko [Var]. In this paper, we give another direct proof
of this determinant theorem. For the intermediate exterior product for Appell’s
hypergeometric functions, we have the following theorem.

THEOREM 2. For an integer r such that 1 <r<n-—1, and sets of indices
Ie{(i, --,1i) [ 0<iy<---<i,<n—=2}, Je{( " ">J,) | 0<j,<---<j,<n—2},

we define A ; as the (I, J)-minor of the matrix (a; ;);c;, jc; defined as above. Let Q be a
differential form;
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r

n a;—1 )

Q_1= l_[ ( Z (—/1i)k_lzr-k+1+(—;‘-i)') uy(zy, © 0, z)dzi A Adz,,
i=1 \k=1

where uy(z,, - - -, z,) is the Schur function of the Young diagram Y=(,, ---,i,—r+1),

and D, be a domain in R* defined by

D~J={(le Y Zr) €R’ | (_l)jk—-ijk(zl’ T Z,.)>0 ?
(=1 ¥ 1L, (24, - . 2)>0 forallk=1, - -, 1},
such that w;e R—mip, where p=4#{k | j.<k} (w; is defined in §5.). Then we have

AI,J=‘[ QI‘
by

These determinants are interpreted as period matrices of exponential Kummer
coverings of P!.

The contents of this paper is as follows. In Section 2, we introduce an exponential
Kummer convering of P! and interpret the integral g;; as the integral of the differential
form on some complex manifold, so called an exponential Kummer covering. In Section
3, we construct complex analytic correspondences between exponential Kummer
coverings of P! and exponential Fermat hypersurfaces. In Section 4, we prove the
main theorem by computing the integral of some differential form on the exponential
Fermat hypersurface. In Section 5, we give some relations between Aomoto-Gel’fand
hypergeometric functions of special type and the minor of Appell’s hypergeometric
functions. It is a great pleasure for the author to express his thanks to Prof. M. Yoshida
who showed interests on his results and gave him patient encouragements.

§2. Structure of homology of exponential Kummer covering of P!.

Let 4,, - - -, 4, be distinct complex numbers. We define the exponential Kummer
covering C as follows. The analytic Riemann surface C is an analytic set of Cx C"*.
defined by

C={(x,z;, """, 2,)€Cx C"|exp(z)=x—4 (i=1, - - -, n)} .
We define the action of (21r\/ —12)" on C by
@)i=1,- €@/ —1 2Z): zj>z,+a;.

This is a fixed point free action and C/(2n,/ —1 Z)"=~C—{A,, - - -, 4,}. Next, we
compute the homology of C. Fix a base point b of C—{4,, -+, 4,} and 7; be a path
rounding around A, for i=1, ---,n. Let b and y; be liftings of b and j; such that

dy;=x;b—b, where x; is the action of (0, - - -,2n,/ —1,0, - - -, 0). We can compute the
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homology of C by the complex K. below.

K1= @ A'})ia'yiHuibeAb=Ko N

i=1

where 4=Z[x;, x;"'] is the Laurent polynomial ring of n-variables and u;=x;—1.
Therefore we have the following

LemMA 2.1. The homology group H,(C, Z) is isomorphic to the kernel Ker(0:
K,—K,) and H,(C, Z) is generated by uyy;—u;y; (i#J)).

Let a=(a,, - - -, a,) be an element of C" and w, the differential form defined by
o= ] (x—A)* 1x*"1dx.
i=1

Here (x— )%~ ! is interpreted as exp((e;—1)z;). Then w, defines a linear form ¢, on
H,(C, Z) by

o yeH(C, Z)—»f weC.
Y
Then the linear form ¢, is contained in
Hom(H,(C, Z), C)@)={¢ | #(g7)=[1 exp(g:2)9(?)
: i=1

for all ye H,(C, Z) and (g,) e 2n/ —1 Z)"} .

We define an A4-algebra C(a) as follows. The underlying algebra is the complex number
field C and the action of x; is given by the multiplication by exp(2n,/ —1 «;)e C*. We

denote the natural homomorphism 4— C(x) by the same letter . Then we have

Hom(H,(C, Z), C)(0)=Hom(H,(C, Z)®,C(%), C) .

LeEMMA 2.2. The space H,(C, Z)® ,C() is isomorphic to the vector space generated
by

oty 4 1)V — MU)Vi 41 @=1,---,n-1)
if the following condition

2.1) ¢ Z forall i(1<i<n) and a0=—fai¢z
i=1

holds.

