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Introduction.

A spatial theta-curve f:0—S? is an embedding of a theta-curve with its vertices
and edges labelled. Given two spatial theta-curves f and g, we can define a new spatial
theta-curve f #g, the vertex connected sum of f and g, up to ambient isotopy [7]. K.
‘Taniyama [6] defines cobordism between spatial theta-curves, and observes that (1) the
cobordism classes form a group @ under vertex connected sum: the cobordism inverse
of a theta-curve f is represented by the reflected inverse f! of f; (2) a theta-curve is
slice if and only if an associated 2-component parallel link is slice (i.e. bounds disjoint
disks in the 4-ball). He investigates the theta-curve cobordism group @ through con-

stituent knots of theta-curves, but the following fundamental question is left open
in [6].

QUESTION 1. Is @ an abelian group?

This note presents an example answering the question in the negative. The proof
consists of showing that certain 2-component links are not slice using the refinement
of the Casson-Gordon technique due to P. Gilmer [2].

Finally we raise intriguing questions below.

QUESTION 2. (1) Does @ contain the free group of infinite rank?
(2) What is the center of ©?

' 1. Statement of results.

We use the same notation as in [6], e.g. i-th parallel link /,(f), reflected inverse f'!
of a spatial theta-curve f; theta-curve cobordism group @. Given a knot K and geR,

0(K) is the signature of the matrix (1—e2™)V +(1—e~2"4) YT where V is a Seifert
matrix for K.
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Let f, and f, be the theta-curves given in Figure 1(a). The bands are tied in knots

J; without twisting (cf. Figure 1(b)), and the integers in the boxes indicate the numbers
of half-twists.
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FiGURE 1

ProposiTION 3. If [ f1], [ f21€ @ commute, then 6 ,3(J,)=0, —2 or —4. Con-
sequently, if J, is a left handed trefoil knot (indicated in Figure 1(b)) and J, is arbitrary,
then [ f,] and [ f,] do not commute.

L, (t4,£))

@

FIGURE 2

Assume that [ f;] and [f,] commute. Then by [6, Theorem 5] the first parallel
link /,([f;, f2]) is slice where [f;, f>] denotes the theta-curve f; % f,# f,!# f,!. In
Figure 2(a) J;! denotes the knot J; with its crossings changed; J,! upside down is ob-
tained from the tangle J; by reflecting in a horizontal axis. Then, connecting the two
components of /;([ f1, f>]) by any band yields a slice knot. Figure 2(b) illustrates a
slice knot X; obtained in such a manner along with a basis {a, b, ¢, d} for H, (F) where
F is the evident Seifert surface. Our task is to deduce the claimed results in the pro-
position from the fact that K, is slice for any knot J. We appeal to the following
result of Gilmer, which combines the slicing obstructions of Levine [3] with those of
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Casson-Gordon [1]. ,
Let K be a knot with a Seifert surface F and a Seifert pairing ¢ : H, (F) x H,(F)->Z.

Define ¢: H,(F)—H"'(F) by &(x)(»)=¢(x, y)+@(y, x). Let A’e H,(F)® Q/Z be the
subset of elements of ker(¢ ® idg,z) with prime power order.

THEOREM 4 (Gilmer [2, Corollary (0.2)]). If K is a slice knot, then there is a direct
summand H of H,(F) with the properties:

(1) 2rank H=rank H, (F);

(2) e(HxH)=0;

(3) Let xeH be an arbitrary primitive element such that x ® s/me A’ for some
0<s<m. Then | 6ym(J,) | <genus(F) for any simple loop J, = F representing x€ H, (F).

In the next section we first find all summands H satisfying conditions (1) and (2)
above for the knot K;, and then evaluate a signature of some knot by Theorem 4(3).

RemMARk 5. The following facts show the difficulty of proving @ being non-
commutative.

(1) Given two theta-curves f and g, the link L=[([f, g]) has zero Conway
polynomial (see [6]).

(2) Any knot obtained by a band connected sum of the components of L is
algebraically slice.

