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Abstract. We prove that cylinders over curves of finite type and planes are the only ruled surfaces in
Euclidean spaces with finite type Gauss map and circular cylinders are the only tubes in Euclidean 3-space
with finite type Gauss map.

\S 1. Introduction.

Submanifolds of finite type are introduced by the second-named author about a
decade ago (cf. [3, 4, 6]). In the framework of the theory of submanifolds of finite type,
the second-named author together with P. Piccinni made in [10] a general study on
submanifolds of Euclidean spaces with finite type Gauss map. In [11] the third-named
author, F. Dillen and J. Pas and in [1] the first-named author and D. E. Blair studied
respectively surfaces of revolution and ruled surfaces in Euclidean 3-space such that
their Gauss maps $G$ satisfy a special finite type condition; namely, $\Delta G=AG$, where $\Delta$

is the Laplace operator of the surface with respect to the induced metric and $A$ is a
fixed endomorphism of the ambient space. ‘

In this article, we continue the investigation of submanifolds with finite type Gauss
map. More precisely, we prove the following results.

THEOREM 1. Cylinders over curves offinite type and planes are the only ruled
surfaces in Euclidean n-space $(n\geq 3)$ with finite type Gauss map.

THEOREM 2. Circular cylinders are the only tubes in $E^{3}$ withfinite type Gauss map.

For information on curves offinite type, see [3, 4, 6, 7, 9, 13]. The proofofTheorem
1 bases on a lemma concerning the Laplacian of ruled surfaces given in [8] where the
second-named and the third-named authors together with F. Dillen and L. Vrancken
classiPed ruled surfaces of finite type in Euclidean spaces. For the proof of Theorem 2
we use a reasoning first given in [4] in which the second-named author used it to prove
that circular cylinders are the only tubes of finite type in a Euclidean 3-space.
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In views of the results obtained here and of the previous works on submanifold
with finite type Gauss map, it is natural to ask the following question:

“ Which submanfolds withfinite type Gauss map in $a$ Euclidean space are themselve
offinite $type^{7}$

’

ACKNOWLEDGEMENTS. Summary of the results of this article was given in [2]
This article was written while the first and the third named authors were visiting Michiga]
State University during the spring term of 1991. Both authors would like to expres
their thanks to their colleagues at MSU for their hospitality during their visits.

\S 2. Proof of Theorem 1.

We consider two cases separately:

Case 1. $M$ is a cylinder.
Suppose that the surface $M$ is a cylinder over a curve $\gamma$ in an affine hyperplan

$E^{n-1}$ , which we can choose to have the equation $x_{n}=0$ . Assume that $\gamma$ is parametrizet
by its arc length $s$ . Then a parametrization $X$ of $M$ is given by

$X(s, t)=\gamma(s)+te_{n}$ .
The Gauss map of $M$ is given by the 2-plane

$G=\gamma^{\prime}\wedge e_{n}$

where $\gamma^{\prime}=d\gamma/ds$ .
The Laplacian $\Delta$ of $M$ is given in terms of $s$ and $t$ by $\Delta=-\partial^{2}/\partial s^{2}-\partial^{2}/\partial t^{2}an($

the Laplacian $\Delta^{\prime}$ of $\gamma$ is given by $\Delta^{\prime}=-\partial^{2}/\partial s^{2}$ . Thus we have

(2.1) $\Delta G=(\Delta^{\prime}\gamma^{\prime})\wedge e_{n}$ .
If the Gauss map $G$ of $M$ is of finite type, then there exist real numbers $c_{1},$ $\cdots,$ $c$

such that (cf. [3, 4])

(2.2) $\Delta^{k+1}G+c_{1}\Delta^{k}G+\cdots+c_{k}\Delta G=0$ .

From (2.1) and (2.2) we get

$\Delta^{\prime k+1}\gamma^{\prime}+c_{1}\Delta^{\prime k}\gamma^{\prime}+\cdots+c_{k}\Delta^{\prime}\gamma^{\prime}=0$ .
Since $\partial/\partial s$ commutes with $\Delta^{\prime}$ and the curve $\gamma$ lies in the hyperplane $x_{n}=0$ , we hav

$\Delta^{\prime k+2}\gamma+c_{1}\Delta^{\prime k+1}\gamma+\cdots+c_{k}\Delta^{\prime 2}\gamma=0$

which implies that $\gamma$ is of finite type (cf. Proposition 4.1 of [9]). Thus, the Gauss ma]

GofMisof finite type if and only if $\gamma$ is of finite type.