REMARK. The space H,(C, Z)® ,C(x) is isomorphic to the cohomology with the
local coefficient C(«) (cf. [S] p. 155, [H]) corresponding to the representation
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AUt(C/C— {4y, -, AP =@ny =T Zy'a(g) > [ expgix)eC* .
i=1

By the lemma, the linear functional ¢, is determined by the value

f wk’ J‘ wk9 Tty f wks
31 J2 On-1

where 6;=u;,,y;—%;y;+,- From now on we assume that A’s are real numbers and
Ay<--:<A4, Then we define a 1l-chain I(e): I=[0,1]->C by x=t(A;+¢)+
(1—0)(A;+1—¢) and z;eRif j<iand z;e R—n,/ —1 if j=>i+1. Let us define the lifting
Ci (¢) (resp. C; (¢)) of a small circle around 4; (resp. 4,,,) by

Ci (e)=(x(0), z(0))
(resp. C; (e)=(x(6), z(6)))
with
x(0)=2+eexp(02n,/ —1), z(0)eR (j<i), z{0)eR—n/ —1 (j=i+1)
(resp. x(8)=4;.,—cexp(82n/ —1), z{0)eR (j<i), z{0)eR—n/ —1 (j=i+1)).
Thenz(l)eR+2n,/ —1 andz;,,(1)e R+n,/ —1 and the 1-cycle é,is homologous to
(i — DX+ 1 = DIE) + (X141 — C (&) — (x; — 1) Ci1 4 (6) -

If the real part of «; is positive, then

lim wk=0 .
e=+0Jcie
Therefore, we have
f w,=lim o =((x)— 1)((x;+ ) - 1lim | o,
3 =0 J (x;— 1)(x1+ 1 — 1)Ii(e) e=>0J1y(e)

and by the definition of I,(¢), we have

lim wy=exp(— D, 75\/ —1 apay,

e=>0 J 1.() j=i+1

where a; is defined in the introduction. Now we define a singular integral:

J‘ ﬂ)k=1im (Dk .
I =0 J 1)

Then we have
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det(j a)k) = ﬁ ﬁ exp(—a;my/ —1) det(ay).
I; ik

i=1j=i+1

§3. Symmetric construction.

In this section, we define a holomorphic map from the product Cx --- x C of
(n—1)-copies of C to a twisted exponential Fermat hypersurface. The similar
construction was defined in [T]. First we prepare (n—1) copies C®, ---, C®~ D of
C. The coordinate of C® is denoted by x?,z{’. Then the equation is given by
exp(zP)=xP—A;(j=1, - -+, n,i=1, - - -, n—1). The exponential Fermat hypersurface X
is an analytic subset in C"={(w,, - - -, w,)} defined by

X: i ITG—2) texp(wp=1.

j=1k#j
We define a holomorphic map ¢ from C®P x --- x C®~1 to X by
(p : C(l)x .. xc("_'l) — X

n—1

i i — (i)
(x®, Z§))i=1.---,n—1,j=1,---.n = W= Z zj -
i=1

The morphism ¢ is well defined, and it is easy to see that

n n—1
> I =27 [T 6P —4p=1
=1 k#j i=1
by the Lagrange interpolation formula. Let us define the group G by (2n,/ —1 Z)".
Then we have a natural action of G on x by

(@)e@ny —1 Z)" — (w;>w;+a;) € Aut(x) .

Let us define the group N as the kernel Ker(G"—G) of the morphism determined by
the summation. Then the groups N and the symmetric group S,_; act on
CHx ---xC" D and as a consequence the semi-direct product N>aS,_, of N and
S,_;actson CUx ... xC~ D,

PROPOSITION 3.1. The holomorphic map ¢ is invariant under the action of
N><S,_, and it induces an isomorphism @

CHx - xC" VN>aS,_, —» X.

ProoOF. This proposition is proved with the same argument as [T], [O-T]. Proof
is left to the readers.
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§4. Computation of determinants.

In this section, we compute the determinant of

(..

by using the holomorphic map ¢ constructed in §3. We compute this determinant by
(1) Descending a differential form to X.
(2) Specifying the image of some topological chainin C) x - - - x C®~1 under the
map .
(3) Reducing the computation of the determinant to that of the integral of a form
on the exponential Fermat hypersurface X.

(1) Descending a differential form to X.

