
TOKYO J. MATH.
VOL. 17, No. 1, 1994

The Nullity of Compact Minimal Real Hypersurfaces
in a Complex Projective Space

Tohru GOTOH

Chiba University
(Communicated by T. Nagano)

Dedicated to Professor Tsunero Takahashi on his 60th birthday

1. Introduction.

Let $M$ be a compact minimal submanifold of a Riemannian manifold $\tilde{M}$. Then
the general situation of the problem we will investigate in this paper is the following:

PROBLEM 1.1. Estimate the index or the nullity of $M$ from below, and furthemore
determine $M$ whose index or nullity attains the lowest bound in the estimation.

In general, this problem is very difficult, so it seems to be interesting and important
to observe for specific ambient manifolds. Concerning with this problem, the following
two results are well-known:

EXAMPLE 1.2 (J. Simons [S]). In the case where $\tilde{M}$ is the n-dimensional sphere
and dimension of $M$ is $p,$ then the inequalities $ind(M)\geq n-p$ and nu1$(M)\geq(p+1)(n-p)$
hold. Moreover, in each inequality, the equality holds only when $M$ is totally geodesic.

EXAMPLE 1.3 (Y. Kimura [K]). In the case where $\tilde{M}$ is the complex projective
space with complex dimension $n$ and $M$ a K\"ahler submanifold with complex dimension
$p$, then inequality nu1$(M)\geq 2(p+1)(n-p)$ holds and equality holds only when $M$ is
totally geodesic.

Here $ind(M)$ and nu1$(M)$ stand for the index and the nullity of $M$ respectively.
Moreover Ohnita [$O$ , section 6] has obtained a generalization of their results above
to the case of compact rank-l symmetric spaces.

The purpose of this paper is to investigate the problem (1.1), mainly for the nullity,
in the case where $\tilde{M}$ is the n-dimensional complex projective space $P^{n}C$ with the
Fubini-Study metric of constant holomorphic sectional curvature 4, and $M$ a compact
oriented minimal real hypersurface in $P^{n}C$. It should be noted that in the examples
above the minimal submanifold with minimum index or nullity is always totally
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geodesic. On the contrary, it is known that there exsists no totally geodesic, in fact
no totally umbilic real hypersurface in $P^{n}C$. This is a result of a simple application $0$

the equation of Codazzi. However there is a ’nice’ family of minimal real hypersurface
$M_{p.q}^{C}$ , often called the model hypersurfaces, which are defined as follows ([L]):

We denote by $S^{d}(r)$ an Euclidean d-sphere with radius $r$ . For each non-negativ$($

integers $p$ and $q$ with $p+q=n-1$ , we put $r_{p}=\sqrt{(2p+1)/2n}$ and $r_{q}=\sqrt{(2q+1)/2n}.$ The]

the Riemannian product $S^{2p+1}(r_{p})\times S^{2q+1}(r_{q})$ is naturally imbedded minimally $il$

$S^{2n+1}(1)$ . A real hypersurface $M_{p,q}^{C}$ is defined by the commutative $d\dot{i}agram$

$S^{2p+1}(r_{p})\times S^{2q+1}(r_{q})\rightarrow S^{2n+1}(1)$

(1.4) $\downarrow$
$\downarrow$

$M_{p.q}^{C}$ $\rightarrow$ $P^{n}C$

where $S^{1}(1)\rightarrow S^{2n+1}(1)\rightarrow P^{n}C$ is the Hopf fibration. Especially $M_{0,n-1}^{C}$ is called $geodesi_{I}$

hypersphere, which has more fundamental properties among the family $M_{p,q}^{C}.$ Man]
properties which distinguish the model hypersurfaces in the class of real $hersurf($
in $P^{n}C$ have been known.