Case 2. $M$ is not cylindrical.
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If the ruled surface $M$ is not cylindrical, we can decompose $M$ into open pieces
such that on each piece we can find a parametrization $X$ of the form:

$X(s, t)=\alpha(s)+t\beta(s)$

where $\alpha$ and $\beta$ are curves in $E^{n}$ such that
$\langle\alpha^{\prime}, \beta\rangle=0$ , $\langle\beta, \beta\rangle=1$ , $\langle\beta^{\prime}, \beta^{\prime}\rangle=1$ .

We have $X_{s}=\alpha^{\prime}+t\beta^{\prime}$ and $ X_{t}=\beta$ . We define functions $q,$ $u$ and $v$ by

(2.3) $q=\Vert X_{s}\Vert^{2}=t^{2}+2ut+v$ , $ u=\langle\alpha^{\prime}, \beta^{\prime}\rangle$ , $ v=\langle\alpha^{\prime}, \alpha^{\prime}\rangle$ .
The Gauss map $G$ of $M$ is given by the 2-plane $(1/(\Vert X_{s}\Vert\Vert X_{t}\Vert))X_{s}\wedge X_{t}$ , or

(2.4) $G=\frac{1}{q^{1/2}}(\alpha^{\prime}\wedge\beta+t\beta^{\prime}\wedge\beta)$ .

The Laplacian $\Delta$ of $M$ can be expressed as follows (cf. [8]):

(2.5) $\Delta=-\frac{\partial^{2}}{\partial t^{2}}-\frac{1}{q}\frac{\partial^{2}}{\partial s^{2}}+\frac{1}{2}\frac{\partial q}{\partial s}\frac{1}{q^{2}}\frac{\partial}{\partial s}-\frac{1}{2}\frac{\partial q}{\partial t}\frac{1}{q}\frac{\partial}{\partial t}$ .

We suppose that the Gauss map $G$ is of k-type. Then there exist real numbers $c_{1},$ $\cdots,$ $c_{k}$

such that

(2.6) $\Delta^{k+1}G+c_{1}\Delta^{k}G+\cdots+c_{k}\Delta G=0$ .
From the Lemma of [8], we know that ifPisapolynomial intwith functions in

$s$ as coefficients and $\deg(P)=d$, then

$\Delta(\frac{P(t)}{q^{m}})=\frac{\tilde{P}(t)}{q^{m+3}}$

where $\tilde{P}$ is a polynomial in $t$ with functions in $s$ as coefficients and $\deg(\tilde{P})\leq d+4$ . For
the Gauss map $G$ we have

$\Delta G=\frac{G_{1}(t)}{q^{1/2+3}},$ $\cdots$ , $\Delta^{r}G=\frac{G_{r}(t)}{q^{1/2+3r}}$ , $\deg(G_{r}(t))\leq 1+4r$

where $G_{r}(t)$ are polynomials in $t$ with 2-planes in $s$ as coefficients. Hence, if $r$ goes up
by one, the degree of the numerator of $\Delta^{r}G$ goes up by at most 4, while the degree of
the denominator goes up by 6. Hence the sum (2.6) can never be zero, unless of course
(2.7) $\Delta G=0$ .

For convenience, we put $ A=\alpha^{\prime}\wedge\beta$ and $ B=\beta^{\prime}\wedge\beta$ . So

$G=\frac{1}{q^{1/2}}(A+tB)$ , $A^{\prime}=\alpha^{\prime\prime}\wedge\beta+\alpha^{\prime}\wedge\beta^{\prime}$ , $ B^{\prime}=\beta^{\prime\prime}\wedge\beta$ ,
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$A^{\prime\prime}=\alpha^{\prime\prime\prime}\wedge\beta+2\alpha^{\prime\prime}\wedge\beta^{\prime}+\alpha^{\prime}\wedge\beta^{\prime\prime}$ , $B^{\prime\prime}=\beta^{\prime\prime\prime}\wedge\beta+\beta^{\prime\prime}\wedge\beta^{\prime}$

Also we have

$\frac{\partial q}{\partial s}=2u^{\prime}t+v^{\prime}$ , $\frac{\partial q}{\partial t}=2(t+u)$ .

