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Abstract. We prove that cylinders over curves of finite type and planes are the only ruled surfaces in
Euclidean spaces with finite type Gauss map and circular cylinders are the only tubes in Euclidean 3-space
with finite type Gauss map.

§1. Introduction.

Submanifolds of finite type are introduced by the second-named author about a
decade ago (cf. [3, 4, 6]). In the framework of the theory of submanifolds of finite type,
the second-named author together with P. Piccinni made in [10] a general study on
submanifolds of Euclidean spaces with finite type Gauss map. In [11] the third-named
author, F. Dillen and J. Pas and in [1] the first-named author and D. E. Blair studied
respectively surfaces of revolution and ruled surfaces in Euclidean 3-space such that
their Gauss maps G satisfy a special finite type condition; namely, AG= AG, where A
is the Laplace operator of the surface with respect to the induced metric and 4 is a
fixed endomorphism of the ambient space.

In this article, we continue the investigation of submanifolds with finite type Gauss
map. More precisely, we prove the following results.

THEOREM 1. Cylinders over curves of finite type and planes are the only ruled
surfaces in Euclidean n-space (n>3) with finite type Gauss map.

THEOREM 2. Circular cylinders are the only tubes in E® with finite type Gauss map.

For information on curves of finite type, see [3, 4, 6, 7, 9, 13]. The proof of Theorem
1 bases on a lemma concerning the Laplacian of ruled surfaces given in [8] where the
second-named and the third-named authors together with F. Dillen and L. Vrancken
classified ruled surfaces of finite type in Euclidean spaces. For the proof of Theorem 2
we use a reasoning first given in [4] in which the second-named author used it to prove
that circular cylinders are the only tubes of finite type in a Euclidean 3-space.
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In views of the results obtained here and of the previous works on submanifolds
with finite type Gauss map, it is natural to ask the following question:
“Which submanifolds with finite type Gauss map in a Euclidean space are themselves

of finite type?”

ACKNOWLEDGEMENTS. Summary of the results of this article was given in [2].
This article was written while the first and the third named authors were visiting Michigan
State University during the spring term of 1991. Both authors would like to express
their thanks to their colleagues at MSU for their hospitality during their visits.

§2. Proof of Theorem 1.

We consider two cases separately:

Case 1. M is a cylinder. v
Suppose that the surface M is a cylinder over a curve y in an affine hyperplane

E"~!, which we can choose to have the equation x,=0. Assume that y is parametrized
by its arc length s. Then a parametrization X of M is given by

X(s, t)=y(s)+ te, .
The Gauss map of M is given by the 2-plane
G=vy e,

where y’'=dy/ds.
The Laplacian A of M is given in terms of s and ¢ by A= —92%/ds*>—92%/0t* and
the Laplacian A’ of y is given by A’= —82/ds>. Thus we have

2.1 AG=(A"Y)re,.

If the Gauss map G of M is of finite type, then there exist real numbers c,, * - -, ¢,
such that (cf. [3, 4])

2.2 A**1G+c AG+ -+ +cAG=0.
From (2.1) and (2.2) we get
A¥*ly' e A%y 4+ - 40 Ay =0.
Since 0/0s commutes with A’ and the curve y lies in the hyperplane x,=0, we have
Ark+2,y+c1Ark+1,y+ c e +ckAl2,y=0

which implies that y is of finite type (cf. Proposition 4.1 of [9]). Thus, the Gauss map
G of M is of finite type if and only if y is of finite type.

Case 2. M is not cylindrical.
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If the ruled surface M is not cylindrical, we can decompose M into open pieces
such that on each piece we can find a parametrization X of the form:

X(s, )= o(s) + tB(s)
where a and B are curves in E™ such that
| W, B>=0, <B,B>=1, <B,B>=1.
We have X;=a’'+1f’ and X,=p. We define functions ¢, u and v by

(2.3) g=1X|?=24+2ut+v, u=<{a",p'>, v=<_a’,a’).

The Gauss map G of M is given by the 2-plane (1/(|| X,|| | X,I))X, A X,, or
1

2.49) G= P @' AB+tB'AP).

ql
The Laplacian A of M can be expressed as follows (cf. [8]):

02 10> 1091 8 1061 8
(2.5) =-J -9 4, %99 1910

We suppose that the Gauss map G is of k-type. Then there exist real numbers ¢, - - -, ¢,
such that

(2.6) A 1G+c A*G+ -+ +¢,AG=0.