Now we state the main theorem which asserts that the value of the nullity
distinguishes the geodesic hypersphere $M_{0,n-1}^{C}$ from other minimal real $hersurft$
in $P^{n}C$ :

MAIN THEOREM. Let $M$ be a compact oriented minimal real hypersurface in $P^{n}C$

Then an inequality nu1$(M)\geq 2n$ holds. Moreover, in the inequality, the equality holds $lj$

and only if $M$ is the geodesic hypersphere $M_{0.n-1}^{C}$ .
This theorem will be proved in section 4 (Proposition 4.7) and section 5 (Theorem

5.6). In section 6, we will refer to some remarks on index part of problem (1.1).
The author would like to express his sincere thanks to Prof. H. Urakawa and $Prof$

Y. Ohnita for their kind advices, and to Prof. R. Takagi for encouragement.

2. Jacobi operator.

Let $M$ be a compact oriented minimal submanifold (without boundary) immmersed
in a Riemannian manifold $\tilde{M}$. We denote by $TM$ and $NM$ the tangent and the norma]

bundle of $M$ respectively and $\cdot\perp:T\tilde{M}\rightarrow NM$ the orthogonal projection. Let $\nabla^{M}$ and $\nabla^{R}$

be the Riemannian connection of $M$ and $\tilde{M}$ respectively. Then a metric connection $\nabla^{\perp}$

on $NM$, called the normal connection, is defined as $\nabla_{X}^{\perp}V=(\nabla_{X}^{ff}V)^{\perp}$ for $X\in\Gamma(TM)$ and
$V\in\Gamma(NM)$ . Here $\Gamma(\cdot)$ indicates the space of all $C^{\infty}$-sections of the bundle.

Now the Jacobi operator $3_{M}$ of $M$ is defined as follows ([S]): For each $V\in\Gamma(N, M)$ ,
we set

(2.1) $3_{M}V=-\sum(\nabla_{e_{j}}^{\perp}\nabla_{e_{j}}^{\perp}-\nabla_{\nabla^{u_{J}}e_{j}}^{\perp})V+\sum(R^{ffi}(e_{j}, \eta e_{j})^{\perp}-\sum B(A_{V}e_{j}, e_{j})$ ,
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where $\{e_{j}\}$ is an orthonormal local frame field of $M,$ $R^{ffi}$ is the curvature tensor of $\tilde{M}$,
$B$ is the second fundamental form of the immersion, and $A_{V}$ is the shape operator in
the direction $V$. Then if $M_{t}$ is a variation of $M=M_{0}$ with variational vector field
$V\in\Gamma(NM)$ , the second variational formula of the volume functional is given by

$\frac{d^{2}}{dt^{2}}|_{t=0}Vol(M_{t})=\int_{M}\langle 3_{M}V, V\rangle dv$ ,

where $\langle\cdot, \cdot\rangle$ is the induced fibre metric on $NM$ and $dv$ denotes the volume form of
$M$. It is known that $3_{M}$ is a self-adjoint strongly elliptic partial differential operator
acting on $\Gamma(NM)$ , and has discrete eigenvalues $\mu_{1}<\mu_{2}<\cdots\rightarrow\infty$ . If we denote by
$E_{\mu}(\mathfrak{J}_{M})$ the $\mu$-eigenspace of $\mathfrak{J}_{M}$, the index and the nullity ofMare given by

$ind(M)=\sum_{\mu<0}\dim E_{\mu}(\mathfrak{J}_{M})$ and nu1$(M)=\dim E_{0}(3_{M})$

respectively.
From now on, we consider the case where $\tilde{M}$ is $P^{n}C$ and $M$ is a compact oriented

minimal real hypersurface. In this case $NM$ is a trivial line bundle. Throughout of this
paper, $v$ denotes a globally defined unit normal field and $A$ the shape operator in the
direction $v$ . Because the space $C^{\infty}(M)$ of all the smooth functions on $M$ is isomorphic
to $\Gamma(NM)$ by corresponding $f\in C^{\infty}(M)$ to $fv\in\Gamma(NM)$ , we regard $3_{M}$ as an operator
acting on $C^{\infty}(M)$ . We note the curvature tensor $R^{P}$ of $P^{n}C$ is given as
(2.2) $R^{P}(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(JY, Z)JX-g(JX, Z)JY$

$+2g(X, JY)JZ$ , $X,$ $Y,$ $Z\in TP^{n}C$ ,

where $g$ and $J$ denote the metric tensor and the complex structure of $P^{n}C$ respectively.
Therefore, from (2.1) and (2.2), we obtain

(2.3) $3_{M}f=\Delta_{M}f-(2(n+1)+\Vert A\Vert^{2})f$ , $f\in C^{\infty}(M)$ ,

where $\Delta_{M}$ denotes the (non-negative) Laplacian of $M$ acting on $C^{\infty}(M)$ and $\Vert A\Vert^{2}$ denotes
the square of the length of $A$ .