Now we have (see [1])

$\frac{\partial G}{\partial t}=q^{-3/2}\{Bq-(A+tB)(t+u)\}=q^{-3/2}C$ ,

$\frac{\partial^{2}G}{\partial t^{2}}=q^{-5/2}\{(Bu-A)q-3(Bq-(A+tB)(t+u))(t+u)\}=q^{-5/2}D$ ,

$\frac{\partial G}{\partial s}=\frac{1}{2}q^{-3/2}\{2(A^{\prime}+tB^{\prime})q-(A+tB)(2u^{\prime}t+v^{\prime})\}=\frac{1}{2}q^{-3/2}E$ ,

$\frac{\partial^{2}G}{\partial s^{2}}=\frac{1}{2}q^{-5/2}\{[2(A^{\prime\prime}+tB^{\prime\prime})q+(A^{\prime}+tB^{\prime})(2u^{\prime}t+v^{\prime})-(A+tB)(2u^{\prime\prime}t+v^{\prime\prime})]q$

$-\frac{3}{2}[2(A^{\prime}+tB^{\prime})q-(A+tB)(2u^{\prime}t+v^{\prime})](2u^{\prime}t+v^{\prime})\}=\frac{1}{2}q^{-5/2}F$ ,

where $C,$ $D,$ $E,$ $F$ are defined by the above four formulas.
From (2.5) we obtain

(2.8) $\Delta G=-q^{-5/2}D-\frac{1}{2}q^{-7/2}F+\frac{1}{4}q^{-7/2}(2u^{\prime}t+v^{\prime})E-q^{-5/2}(t+u)C$ .

Thus, (2.7) implies that the coefficients of the powers of $t$ in (2.8) must be zero. So $v$

obtain the following equations:

(2.9) $B^{\prime\prime}=0$ ,

(2.10) $A-Bu-3B^{\prime}u^{\prime}+A^{\prime\prime}-Bu^{\prime\prime}=0$ ,

$-8Au+4Bu^{2}+4Bv-8A^{\prime\prime}u+6A^{\prime}u^{\prime}+12B^{\prime}uu^{\prime}+3B^{\prime}v^{\prime}$

(2.11)
$+2Au^{\prime\prime}+Bv^{\prime\prime}+4Buu^{\prime\prime}-8Bu^{\prime 2}=0$ ,

1 $2Buv-1$2Au2-4A”v+3A’v’ $+Av^{\prime\prime}-8A^{\prime\prime}u^{2}+12A^{\prime}uu^{\prime}$

(2.12)
$+6B^{\prime}u^{\prime}v+6B^{\prime}uv^{\prime}+4Auu^{\prime\prime}+2Buv^{\prime\prime}+2Bu^{\prime\prime}v-8Ad^{2}-8Bu^{\prime}v^{\prime}=0$ ,

$4Bu^{2}v+4Bv^{2}-8Au^{3}-8A^{\prime\prime}uv+6A^{\prime}uv^{\prime}+2Auv^{\prime\prime}+6A^{\prime}u^{\prime}v$

(2.13)
$+3B^{\prime}vv^{\prime}+2Au^{\prime\prime}v+Bvv^{\prime\prime}-8Au^{\prime}v^{\prime}-2Bv^{\prime 2}=0$ ,

(2.14) 2Buv $2+2Av^{2}-4Au^{2}v-2A^{\prime\prime}v^{2}+3A^{\prime}vv^{\prime}+Avv^{\prime\prime}-2Av^{\prime 2}=0$ .