2. Proof of Proposition 3.

With respect to the ordered basis {a, b, ¢, d} of H,(F) in Figure 2(b), compute the
Seifert matrix V for K : the (i, j) entry of V is the linking number of the ith base and
the jth base which is pushed up off F. Then V and its inverse ¥ ~! are given by:

0 0 —1 0 3/2 3/5 1/2 2/5
o o 5 -4 __ 1372310 0 15
=1 _» 4 -3 0 | V=7 0 0 0
0 -5 0 6 5/4 14 0 0

Let ¢ be the Seifert pairing on H, (F).
Step 1. Find all 2-dimensional direct summands of H,(F) on which ¢ vanishes.
By [4] this is equivalent to finding 2-dimensional subspaces of @* on which the
symmetric bilinear form g given by V + VT vanishes and which are invariant under the
linear transformation 7=V ~'¥7T. In our case we have:

12 —9/10 21/10 3/5 0 0 =3 0
Lo a5 95 310 1o o 9 -9
=169 o 2 o | VYVl 3 9 _6 o

0 0 3/2  5/4 0O -9 0 12
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The transformation T has an eigenvector x;=(—1,0,0,0)7 for eigenvalue 1/2;
x,=(—3,1,0,0)T for 4/5; x3=(1,2,1,2)T for 2; x,=(0, 2,0, 3)T for 5/4. Since all
eigenvalues are pairwise distinct, any vector space invariant under 7T is spanned by
eigenvectors. On the other hand, it is easy to verify that B(x, x;)=0 if and only if
|i—j|#2. Thus we obtain:

LEMMA 6. There are exactly four 2-dimensional summands H,, 1<i<4, of H,(F)
on which ¢ vanishes: Hy=<{xy, x;), Hy={Xy, X4), Hy={X,, x3), Hy={x3, X4).

Applying Gilmer’s theorem to K, we look for the summands H of H, (F) satisfying
conditions (1), (2), (3) of the theorem. Then H= H, for some i.

Step 2. For each H; choose x® (s/m)e A’ n(H;® Q/Z) and a simple loop
J. = F representing x. Then evaluate gy, (/).

First note that x ® (1/3) e A’ for any primitive element x € H, (F) because V+ V7 is
divisible by 3.

Case 1. H=H,;wherei=1,2. Choose x; ® (1/3)e 4’ n (H;® Q/Z) and the simple
loop a c F representing x;, where i=1,2. As knots in the 3-sphere a=J,!#J, so
that 0y/3(a) =0/3)(J2!) + 0(1,3(J). By Theorem 4(3) we get | o, 2+ 04,5 |<2.

FIGURE 3

Case 2. H=H, where i=3, 4. In this case choose x; ® (1/3)e H,n A'. Note that
x3=a+2b+c+2d=(a+b+c+d)+(b+d) (cf. Figure 3(a)). Then the knot k = F given
in Figure 3(b) represents x;. Let k;, be the knot k with J,! and J,! in the presentation
of k replaced by trivial arcs. Since k=k, #J,!#J,!, it follows:

01/3(k) =013 (J1 ) +0(1,3(J2) + 64 3)(k,) - 1)

Let k, be the knot &k, with J, replaced by a trivial arc; k, is a right handed trefoil knot.
Note that k, is the satellite knot with pattern k, = S°— N(/) and companion J,. The
winding number of the pattern in the solid torus is 2. Using the formula of the signatures
of satellite knots by Litherland [5, Theorem 2], we obtain :

013y (K1) =023\ (J2) +01,3)(k3) . )
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Note that o(;3)(k2)=—2, and —0,3(K!)=0(;,3(K)=03(K) for any knot K. It
then follows from (1) and (2) that g y,3,(k) = —064,3,(J;) —2. By Theorem 4(3) we get
|61/3(J1) +2]<2, so that g,,,3(J;)=0, —2 or —4 as claimed in Proposition 3.

If we take J to be a knot satisfying | — 6 ;,3)(J2) + 61,3 (J) | >2, then Case 2 is the
only possible case. Hence Proposition 3 is proved.
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