In the case where $M$ is $M_{p,q}^{C},$ $\Vert A\Vert^{2}=2(n-1)$ . Therefore (2.3) implies

(2.4) $\mathfrak{J}_{M_{p,q}^{c}}f=\Delta_{M_{p.q}^{c}}f-4nf$ , $f\in C^{\infty}(M_{p.q}^{C})$ .
In paticular, the index and the nullity of $M_{p.q}^{C}$ are computed from its spectrum.

REMARK 2.5. It should be mentioned that (2.3) implies the instability of any
compact oriented minimal real hypersurface $M$ in $P^{n}C$, namely $ind(M)>0$ .

3. The spectrum, the index, and the nullity of $M_{p.q}^{C}$.
In this section we compute the index and the nullity of the model hypersurfaces
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$M_{p.q}^{C}$ . For a Riemannian manifold $M$, we denote by $Spec(M)$ the set of all eigenvalues
of $\Delta_{M}$ . By using the diagram (1.1), we can compute $Spec(M_{p,q}^{C})$ as follows (cf. [B-G-M
Chapter III]). We consider $S^{2p+1}(r_{p})$ (resp. $S^{2q+1}(r_{q})$) to be contained in $C^{p+1}$ (resp
$C^{q+1})$ and denote by $(z_{1}, \cdots, z_{p+1})$ (resp. $(w_{1},$ $\cdots,$ $w_{q+1})$) the canonical complez
coordinate of $C^{p+1}$ (resp. $C^{q+1}$). For each non negative integers $s$ and $t$, let $\ovalbox{\tt\small REJECT}_{s.t}^{2p+1}(z,\vec{z_{l}}$

be the space of all homogeneous polynomials with coefficients in $C$ and of $bi$-degret
$(s, t)$ with respect to $z_{j}$ and $\overline{z}_{j}$ . We put further

$\tilde{\ovalbox{\tt\small REJECT}}_{s.t}^{2p+1}(z,\overline{z})=\{P\in \mathscr{J}_{s.t}^{2p+1}|\Delta P=0\}$ , where $\Delta=-4\sum\frac{\partial^{2}}{\partial z_{j}\partial\overline{z}_{j}}$ .

The spaces $\Phi_{u.v}^{2q+1}(w,\overline{w})$ and $\tilde{\ovalbox{\tt\small REJECT}}_{u.v}^{2q+1}(w,\overline{w})$ are defined similarly. The circle group
$S^{1}=\{e^{\sqrt{-1}g}|\theta\in R\}$ acts naturally on the tensor product $\ovalbox{\tt\small REJECT}_{s,t}^{2p+1}(z,\overline{z})\otimes\ovalbox{\tt\small REJECT}_{u.v}^{2q+1}(w,\overline{w})1$

Then we have easily

LEMMA 3.1. For each $P\in g_{l.l}2p+\{z,$ $ z\gamma$ and $Q\in g_{u.v}2q+\{w,\overline{w}$), $ PQ\in$

$\mathscr{J}_{s,t}^{2p+1}(z,$ $z\gamma\otimes g_{u,v}2q+1(w,\overline{w})$ is invariant by $S^{1}$ if and only if$s-t+u-v=0$ .
It is known

