
TOKYO J. MATH.
VOL. 17, No. 1, 1994

The Theta-Curve Cobordism Group Is Not Abelian

Katura MIYAZAKI

Tokyo Denki University
(Communicated by S. Suzuki)

Introduction.

A spatial theta-curve $f:\theta\rightarrow S^{3}$ is an embedding of a theta-curve with its vertices
and edges labelled. Given two spatial theta-curves $f$ and $g$ , we can define a new spatial
theta-curve $f\# g$ , the vertex connected sum of $f$ and $g$ , up to ambient isotopy [7]. K.
Taniyama [6] defines cobordism between spatial theta-curves, and observes that (1) the
cobordism classes form a group $\Theta$ under vertex connected sum: the cobordism inverse
of a theta-curve $f$ is represented by the reflected inverse $f$ ! of $f;(2)$ a theta-curve is
slice if and only if an associated 2-component parallel link is slice (i.e. bounds disjoint
disks in the 4-ball). He investigates the theta-curve cobordism group $\Theta$ through con-
stituent knots of theta-curves, but the following fundamental question is left open
in [6].

QUESTION 1. Is $\Theta$ an abelian group?

Thi $s$ note presents an ekample answering the question in the negative. The proof
consists of showing that certain 2-component links are not slice using the refinement
of the Casson-Gordon technique due to P. Gilmer [2].

Finally we raise intriguing questions below.
QUESTION 2. (1) Does $\Theta$ contain the free group of infinite rank ?
(2) What is the center of $\Theta$ ?

1. Statement of results.

We use the same notation as in [6], e.g. i-th parallel link $l_{i}(f)$ , reflected inverse $f$ !
of a spatial theta-curve $f$, theta-curve cobordism group $\Theta$ . Given a knot $K$ and $q\in R$,
$\sigma_{(q)}(K)$ is the signature of the matrix $(1-e^{2niq})V+(1-e^{-2\pi iq})V^{T}$ where $V$ is a Seifert
matrix for $K$.
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Let $f_{1}$ and $f_{2}$ be the theta-curves given in Figure l(a). The bands are tied in knot
$J_{i}$ without twisting (cf. Figure $1(b)$), and the integers in the boxes indicate the number
of half-twists.

I $f$

(a) (b)

FIGURE 1

PROPOSITION 3. If $[f_{1}],$ $[f_{2}]\in\Theta$ commute, then $\sigma_{\langle 1’ 3)}(J_{1})=0,$ $-2$ or $-4$ . Con
sequently, if $J_{1}$ is a left handed trefoil knot (indicated in Figure $1(b)$) and $J_{2}$ is arbitrarJ
then $[f_{1}]$ and $[f_{2}]$ do not commute.

(a) (b)

FIGURE 2

Assume that $[f_{1}]$ and $[f_{2}]$ commute. Then by [6, Theorem 5] the first paralle
link $l_{1}([f_{1}, f_{2}])$ is slice where $[f_{1}, f_{2}]$ denotes the theta-curve $f_{1}\# f_{2}\# f_{1}$ ! $\# f_{2}!$ . $Il$

Figure 2(a) $J_{i}$ ! denotes the knot $J_{i}$ with its crossings changed; $J_{i}$ ! upside down is ob
tained from the tangle $J_{i}$ by reflecting in a horizontal axis. Then, connecting the $tw($

components of $l_{1}([f_{1}, f_{2}])$ by any band yields a slice knot. Figure 2(b) illustrates $i$

slice knot $K_{J}$ obtained in such a manner along with a basis $\{a, b, c, d\}$ for $H_{1}(F)wher($

$F$ is the evident Seifert surface. Our task is to deduce the claimed results in the pro
position from the fact that $K_{J}$ is slice for any knot $J$. We appeal to the $followin\{$

result of Gilmer, which combines the slicing obstructions of Levine [3] with those $0$
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Casson-Gordon [1].
Let $K$ be a knot with a Seifert surface $F$ and a Seifert palring $\varphi:H_{1}(F)\times H_{1}(F)\rightarrow Z$.

Define $\epsilon:H_{1}(F)\rightarrow H^{1}(F)$ by $\epsilon(x)(y)=\varphi(x, y)+\varphi(y, x)$ . Let $A^{\prime}\in H_{1}(F)\otimes Q/Z$ be the
subset of elements of $ker(\epsilon\otimes id_{Q/Z})$ with prime power order.

THEOREM 4 (Gilmer [2, Corollary (0.2)]). If $K$ is a slice knot, then there is a direct
summand $H$ of $H_{1}(F)$ with the properties:

(1) 2rankH$=rankH_{1}(F)$;
(2) $\varphi(H\times H)=0$ ;
(3) Let $x\in H$ be an arbitrary primitive element such that $x\otimes s/m\in A^{\prime}$ for some

$0<s<m$ . Then $|\sigma_{\langle s/m)}(J_{x})|\leq genus(F)$ for any simple loop $J_{x}\subset F$ representing $x\in H_{1}(F)$ .
In the next section we first find all summands $H$ satisfying conditions (1) and (2)

above for the knot $K_{J}$ , and then evaluate a signature of some knot by Theorem 4(3).