From the Lemma of [8], we know that if P is a polynomial in ¢ with functions in
s as coefficients and deg(P)=d, then

A ( P(2) > _ PO

qm m+3

q

where P is a polynomial in ¢ with functions in s as coefficients and deg(P)<d+4. For
the Gauss map G we have

G,(9) , G.(®)
AG:ZIT/Z?’ AG=;1_/.2+_3’, deg(G,())<1+4r

where G,(7) are polynomials in ¢ with 2-planes in s as coefficients. Hence, if r goes up
by one, the degree of the numerator of A’G goes up by at most 4, while the degree of
the denominator goes up by 6. Hence the sum (2.6) can never be zero, unless of course

2.7 AG=0.
For convenience, we put A=a’A f and B=p’A B. So
1 ;
G= (A+tB), A'=a"AB+a’'AB’, B'=B"AB,

1/2
q/

.
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A/I=alll/\ﬂ+2a”,\ﬁl+alAﬁﬂ’ B"=ﬂ"’/\ﬁ+ﬂ”/\ﬁ, .

Also we have
0

N vy, H2t+uw.
ot

Now we have (see [1])

oG
—; =4 {Bg—(A+1B)t+uw}=¢"C,

’G _ _s, -5/2
7 =4 H{(Bu—A)q—3(Bg—(A+B)(t+u)t+uw}=q">"D,
LD m_l -3
T = g732{2(A’'+1B')g— (A +1B)u't+v)} =—q >?E,
Js 2 2

2%G 1

= 4[24+ 1B)g + (A + 1B t+0) — (A+ )t +0")]g

3 1
) [2(4’+tB)g—(A+tB)u't+v)]u't +v')} =7q— S2F
where C, D, E, F are defined by the above four formulas.

From (2.5) we obtain

1 1
(2.8) AG=—q~ 5/2D—? q‘7/2F+7q‘ Qu't+v)E—q 3%t +u)C.
Thus, (2.7) implies that the coefficients of the powers of ¢ in (2.8) must be zero. So we
obtain the following equations:

(2.9) B"=0,
(2.10) A—Bu—3B'u+ A" —Bu"=0,
@.11) —8Au+4Bu?>+4Bv—8A"u+6A'v +12B'uv’ + 3B’V
' +2Au" + Bv" +4Buu” —8Bu'? =0,
2.12) 12Buv — 12A4u? —4A4"v+3A4'v' + Av" —8A"u? + 124" uv/
) +6B'u'v+6B'uv’ +4Auu” +2Buv” +2Bu"v—8Au'?* —8Bu'v' =0,
2.13) 4Buv+4Bv? —8Au® —8A"uv+6A'uv’ +2Auv” +6A4'v'v
) +3B'vv’ +2A4u"v + Bov” —8Au'v —2Bv'* =0,
(2.14) 2Buv? +2A4v? —4Aucv —2A4"0v* + 3400 + Avv" —2A4v'2=0.

From (2.9) we conclude that B’ is constant, that is, the 2-plane f” A B is constant. For
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the spherical curve g we have

B"=KxN,, Ni=—kf +x,;N,,

where k,, K, are the first and the second Frenet curvatures and N,, N, the first and the
second Frenet normal vector fields of B. By taking the derivative of B” A f=-const.,
we get

KiNJAB—KIB' AB+K k;Ny AB+K, N, AR =0.

By taking the inner product of this equation with the 2-plane N, A B, we find x,x, =0;
and since x,; #0, we have x,=0. Thus the spherical curve g is a plane curve and hence
the 2-plane B= " A B=const. #0.

If we put
(2.15) w=A—uB,
then w?=||(¢’—up’) A BlI? or w>={a’, &’y +u*>—2ulo’,B’> =v—u?. So
(2.16) v=u’+w?
where w? is the square of w. From (2.10) we get
(2.17) - " +w=0.

Now, by taking the derivative of (2.16), we obtain
(2.18) vV =2(uu +ww’), V=2t uw’ + w'? +ow"),

where ww’ is the inner product of w and w’. Using (2.16), (2.17) and (2.18), we see
that equation (2.11) becomes

(2.19) Wo+3ue'=—(w?+w'?)B.
Taking the derivative of this equation, we find
(2.20) W' =3u)w+4u"w'=0.

If «'=0, we obtain w=0 by virtue of (2.19). In this case, we get A=uB. Thus o’
lies in the constant 2-plane B which contains the plane curve 8. Hence, the surface M
is a plane (or, more precisely, M is an open portion of a plane).

If ' #0 and 4u"? —3u/'(u"" — 3u') =0, then (2.19) and (2.20) imply w=0. The same
argument implies that M is a plane.

If ' #0 and 4u"? —3u/'(u"”’ — 3u’) #0, then (2.19) and (2.20) yield

2.21) w=uB, w'=0B,
where

2 12\, " 2 12 " ’
2.22) 4(w*+w'*)u =_(w + o')W —3u’)

” = 3ul(ulll —_ 3ul) __4(ull)2 > g 3ul(ulll _ 3ul) _4(ull)2 °
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From (2.15) and (2.21) we get A=(u+ p)B. This also implies that the vector a’ lies in
the constant 2-plane B. So, M is a plane, too. O

§3. Proof of Theorem 2.