$Spec(S^{2p+1}(r_{p}))=\{\lambda_{k}^{2p+1}=\frac{2nk(k+2p)}{2p+1}|k=0,$ $\iota,$ $\cdots\}$

and

$Spec(S^{2q+1}(r_{q}))=\{\lambda_{l}^{2q+1}=\frac{2nl(l+2q)}{2q+1}|l=0,1,$ $\cdots\}$ ,

so that

$sffic(S^{2p+1}(r_{p})xS^{2q+1}(r_{q}))=\{\lambda_{k}^{2p+1}+\lambda_{l}^{2q+1}|k,$ $l=0,1,$ $\cdots$ }.
Moreover the eigenspace (precisely its complexification) of eigenvalue $\lambda_{l}^{2p+1}+\lambda_{l}^{2q+1}$

is given by $\ovalbox{\tt\small REJECT}_{s.t}^{2p+1}(z,$ $z\urcorner\otimes\tilde{\ovalbox{\tt\small REJECT}}_{u,v}^{2q+1}(w,\overline{w})$ . Because $S^{2p+1}(r_{p})xS^{2q+1}(r_{q})$ is a principal
$S^{1}$ -bundle over $M_{p,q}^{C}$, eigenfunctions of $M_{p.q}^{C}$ correspond to eigenfunctions of
$S^{2p+1}(r_{p})\times S^{2q+1}(r_{q})$ which are invariant by $S^{1}$ . Therefore for $\lambda\in Spec(M^{C})$, its$p,q$

multiplicity, denoted by $m(\lambda)$ , is given as follows:

(3.2) $m(\lambda)=\dim_{C}$

$\sum_{k,\lambda=\lambda_{k}^{2}r+\iota_{+\lambda^{2},r+1}^{l}}\sum_{s+t=k}\tilde{\ovalbox{\tt\small REJECT}}_{s,t}^{2p+1}(z,\overline{z})s-t+u-v=0\otimes\tilde{\ovalbox{\tt\small REJECT}}_{u.v}^{2q+1}(w,\overline{w})$

$=\sum\sum\{\left(\begin{array}{l}p+s\\s\end{array}\right)\left(\begin{array}{l}p+t\\t\end{array}\right)-\left(\begin{array}{l}p+s-l\\s-1\end{array}\right)\left(\begin{array}{l}p+t-l\\t-1\end{array}\right)\}$

$\times\{\left(\begin{array}{l}q+u\\u\end{array}\right)\left(\begin{array}{l}q+v\\v\end{array}\right)-\left(\begin{array}{l}q+u-1\\u-1\end{array}\right)\left(\begin{array}{l}q+v-1\\v-1\end{array}\right)\}$ .
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From (2.3) and (3.2), we obtain

(3.3)
$\left\{\begin{array}{ll}nu1(M_{p,q}^{C})=m(4n)=2(p+1)(q+1) , & in particular nu1 (M_{0,n-1}^{C})=2n ,\\ind(M_{p.q}^{C})=\sum_{\lambda<4n}m(\lambda)=1. & \end{array}\right.$

4. The estimation of the nuUity.

This section is devoted to a proof of the estimation part of the theorem. The metric
tensors $ofP^{n}C$and $M$ are denoted by the same letter $g$ , while the Riemannian connections
of them are denoted by $\nabla^{P}$ and $\nabla^{M}$ respectively.

For a Killing vector field $Z$, we define a function $f_{Z}$ on $M$ by $f_{z}=g(Z, v)$ , and set
$C_{R}^{\infty}(M)=$ {$f_{Z}\in C^{\infty}(M)|Z$ is a Killing vector field on $P^{n}C$}.

Firstly, although the following lemma is due to [$S$ , Corollary 3.3.1], we give its
proof for the sake of completeness.