From (2.9) we conclude that $B^{\prime}$ is constant, that is, the 2-plane $\beta^{\prime\prime}\wedge\beta$ is constant. $F($
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the spherical curve $\beta$ we have

$\beta^{\prime\prime}=\kappa_{1}N_{1}$ , $N_{1}^{\prime}=-\kappa_{1}\beta^{\prime}+\kappa_{2}N_{2}$ ,

where $\kappa_{1},$ $\kappa_{2}$ are the first and the second Frenet curvatures and $N_{1},$ $N_{2}$ the first and the
second Frenet normal vector fields of $\beta$ . By taking the derivative of $\beta^{\prime\prime}\wedge\beta=const.$ ,
we get

$\kappa_{1}^{\prime}N_{1}\wedge\beta-\kappa_{1}^{2}\beta^{\prime}\wedge\beta+\kappa_{1}\kappa_{2}N_{2}\wedge\beta+\kappa_{1}N_{1}\wedge\beta^{\prime}=0$ .
By taking the inner product of this equation with the 2-plane $ N_{2}\wedge\beta$ , we find $\kappa_{1}\kappa_{2}=0$ ;
and since $\kappa_{1}\neq 0$ , we have $\kappa_{2}=0$ . Thus the spherical curve $\beta$ is a plane curve and hence
the 2-plane $B=\beta^{\prime}\wedge\beta=const.\neq 0$ .

If we put

(2.15) $\omega=A-uB$ ,

then $\omega^{2}=\Vert(\alpha^{\prime}-u\beta^{\prime})\wedge\beta\Vert^{2}$ or $\omega^{2}=\langle\alpha^{\prime}, \alpha^{\prime}\rangle+u^{2}-2u\langle\alpha^{\prime},\beta^{\prime}\rangle=v-u^{2}$ . So
(2.16) $v=u^{2}+\omega^{2}$

where $\omega^{2}$ is the square of $\omega$ . From (2.10) we get

(2.17) $\omega^{\prime\prime}+\omega=0$ .
Now, by taking the derivative of (2.16), we obtain
(2.18) $v^{\prime}=2(uu^{\prime}+\omega\omega^{\prime})$ , $v^{\prime\prime}=2(u^{\prime 2}+uu^{\prime\prime}+\omega^{\prime 2}+\omega\omega^{\prime\prime})$ ,

where $\omega\omega^{\prime}$ is the inner product of $\omega$ and $\omega^{\prime}$ . Using (2.16), (2.17) and (2.18), we see
that equation (2.11) becomes

(2.19) $u^{\prime\prime}\omega+3u^{\prime}\omega^{\prime}=-(\omega^{2}+\omega^{\prime 2})B$ .
Taking the derivative of this equation, we find

(2.20) $(u^{\prime\prime\prime}-3u^{\prime})\omega+4u^{\prime\prime}\omega^{\prime}=0$ .
If $u^{\prime}=0$ , we obtain $\omega=0$ by virtue of (2.19). In this case, we get $A=uB$ . Thus $\alpha^{\prime}$

lies in the constant 2-plane $B$ which contains the plane curve $\beta$ . Hence, the surface $M$

is a plane (or, more precisely, $M$ is an open portion of a plane).
If $u^{\prime}\neq 0$ and $4u^{\prime\prime 2}-3u^{\prime}(u^{\prime\prime\prime}-3u^{\prime})=0$ , then (2.19) and (2.20) imply $\omega=0$ . The same

argument implies that $M$ is a plane.
If $u^{\prime}\neq 0$ and $4u^{\prime\prime 2}-3u^{\prime}(u^{\prime\prime\prime}-3u^{\prime})\neq 0$ , then (2.19) and (2.20) yield

(2.21) $\omega=\mu B$ , $\omega^{\prime}=\sigma B$ ,

where

(2.22) $\mu=\frac{4(\omega^{2}+\omega^{\prime 2})u^{\prime\prime}}{3u^{\prime}(u^{\prime}’-3u’)-4(u^{\prime\prime})^{2}}$ , $\sigma=-\frac{(\omega^{2}+\omega^{\prime 2})(u^{\prime\prime\prime}-3u^{\prime})}{3u^{\prime}(u^{\prime\prime}-3u’)-4(u^{\prime})^{2}}$ .
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From (2.15) and (2.21) we get $A=(u+\mu)B$ . This also implies that the vector $\alpha^{\prime}$ lies ir
the constant 2-plane $B$ . So, $M$ is a plane, too. $\subset$

\S 3. Proof of Theorem 2.