Let o : (a, b)— E? be a smooth unit speed curve of finite length which is topologically
imbedded in E3. The total space N, of the normal bundle of a((a, b)) in E3 is naturally
diffeomorphic to the direct product (a, b) x E? via the translation along ¢ with respect
to the induced normal connection. For a sufficiently small »>0, the tube of radius r
about the curve o is the set:

T,(06)={€XPgy)V : VE N, vl =r, a<t<b}.

For sufficiently small r, the tube T,(c) is a smooth surface in E3. The position
vector of the tube T,(c) can be expressed as

X, 0)=0()+rcosd N+rsinf B,

where T, N, B denote the Frenet frame of the unit speed curve o =oa(?).
We denote by «k, t the curvature and the torsion of the curve o. Then we have

X,=(1—rxcos®)T—rtsin@ N+rtcos@ B=yT+riV,
Xy= —rsinf N+rcos B=rV,
where
y=1—rx(t)cos@ , V=—sinf N+cosO@ B. -
The Laplacian A of the tube T,(0) is given by (cf. [5])
1 02

F 1 INE
y_s{'ﬂ_ét—"[nﬁ'” y—T(xyzs1n0)]—£+y5t—2

A= —
(3.1

—21 o + ! (y3+r3y1?) az}
Yoo 2 TV )oga(

where B=«'(?) cos0+ x(#)t(¢) sinf.
The Gauss map of the tube T,(o) is given by

3.2) G = —(cos@ N+sinf B) .

For convenience, we give the following formulas:
ég=rccos0 T—zV, —(?—G~=—V,
ot 00

0%G

(3 =3

= —(ktsinf—k’ cosO)T— (k% sinfcosf+1)V—(x?cos?0+12)G,
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2 2
9 G=-G, aG=—1csin0T—‘cG.
002

0100
By using (3.1), (3.2) and (3.3) we may obtain

1 2
AG=——{'y <K200829+ Y

)3 7>G—(xrﬂcosf)+my sinf+«x'ycos@)T
’

+ Ky (x coS0+l) sin6 V}
r

or

1
34 AG= ———— T'+—- P,(cos®, sinb)
14

where P, is a E>-valued polynomial of two variables with coefficients given by some
functions of ¢.
We need the following lemma which is analogous to Lemma 3 of [5].

LEMMA. For any integer k>1, we have

(dk+1)! p2kg2K+1
22k,(2k)!. '))4k+3 +'Y4k+2

KB 03089 Q(cos0, sinb) ,

3.5 A"( )=(—1)"Kcos0

where Q, is a polynomial of two variables with functions of t as coefficients.
PROOF. Since

A (Kﬂ cos 0) =K cosfA (—ﬁ—> + —ﬁ— A(kcosf)—2 < grad(x cosf), grad (£—>> ,
y 3 y 3 y 3 y 3

(3.1) implies

A (Kﬁ cosa) =kcosf A (%) +—1—6 Q(cos0, sin6)
Y 14

3

Y

for some polynomial Q of two variables with functions of ¢ as coefficients.
From Lemma 3 of [5] we have

A (ﬁs)=(—3) 5,.sz +Q;,3(cos0, sinf) ,
Y Y

where @, ; is a polynomial of two variables with functions of ¢ as coefficients. Thus

2p3

1

A(Kﬁc;)s())= —3K00895r 7ﬂ +—Q;(cos, sinb) .
Y Y Y

By applying Lemma 3 of [5] and by induction, we may obtain formula (3.5).
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Now, from (3.4) and (3.5), we obtain

(—D*Y @k + 1) (r* 182+ 1 cos O 1 i
Ak+ 1G=( 25 28 TS T+'y4k+2 Q,(cosb, sinf) ,

for k> 1.

Suppose that the Guass map of the tube T,(o) is of finite type. Then there exist
real numbers c;, - - -, ¢, for some k>1 such that

Ak+1G+01AkG+ tte +CkAG=0 .

Thus, by applying (3.5), we see that there is a polynomial Q of two variables with some
functions of ¢ as coefficients such that

K cosB(x’ cosf+ krsinf)3F+1

=Q(cosH, sinf) .
1 —rkcos0

Since r is sufficiently small, this is impossible unless k =0. Therefore, the tube T,(0) is
a circular cylinder.

Conversely, it is easy to see that the Gauss map of any circular cylinder in E3 is
of 1-type. In fact, if M is a circular cylinder, then, up to a rigid motion of E 3, the
position vector of M in E* takes the following form:

X(t, 0)=(t, rcosf, rsinf), r>0,

and the Laplacian A of M is given by A= —92/0r2 —(1/r*)0?/802. From these, we may
obtain AG=r"2G. Thus, the Gauss map is of 1-type. O
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