LEMMA 4.1. $3_{M}(C_{R}^{\infty}(M))=\{0\}$ .
$PR\infty F$ . Let $e_{1},$ $\cdots,$ $e_{2n-q}$ be an orthonormal frame field about a point, say $x$, in

$M$ such that V $Me_{j}=0$ at $x$ for $j=1,$ $\cdots,$ $2n-1$ . Then we have

(4.2) $\Delta_{M}f_{Z}=-\sum g(\nabla_{e_{j}}^{P}\nabla_{e_{j}}^{P}Z, v)-2\sum g(\nabla_{e_{j}}^{P}Z, \nabla_{e_{i}}^{P}v)-\sum g(Z, \nabla_{e_{j}}^{P}\nabla_{e_{j}}^{P}v)$ .
Now since $Z$ is a Killing vector field on $P^{n}C$ and $A$ is symmetric,

(4.3) $\sum g(\nabla_{e_{j}}^{P}Z, \nabla_{e_{j}}^{P}v)=-g(\nabla_{e_{j}}^{P}Z, Ae_{j})=0$ .
Similarly we obtain

(4.4) $-\sum g(\nabla_{e_{j}}^{P}\nabla_{e_{i}}^{P}Z, v)=\sum g(R^{P}(e_{j}, v)Z,$
$e_{j}$)

$=2(n+1)f_{Z}$ ,

where the last equation comes from (2.2).
On the other hand, the minimality of $M$ implies $\sum(\nabla_{e_{j}}^{M}A)e_{j}=0$ . Thus

(4.5) $-\sum g(Z, \nabla_{e_{j}}^{P}\nabla_{e_{j}}^{P}v)=\sum g(Z, (\nabla_{e_{j}}^{M}A)e_{j})+\Vert A\Vert^{2}f_{Z}$

$=\Vert A\Vert^{2}f_{Z}$ .
Therefore (2.3), (4.2), (4.3), (4.4) and (4.5) imply

$3_{M}f_{Z}=\Delta_{M}f_{Z}-\{2(n+1)+\Vert A\Vert^{2}\}f_{Z}=0$ . $\square $

Secondly, we note the following lemma which holds whether $M$ is minimal or not.

LEMMA 4.6. For each point $x\in M$ and for each pair $(v, \omega)\in T_{x}P^{n}C\oplus$

$Hom(T.M, N.M)$ , there exists a Killing vector field $Z$ on $P^{n}C$ such that $Z_{x}=v$ and
$(\nabla^{\perp}Z^{\perp})_{x}=\omega$ .
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Now from lemma (4.1) and (4.6), we have the following estimation for the nullity:

PROPOSITION 4.7. For a point $x$ in $M$, define a mapping

$\Phi_{x}$ : $C_{R}^{\infty}(M)\rightarrow N_{x}M\oplus Hom(T_{x}M, N_{x}M)$

$by$

$\Phi_{x}(f_{Z})=(f_{z}(x)v_{x}, (df_{Z})_{x}\otimes v_{x})=(Z_{x}^{\perp}, (\nabla^{\perp}Z^{\perp})_{x})$ .
Then $\Phi_{x}$ is a surjective linear mapping. In particular

nul$(M)\geq\dim C_{R}^{\infty}(M)\geq 2n$ .

5. A minimal real hypersurface with $nullitf2n$.
As we have shown, the nullity of the geodesic hypersphere $M_{O,n-1}^{C}$ attains the lowest

bound of the estimation obtained in proposition 4.7, namely $nu1(M_{0.n-1}^{C})=2n$ . In this
section, we will prove that the geodesic hypersphere is the only compact minimal real
hypersurface in $P^{n}C$ with nullity $2n$ .

First of all, we prove

PROPOSmON 5.1. Ifnu1$(M)=2n$ , then $M$ must be homogeneous. Here homogeneity
means $M$ is an orbit of an analytic subgroup of the isometry group of $P^{n}C$

$PR\infty F$ . For each $x\in M$ and each $X\in T_{x}M$ we show the existence of a Killing
vector field $Z$ on $P^{n}C$ which is tangent to $M$ everywhere on $M$ and $Z_{x}=X$.