Let $\sigma:(a, b)\rightarrow E^{3}$ be a smooth unit speed curve offinite length which is topologicall]
imbedded in $E^{3}$ . The total space $N_{\sigma}$ of the normal bundle of $\sigma((a, b))$ in $E^{3}$ is $naturall\tau$.
diffeomorphic to the direct product $(a, b)\times E^{2}$ via the translation along $\sigma$ with respec
to the induced normal connection. For a sufficiently small $r>0$, the tube of radius $j$

about the curve $\sigma$ is the set:

$T_{r}(\sigma)=\{\exp_{\sigma(t)}v : v\in N_{\sigma(t)}, \Vert v\Vert=r, a<t<b\}$ .
For sufficiently small $r$, the tube $T_{r}(\sigma)$ is a smooth surface in $E^{3}$ . The position

vector of the tube $T_{r}(\sigma)$ can be expressed as
$X(t, \theta)=\sigma(t)+r$ cos $\theta N+r$ sin $\theta B$ ,

where $T,$ $N,$ $B$ denote the Frenet frame of the unit speed curve $\sigma=\sigma(t)$ .
We denote by $\kappa,$ $\tau$ the curvature and the torsion of the curve $\sigma$ . Then we have

$X_{t}=$ ( $ 1-r\kappa$ cos $\theta$) $ T-r\tau$ sin $\theta N+r\tau$ cos $\theta B=\gamma T+r\tau V$ ,

$X_{\theta}=-r$ sin $\theta N+r$ cos $\theta B=rV$ ,

where

$\gamma=1-r\kappa(t)$ cos $\theta$ , $V=$ -sin $\theta N+\cos\theta B$ .
The Laplacian $\Delta$ of the tube $T_{r}(\sigma)$ is given by (cf. [5])

$\Delta=-\frac{1}{\gamma^{3}}\{r\beta\frac{\partial}{\partial t}-[r\tau\beta+\tau^{\prime}\gamma-\frac{1}{r}$ ( $\kappa\gamma^{2}$ sin $\theta$) $]\frac{\partial}{\partial\theta}+\gamma\frac{\partial^{2}}{\partial t^{2}}$

(3.1)

$-2\tau\gamma\frac{\partial^{2}}{\partial t\partial\theta}+\frac{1}{r^{2}}(\gamma^{3}+r^{2}\gamma\tau^{2})\frac{\partial^{2}}{\partial\theta^{2}}\}$ ,

where $\beta=\kappa^{\prime}(t)$ cos $\theta+\kappa(t)\tau(t)$ sin $\theta$ .
The Gauss map of the tube $T_{r}(\sigma)$ is given by

(3.2) $G=-(\cos\theta N+\sin\theta B)$ .
For convenience, we give the following formulas:

$\frac{\partial G}{\partial t}=\kappa$ cos $\theta T-\tau V$ , $\frac{\partial G}{\partial\theta}=-V$ ,

(3.3) $\frac{\partial^{2}G}{\partial t^{2}}=-$ ( $\kappa\tau$ sin $\theta-\kappa^{\prime}\cos\theta$) $T-$ ( $\kappa^{2}\sin\theta$ cos $\theta+\tau^{\prime}$) $V-(\kappa^{2}\cos^{2}\theta+\tau^{2})G$ ,
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$\frac{\partial^{2}G}{\partial\theta^{2}}=-G$ , $\frac{\partial^{2}G}{\partial t\partial\theta}=-\kappa$ sin $\theta T-\tau G$ .

By using (3.1), (3.2) and (3.3) we may obtain

$\Delta G=\frac{1}{\gamma^{3}}\{\gamma(\kappa^{2}\cos^{2}\theta+\frac{\gamma^{2}}{r^{2}})G-$ ( $\kappa r\beta$ cos $\theta+\kappa\tau\gamma$ sin $\theta+\kappa^{\prime}\gamma$ cos $\theta$) $T$

$+\kappa\gamma$ ( $\kappa$ cos $\theta+\frac{\gamma}{r}$) sin $\theta V\}$

or

(3.4) $\Delta G=-\frac{r\kappa\beta\cos\theta}{\gamma^{3}}T+\frac{1}{\gamma^{2}}P_{1}$ ($\cos\theta$, sin $\theta$)

where $P_{1}$ is a $E^{3}$-valued polynomial of two variables with coefficients given by some
functions of $t$ .

We need the following lemma which is analogous to Lemma 3 of [5].

