Токуо Ј. Матн. Vol. 17, No. 1, 1994

Examples of Non-Einstein Yamabe Metrics with Positive Scalar Curvature

Shin KATO

Nara Women's University (Communicated by T. Nagano)

Let M be a compact C^{∞} -manifold with $n = \dim M \ge 3$. For any Riemannian metric g on M, we denote its scalar curvature by S_g , and its volume form by dV_g . Yamabe [9] considered the problem of finding a metric which minimizes the functional $I(g) := \int_M S_g dV_g / (\int_M dV_g)^{(n-2)/n}$ in a given conformal class. Such a metric is called a Yamabe metric and has constant scalar curvature. This problem was solved completely by Schoen [7], and we know that there is a Yamabe metric in any conformal class. Conversely, a metric g with constant scalar curvature is a Yamabe metric, if $S_g \le 0$ or g is an Einstein metric ([5]). The Yamabe metrics conformal to $S^1(r) \times S^{n-1}(1)$ are also known in explicit form ([2], [3], [8]).

In this paper, we give a sufficient condition for a metric to be a Yamabe metric, and examples of non-Einstein Yamabe metrics with positive scalar curvature.

THEOREM. Let g be a Yamabe metric on a compact C^{∞} -manifold M with $S_g > 0$, h a metric on M with constant scalar curvature, and φ a diffeomorphism of M such that $dV_{\varphi^*h} = \gamma dV_g$ for some number γ . If $\varphi^*h \le (S_g/S_h)g$, then h is also a Yamabe metric. Moreover, if $\varphi^*h < (S_g/S_h)g$, then h is a unique Yamabe metric (up to a homothety) in the conformal class [h] of h.

REMARK. For any two metrics g and h, there is a diffeomorphism φ such that $dV_{\varphi^*h} = \gamma dV_{\varphi}$ for some γ (see [4]).

PROOF. It suffices to show the case when $\varphi = id$. For any metric $\tilde{h} = u^{4/(n-2)}h \in [h]$, we have

$$I(\tilde{h}) = \frac{\int_{M} (a_{h} |\nabla_{h} u|^{2} + S_{h} u^{2}) dV_{h}}{\left(\int_{M} u^{p} dV_{h}\right)^{2/p}},$$

Received November 16, 1992

where $a_n = 4(n-1)/(n-2)$ and p = 2n/(n-2). If $h \le (S_g/S_h)g$, then

$$I(\tilde{h}) = \frac{\int_{M} (a_{n} |\nabla_{h}u|^{2} + S_{h}u^{2})\gamma dV_{g}}{\left(\int_{M} u^{p}\gamma dV_{g}\right)^{2/p}}$$

$$\geq \gamma^{1-2/p} \frac{S_{h}}{S_{g}} \frac{\int_{M} (a_{n} |\nabla_{g}u|^{2} + S_{g}u^{2}) dV_{g}}{\left(\int_{M} u^{p} dV_{g}\right)^{2/p}} = \gamma^{1-2/p} \frac{S_{h}}{S_{g}} I(u^{p-2}g)$$

$$\geq \gamma^{1-2/p} \frac{S_{h}}{S_{g}} I(g) = I(h) .$$

Therefore h minimizes $I|_{[h]}$ or h is a Yamabe metric. Moreover, if $h < (S_g/S_h)g$, then $I(\tilde{h}) = I(h)$ holds only when u is a constant, namely, h is a unique Yamabe metric in [h].

Our result applies typically in the following

COROLLARY. Let $\{g_t \mid T \le t \le T'\}$ be a variation of Riemannian metrics on M with constant scalar curvature satisfying the conditions: (1) g_T is a Yamabe metric; (2) $S_{g_t} > 0$ for t < T'; and (3) $S_{g_T} \equiv 0$. Then g_t is also a Yamabe metric for any t sufficiently close to T'.

PROOF. By the proof of Moser [4, Theorem], it is clear that there is a family $\{\varphi_t \mid T \le t \le T'\}$ of diffeomorphisms, which is continuous with respect to the parameter t, such that $dV_{\varphi_t * g_t} = \gamma_t dV_g$ for some γ_t . Therefore the assertion above follows from our theorem. q.e.d.

Now, let us give such examples with $\varphi = id$.

EXAMPLE 1. Let $\pi: (M, g) \rightarrow (B, \check{g})$ be a Riemannian submersion with totally geodesic fibers, g_t the canonical variation of g, and A the O'Neill tensor (see [1], [6], etc.). Suppose g_T is Einstein for some T, $S_{g_T} > 0$ and $A \neq 0$. Then g_t is a Yamabe metric on M for any $t \ge S_{\check{g}}/|A|^2 - T$.

EXAMPLE 2. Let $\{X_1, X_2, X_3\}$ be a left invariant orthonormal frame of the standard metric on $S^3 = SU(2)$. For any $t \ge s \ge 1$, define a metric $g_{s,t}$ on S^3 by

$$g_{s,t}(X_1, X_1) = 1, \quad g_{s,t}(X_2, X_2) = s, \quad g_{s,t}(X_3, X_3) = t,$$

$$g_{s,t}(X_i, X_j) = 0 \quad \text{for} \quad i \neq j.$$

Then $S_{g_{s,t}} = 2\{2(s+t+st)-(1+s^2+t^2)\}/st$, and $g_{s,t}$ is a Yamabe metric if $t \ge s + \sqrt{s} + 1$. We can also construct Yamabe metrics of this type on other simple compact Lie groups. EXAMPLE 3. Let g_t be a Yamabe metric on S^{n-1} given in Example 1 with a Hopf fibration $\pi: S^{2m+1} \rightarrow CP^m$ $(t \ge 2m+1)$, $\pi: S^{4q+3} \rightarrow HP^q$ $(t \ge (4q+5)/3)$ or $\pi: S^{15} \rightarrow S^8$ $(t \ge 3)$. Then $r^2 d\theta^2 + g_t$ is a Yamabe metric on $S^1 \times S^{n-1}$ if $r \le 1/\sqrt{n-2}$. The same assertion holds also for $r^2 d\theta^2 + g_{s,t}$, where $g_{s,t}$ is a Yamabe metric on S^3 given in Example 2.

The author would like to thank Professors O. Kobayashi and Y. Sakane for helpful advice.

References

- [1] A. L. BESSE, *Einstein Manifolds*, Springer (1987).
- [2] B. GIDAS, W.-M. NI and L. NIRENBERG, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209-243.
- [3] O. KOBAYASHI, On large scalar curvature, Research Report, Keio Univ., 1985 (unpublished).
- [4] J. MOSER, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294.
- [5] M. OBATA, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258.
- [6] Y. SAKANE, Homogeneous Einstein metrics on a principal circle bundle II, preprint (1992).
- [7] R. SCHOEN, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479–495.
- [8] R. M. SCHOEN, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, *Topics in Calculus of Variations* (ed. by M. Giaquinta), Lecture Notes in Math. 1365 (1989), 120–154, Springer.
- [9] H. YAMABE, On the deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37.

Present Address:

Department of Mathematics, Osaka University, Toyonaka, Osaka, 560 Japan.