Let w{? be the differential form on C® defined as in §2. The form pr;*w{’ induced
by the projection pr; is denoted by w{” if there is no confusion. Consider an (n— 1)-form
QonCWVx - - xCO™D by

Q= Z WD A - A @D
geSn -1

LEMMA 4.1. Let Q be an (n—1)-form on X defined by
Q=(H exp((oc,-—l)wi))a’t,,_1 A AdE,
i=1

where t; is the i-th elementary symmetric polynomial in xV, - - -, x®~ V. Then we have
Q=p*Q. '

PRrOOF. Since

@*(exp(as— Dw) =exp ((a,- —ny zﬁﬁ) ~T1 expl@— Dz,

i=1
it is enough to show
(p*(dtl A Adt 1)= Z dx @O A (x(a(z)))dx(a(z)) Ao A(x(o(n—l)))n-zdx(a(n-l))
"
a'eS,. -1
to prove the lemma. The right hand side is equal to

Z sign(cr)(x“"z”)- . .(x(a(n—l)))n—de(a(l)) A Adxlemr—1)

GESH-1

= V(xW, -, X0 D)y D A o A dx® D
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where V(x1), - - -, x"~ 1) is the Vandermonde matrix. On the other hand, the left hand
side is equal to

PR,dx D+ - 4+ pI Ddx= D) A -
A (PP 4 - -+ 4B~ Dgx= D) A (dxD 4 - -+ 4 dx® D),

where pj is the elementary symmetric function of {xV, - -+, xU™1 xU*1 ... y@-11
of degree k. Therefore it is equal to W(xV), - -+, x® " MgxM A - - - Adx®~ D, where

PS.I—)z T PS:" 21)
1) ... (n—1)y _ ‘
W(x'", , X )=det PO e pamD
1 “ e 1

Therefore it is enough to prove the following
LEMMA 4.2. W(x®, -+ x"~ V)= p(xD, - - - x~D),
PRrOOF. See [T].

(2) Specifying the image of topological chainin CV x - - - x C®~ Y under the map ¢.
In this paragraph, we assume that A,’s are contained in the set of real numbers
and 4; < - - <,l,,, and consider the chains C7(e), Ii(a). We denote the copies of I(¢) by

I9) (j= 1, , n—1). First, we compute the ¢,_,, - - -, t; coordinates of the points in
eI P(e) x - - - x I~ D(e)). Since ¢; is equal to the j-th elementary symmetric func-
tion of x‘”, .- x"‘ D, where A, +8£x(')5/1,+1 —e¢, the linear form

Li"_'(_ l)i—l{tn—1_/litn—-2+ . e +(_A'i)”_1}=(— 1)i—1 "l:Il (x(k)_li)
k=1

is positive.

LEMMA 4.3. ¢ induces a one to one mapping from IPE) x - xI"" V() to the
image (p(l(l”(i) X+ x 1" V(). Moreover the (t,_4, -, t))- coordinates of the points
in the union D= Upo(p(l M) x - IT=D(e)) comczdes wzth the domain

D={R" 's(t,_,, """, tl) | Lty—1, -+, t;)>0 for all i}
and D is the lifting of D such that

n—1

wi= ) ZPeR—(G—Dn/ —1 .

i=1
ProOF. This is an immediate consequence from the definition of 79)(g).

(3) Reducing the computation of the integral to that of the exponential Fermat
hypersurface.



504 TOMOHIDE TERASOMA

First, we compute the integral

Q=I1im Q.
1(11) (n— l) (n-1)

X I e=0 J 1{(e) x - x IV "1 (o)

By the definition,

“4.1) j Q= Z j WD A - A @@= 1)
I x e x 1) 0€Sn-1J 1§V x oo x 1TV
= X sign(o) OB A A0l D)
GeESR-1 I(ll) Xls."_x )

csa([w)
I; ij
On the other hand,

4.2) J Q= J @*Q
I(ll) XIS." ll) I(ll) xI"n 1l)

- j a- J a.
o) x - x Iy b

Therefore the computation of det(f,, @) ; is reduced to that of the integral | 5Q on the
exponential Fermat hypersurface X. Since exp((¢;—1)w;) eexp(—(i— l)n\/ —1a)R,,
we have

exp((o— )w) =exp(—(i—Dny/ —1 )L,

and

4.3) ‘[ Q= ]_[exp( (i—Dny —1a) l_[L“‘ Ydt,_ A AdL.

Li>0i=1

By using the Jacobian matrix for L,, -- -, L,_,and ¢,_, ,- -, #;:

1 4, - A2
a(ng'.-,Ln—l)=det E E E — l—l (Aj—il),
a(tn—l’ '“atl) . n—2 1<i<jsn-—1

1 j'n—l T A’n—l

and the equation
n —1 l'—lL
Z (—)___=1
j#t('lj l)

derived from (3.1), the integral (4.3) is modified to
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n S 1
4.9 []exp(=G—Dny/ —1ay)
i=1 \/ l—[lsi<jsn—1('1j_ﬂ'i)
f [TL2"'dLiA---AdL,_,.
L1>0,+,Lp,>0i=1
By replacing L; by (—1)' [ [;.:(4;— 4))/; for the new variables /;, we have
f [TLp~tdL,An--- AdL,_,
Li>0,,L,>0i=1

n—1 n—1 an—1
= o] (Aj—zi))“*( [1(- 1)”“(&-—@))

f [T tdi A Adl,_,.
1,>0,-

Ll,>0i=1
Therefore the integral (4.4) is equal to

n - 1 n
4.5) exp(—(i—Dny —1 o) (=D (=)
il;ll \/ nlsi<j5n(’lj_)”i) il'—l 11—[*' !
n—1