LEMMA. For any integer $k\geq 1$ , we have

(3.5) $\Delta^{k}(\frac{\kappa\beta\cos\theta}{\gamma^{3}})=(-1)^{k}\kappa$ cos $\theta\frac{(4k.+1)!}{2^{2k}(2k)!}\cdot\frac{r^{2k}\beta^{2k+1}}{\gamma^{4k+3}}+\frac{1}{\gamma^{4k+2}}Q_{k}$($\cos\theta$, sin $\theta$) ,

where $Q_{k}$ is a polynomial of two variables with functions of $t$ as coefficients.
$PR\infty F$ . Since

$\Delta(\frac{\kappa\beta\cos\theta}{\gamma^{3}})=\kappa$ cos $\theta\Delta(\frac{\beta}{\gamma^{3}})+\frac{\beta}{\gamma^{3}}\Delta$( $\kappa$ cos $\theta$) $-2\langle grad$( $\kappa$ cos $\theta$), grad $(\frac{\beta}{\gamma^{3}})\rangle$ ,

(3.1) implies

$\Delta(\frac{\kappa\beta\cos\theta}{\gamma^{3}})=\kappa$ cos $\theta\Delta(\frac{\beta}{\gamma^{3}})+\frac{1}{\gamma^{6}}Q$($\cos\theta$ , sin $\theta$)

for some polynomial $Q$ of two variables with functions of $t$ as coefficients.
From Lemma 3 of [5] we have

$\Delta(\frac{\beta}{\gamma^{3}})=(-3)\frac{5r^{2}\beta^{3}}{\gamma^{7}}+Q_{1,3}$ ($\cos\theta$ , sin $\theta$),

where $Q_{1,3}$ is a polynomial of two variables with functions of $t$ as coefficients. Thus

$\Delta(\frac{\kappa\beta\cos\theta}{\gamma^{3}})=-3\kappa$ cos $\theta\frac{5r^{2}\beta^{3}}{\gamma^{7}}+\frac{1}{\gamma^{6}}Q_{1}$ ($\cos\theta$ , sin $\theta$).

By applying Lemma 3 of [5] and by induction, we may obtain formula (3.5).



348 CHRISTOS BAIKOUSSIS, BANG-YEN CHEN AND LEOPOLD VERSTRAELEN

Now, from (3.4) and (3.5), we obtain

$\Delta^{k+1}G=(\frac{(-1)^{k+1}(4k+1)!}{2^{2k}\cdot(2k)!})(\frac{r^{2k+1}\beta^{2k+1}\kappa\cos\theta}{\gamma^{4k+3}})T+\frac{1}{\gamma^{4k+2}}Q_{k}$($\cos\theta$, sin $\theta$),

for $k\geq 1$ .
Suppose that the Guass map of the tube $T_{r}(\sigma)$ is of finite type. Then there exis

real numbers $c_{1},$ $\cdots,$ $c_{k}$ for some $k\geq 1$ such that

$\Delta^{k+1}G+c_{1}\Delta^{k}G+\cdots+c_{k}\Delta G=0$ .
Thus, by applying (3.5), we see that there is a polynomial $Q$ of two variables with som
functions of $t$ as coefficients such that

$\frac{\kappa\cos\theta(\kappa^{\prime}\cos\theta+\kappa\tau\sin\theta)^{2k+1}}{1-r\kappa\cos\theta}=Q$($\cos\theta$, sin $\theta$).

Since $r$ is sufficiently small, this is impossible unless $\kappa=0$ . Therefore, the tube $T_{r}(\sigma)i$

a circular cylinder.
Conversely, it is easy to see that the Gauss map of any circular cylinder in $E^{3}i$

of l-type. In fact, if $M$ is a circular cylinder, then, up to a rigid motion of $E^{3}$ , th
position vector of $M$ in $E^{3}$ takes the following form:

$X(t, \theta)=$ ( $t$, rcos $\theta$, rsin $\theta$), $r>0$ ,

and the Laplacian $\Delta$ of $M$ is given by $\Delta=-\partial^{2}/\partial t^{2}-(1/r^{2})\partial^{2}/\partial\theta^{2}$ . From these, we ma
obtain $\Delta G=r^{-2}G$ . Thus, the Gauss map is of l-type. $[$
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