In fact, taking a Killing vector field $Z$ on $P^{n}C$ such as $Z_{x}=X$ and $(\nabla^{\perp}Z^{\perp})_{x}=0$, we
have

(5.2) $\Phi_{x}(f_{Z})=0$ .
If nu1$(M)=2n$ , the mapping $\Phi_{x}$ must be an isomorphism. Therefore (5.2) implies $f_{Z}=0$,
so that $Z$ is tangent to $M$ everywhere on $M$. $\square $

Now we let $P^{n}C=U(n+1)/U(1)xU(n)=G/H$ and $\pi:U(n+1)\rightarrow P^{n}C$ the natural
projection. Putting

$\mathfrak{p}=\{\left(\begin{array}{ll}0 & -{}^{t}\zeta\\\zeta & 0\end{array}\right)\in \mathfrak{g}|\zeta\in c^{n}\}$ ,

then we have the orthogonal decomposition

$\mathfrak{g}=\mathfrak{h}+p$ ,

where $\mathfrak{g}$ and $\mathfrak{h}$ denote the Lie algebra of $G$ and $H$ respectively. Let $0=\pi(I)$ be the origin
and we identify $\mathfrak{p}$ canonically to $T_{o}P^{n}C$ Because $P^{n}C=G/H$ is isotropic, that is, the
linear isotropy group acts transitively on the unit sphere in $\mathfrak{p}$ , we may assume
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(5.3) $0\in M$ and $v_{o}=\left(\begin{array}{ll}0 & -{}^{t}\overline{\zeta}_{0}\\\zeta_{0} & 0\end{array}\right)$ ,

where $\zeta_{0}={}^{t}(1,0, \cdots, 0)\in C^{n}$ . We define a vector field $\xi$ on $M$ by $\xi=-Jv$ and a subspace
$\mathfrak{m}$ of $T_{o}M$ to be the orthogonal complement of span $\{\xi_{0}\}$ . Further we define a closed
subgroup $U$ of $U(n+1)$ as

$U=\{\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & W\end{array}\right)\in U(n+1)|$ We $U(n-1)\}\cong U(n-1)$ .

Considering $u\in U$ as an isometry of $P^{n}C$, we denote by $u_{*}$ its differential at the origin
$o$ . Then, as a consequence of the assumption (5.3) and definitions above, we easily
obtain

LEMMA 5.4. $u(0)=0,$ $u_{*}(\xi_{0})=\xi_{0}$ , and $u_{*}(v_{o})=v_{o}$ , and hence

$u_{*}(T_{o}M)\subset T_{o}M$ , $u_{*}(\mathfrak{m})\subset \mathfrak{m}$ .
The next lemma is a result from the condition that the nullity of $M$ is equal to $2n$ .

LEMMA 5.5. Assume nu1$(M)=2n$ . Then every Killing vectorfield on $P^{n}C$ generated
by $U$ is tangent to $M$ everywhere on M. Consequently $U$ leaves $M$ invariant, and we can
consider $U$ as a subgroup of the isometry group of $M$.

$PR\infty F$ . Let $Z$ be an element in $u$ , the Lie algebra of $U$, and $Z^{*}$ a Killing vector
field generated by $Z$ :

$Z_{p}^{*}=\frac{d(\exp tZ)p}{dt}|_{t=0}$ , $p\in P^{n}C$ .

By virtue of lemma (5.4), we have

$ad(Z)v_{0}=\frac{dAd(\exp tZ)v_{0}}{dt}|_{t=0}=\frac{dv_{0}}{dt}|_{t=0}=0$ ,

and hence for all $X\in \mathfrak{m}$

$g((\nabla_{X}^{P}Z^{*}), v_{0})=g(ad(Z)X, v_{0})=-g(X, ad(Z)v_{0})=0$ .
We also obtain $Z_{o}^{*}=0$ by lemma (5.4), and as a result

$\nabla_{X}^{\perp}Z^{*1}=(\nabla_{X}^{P}Z^{*})^{\perp}-(\nabla_{X}^{P}Z^{*T})^{\perp}$

$=0-g(AX, Z^{*T})v_{O}$

$=0$ .
This implies $\Phi_{0}(f_{Z^{*}})=0$ , and on account ofproposition 4.7, we get $f_{Z^{*}}=0$ by assumption
$nu1(M)=2n$ . $\square $
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We are now in aposition to complete aproof of the following theorem:
THEOREM 5.6. Assume nu1$(M)=2n$ , then $M$ must be the geodesic hypersphere