.J‘ l?i—l(l—ll_"'—”_l)a"—ldll/\"'/\dln._l
11>0,"',l"—|>0 i=1 .
1-lj—"=lp-1>0
- _ 1

=l exp(—(i—Dny/ =T o)
i=1

Hlsi<j5n('1j_1i)

CTT ((— 1)1 gy L@) ()
iI=—Il(( 1) jl;li(l, 49)) T+ to)’

505

Combining (4.1), (4.2), (4.3), (4.4) and (4.5), we get the following theorem which is

equivalent to Theorem 1 in §1.

THEOREM 4.4. The determinant det({; w,);, is equal to

n . - 1
il:ll exp(— (- 1)7‘\/ —lw I—[1si<j5n('1j_/1i)

T _1yi—1 v I'(ay)---I'(a,)
H GO G- o= s

COROLLARY 4.5. The set of ¢,,
Hom(H,(C, Z) ® C(a), C) under the condition (2.1).

c Qa1 on H(C, Z) ® C(a) forms a base for
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§5. Intermediate exterior product.

Let r be an integer such that 1<r<n—1, then the exterior matrix for g, ;
(1<i,j<n—1) can be expressed as a period matrix of the special complete intersection
of the exponential Fermat hypersurface X, below. First, we define X, as the analytic
submanifold of C” x C" defined by

XE={(219 T L, Wy, T, W,,)I
exp(w;) = Z (—}'i)k—lzr—k+1+(_li)r fori=1, --- ")} .
k=1

This manifold is also isomorphic to the analytic submanifold of C"={(w,, - - -, w,)}
defined by '

}':‘l-r—-l
i=1 I_L.*i(/lj—,li)

To formulate the theorem, we introduce some notations. Let I, J be the sets of
indices such that

exp(w)=1.

Ie{(iy, *, i) |0<iy<- - - <i<n—2},
Je{(ila o ’,j,)lOSj1< ct <j,-$n_2} .
We define A4;; as the determinant of the (rxr)-matrix (j' I, ®;j )p,q Since Y=

(iy, -, i,—r+1) becomes a Young diagram, we can define a Schur function
sy(x®), - -+ x") of Y as

(x(l))ix ce (x(f))ix (x(l))o “e (x('))o _ -1
det : : * det : :
(x(l))ir e (x(r))ir (x(l))r— 1 ... (x(r))r—l
By the fundamental theorem for symmetric polynomials, sy can be expressed as a

polynomial u,(¢,, ---,t,) in elementary symmetric functions of ¢,, - - -, ¢, of degree
1, - - -, r respectively depending on x¥), - - - x®

LEMMA 5.1. The total degree deg(uy) of uy with respect to t,, - - -, t, is equal to
i,—(r—1). Therefore we have the inequality deg(uy)<n—r—1 and {uy}y forms a base
Jfor polynomials in t,, - - -, t, of degree less than or equal to n—r—1.

Now let us define a differential form Q,; on X, by



DETERMINANTS OF HYPERGEOMETRIC FUNCTIONS 507

g1= 1_[ (exp(o;— Dwuy(zy, - -, 2)dzy A -+ - Adz, .
i=1

We can define a map ¢, from the product CVx - -- x C® of C to X, by
CWVx- - xC" > X,

r
x®, z0) > w;= Yz,
j=1

We can prove the following proposition exactly in the same way as the proof of Lemma
4.1.

PROPOSITION 5.2. The inverse image of Q; under the map ¢, is equal to

0,*Q;= Y sign(@) A A0?

io(1) ioer) *
oeS,-1

Next we specify the image of the topological cycle I} x - - - x IY under the map
@,. Let L, be the linear form defined by (—1)' 'O r_1 ti(—A)" ¥ "1+ (=4)" ).

PROPOSITION 5.3. The image Dy of I{V x - - - x I under the map @, is the lifting
of Dyin R"={(zy, - - -, z,)} defined by

D;={(zy, -, z,)ER" | (=1 kL, (z4, "+, 2,)>0,
(=1 ¥ 1L, +1(zg, -+, 2)>0forallk=1, ---, r},
such that wie R—mn,/ —1 p, where p=4#{k | j. <k} .
For the proof, imitate the proof of Lemma 4.3. As a consequence of the above two
propositions, we have the following theorem.

THEOREM 5.4. The determinant A, ; is expressed as

AI’J=J~ QI'
D,

The integral on the right is a special case of Aomoto-Gel’fand’s hypergeometric
function.
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