$M_{0.n-1}^{C}$ .
$PR\infty F$ . Since $M$ is homogeneous by lemma (5.1), $\xi$ is a principal curvature vector

on $M$. Consequently the shape operator $A$ leaves $\mathfrak{m}$ invariant. Let $X,$ $Y\in \mathfrak{m}$ with
$\Vert X\Vert=\Vert Y\Vert=1$ . Then there exists a certain $u\in U$ such that $u_{*}Y=X$. By lemma (5.5),
this $u$ is an isometry of $M$ as well as of $P^{n}C$. So we have

$g(AX, X)v_{0}=\nabla_{X}^{P}X-\nabla_{X}^{M}X$

$=\nabla_{u.Y}^{P}u_{*}Y-\nabla_{u.Y}^{M}u_{*}Y$

$=u_{*}(\nabla_{Y}^{P}Y-\nabla_{Y}^{u}Y)$

$=u_{*}(g(AY, Y)v_{0})$

$=g(AY, Y)v_{0}$ for all $X,$ $Y\in \mathfrak{m}$ .
Therefore principal curvature is unique on $\mathfrak{m}$ . By virtue of Takagi’s classification of
homogeneous real hypersurfaces in $P^{n}C$ ([T]), we conclude $M$ must be the geodesic
hypersphere.

6. Some remarks on index problem.

$\Gamma n$ this last section we conclude this paper with refering a little to the index part
of problem (1.1).

As was mentioned in remark (2.5), any compact oriented minimal real hypersurface
$M$ satisfies an inequality

(6.1) $ind(M)\geq 1$ .
This estimation is sharp in the sense that model hypersurfaces $M_{p,q}^{C}$ satisfy the equality
in (6.1). For this reason, we propose the following problem:

PROBLEM 6.2. If the index of a compact oriented minimal real hypersurface $M$ is
equal to one, is $M$ a certain model hypersurface?

Under some additional conditions, problem (6.2) can be solved affirmatively:
PROPOSmON 6.3. Assume $M$ satisfies

$\lambda_{1}(M)\leq 4n$ , $\Vert\Lambda\Vert^{2}=constant$ on $M$, and $ind(M)=1$ ,

where $\lambda_{1}(M)\& notes$ the first eigenvalue of $\Delta_{M}$ . Then $M=M_{p.q}^{C}$ for some $p,$ $q$ .
To prove this, we need the following result:
FACT 6.4 (Lawson $[L$, Theorem 2]). Let $M$ be a compact minimal real hyper-

surface of $P^{n}C$ over which the inequality $\Vert A\Vert^{2}\leq 2(n-1)$ holds. Then $\Vert A\Vert^{2}=2(n-1)$ , and
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up to isometries of $P^{n}C,$ $M=M_{p,q}^{C}$ for some $p,$ $q$ .
PROOF OF PROPOSITION 6.3. Let

$ 0=\lambda_{0}<\lambda_{1}<\cdots\rightarrow\infty$

be the spectrum of $\Delta_{M}$ . Then since $\Vert A\Vert^{2}=const.$ , the spectrum of the Jacobi operator
$3_{M}$ is

$-2(n+1)-\Vert A\Vert^{2}<\lambda_{1}-2(n+1)-\Vert A\Vert^{2}<\cdots\rightarrow\infty$ .
Hence the assumptions $\lambda_{1}\leq 4n$ and $ind(M)=1$ imply

$\Vert A\Vert^{2}\leq 2(n-1)$ .
The assertion follows from (6.4) immediately.

REMARK 6.5. The first eigenvalues of all the model hypersurfaces equal to $4n$ ,
while those multiplicities differ from each other (see (3.2) and (3.3)).

REMARK 6.6. Ejiri and Ros ([R]) showed independently an estimation of the
first eigenvalue of the compact CR-minimal submanifold in $P^{n}C$ Applying their
estimation to a compact minimal real hypersurface $M$, we obtain

$\lambda_{1}(M)\leq 4n+2-\frac{2}{2n-1}$ .
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