REMARK 5. The following facts show the difficulty of proving $\Theta$ being non-
commutative.

(1) Given two theta-curves $f$ and $g$ , the link $L=l_{i}([f, g])$ has zero Conway
polynomial (see [6]).

(2) Any knot obtained by a band connected sum of the components of $L$ is
algebraically slice.

2. Proof of Proposition 3.

With respect to the ordered basis $\{a, b, c, d\}$ of $H_{1}(F)$ in Figure 2(b), compute the
Seifert matrix $V$ for $K_{J}$ : the $(i,j)$ entry of $V$ is the linking number of the $i$th base and
the $j$ th base which is pushed up off $F$. Then $V$ and its inverse $V^{-1}$ are given by:

$V=\left(\begin{array}{llll}0 & 0 & -1 & 0\\0 & 0 & 5 & -4\\-2 & 4 & -3 & 0\\0 & -5 & 0 & 6\end{array}\right)$ , $V^{-1}=-\left(\begin{array}{llll}3/2 & 3/5 & 1/2 & 2/5\\3/2 & 3/10 & 0 & 1/5\\1 & 0 & 0 & 0\\5/4 & 1/4 & 0 & 0\end{array}\right)$ .

Let $\varphi$ be the Seifert pairing on $H_{1}(F)$ .
Step 1. Find all 2-dimensional direct summands of $H_{1}(F)$ on which $\varphi$ vanishes.
By [4] this is equivalent to finding 2-dimensional subspaces of $Q^{4}$ on which the

symmetric bilinear form $\beta$ given by $V+V^{T}$ vanishes and which are invariant under the
linear transformation $T=V^{-1}V^{T}$ . In our case we have:

$T=\left(\begin{array}{llll}1/2 & -9/10 & 21/10 & 3/5\\0 & 4/5 & 9/5 & 3/10\\0 & 0 & 2 & 0\\0 & 0 & 3/2 & 5/4\end{array}\right)$ , $V+V^{T}=\left(\begin{array}{llll}0 & 0 & -3 & 0\\0 & 0 & 9 & -9\\-3 & 9 & -6 & 0\\0 & -9 & 0 & 12\end{array}\right)$ .
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The transformation $T$ has an eigenvector $x_{1}=(-1,0,0,0)^{T}$ for eigenvalue 1/2;
$x_{2}=(-3,1,0,0)^{T}$ for 4/5; $x_{3}=(1,2,1,2)^{T}$ for 2; $x_{4}=(0,2,0,3)^{T}$ for 5/4. Since all
eigenvalues are pairwise distinct, any vector space invariant under $T$ is spanned by
eigenvectors. On the other hand, it is easy to verify that $\beta(x_{i}, x_{j})=0$ if and only if
$|i-j|\neq 2$ . Thus we obtain:

LEMMA 6. There are exactly four 2-dimensional summands $H_{i},$ $1\leq i\leq 4$, of $H_{1}(F)$

on which $\varphi$ vanishes: $H_{1}=\langle x_{1}, x_{2}\rangle,$ $H_{2}=\langle x_{1}, x_{4}\rangle,$ $H_{3}=\langle x_{2}, x_{3}\rangle,$ $ H_{4}=\langle x_{3}, x_{4}\rangle$ .
Applying Gilmer’s theorem to $K_{J}$ , we look for the summands $H$ of $H_{1}(F)$ satisfying

conditions (1), (2), (3) of the theorem. Then $H=H_{i}$ for some $i$.
Step 2. For each $H_{i}$ choose $x\otimes(s/m)\in A^{\prime}\cap(H_{i}\otimes Q/Z)$ and a simple loop

$J_{x}\subset F$ representing $x$ . Then evaluate $\sigma_{\langle s/m)}(J_{x})$ .
First note that $x\otimes(1/3)\in A^{\prime}$ for any primitive element $x\in H_{1}(F)$ because $V+V^{T}$ is

divisible by 3.
Case 1. $H=H_{i}$ where $i=1,2$ . Choose $x_{1}\otimes(1/3)\in A^{\prime}\cap(H_{i}\otimes Q/Z)$ and the simple

loop $a\subset F$ representing $x_{1}$ , where $i=1,2$ . As knots in the 3-sphere $a=J_{2}$ ! $\# J$, so
that $\sigma_{(1/3)}(a)=\sigma_{\langle 1/3)}(J_{2}!)+\sigma_{\langle 1/3)}(J)$ . By Theorem 4(3) we get $|\sigma_{(1/3)}(J_{2}!)+\sigma_{(1/3)}(J)|\leq 2$ .

(a) (b)

FIGURE 3

Case 2. $H=H_{i}$ where $i=3,4$ . In this case choose $x_{3}\otimes(1/3)\in H_{i}\cap A^{\prime}$ . Note that
$x_{3}=a+2b+c+2d=(a+b+c+d)+(b+d)$ (cf. Figure $3(a)$). Then the knot $k\subset F$ given
in Figure 3(b) represents $x_{3}$ . Let $k_{1}$ be the knot $k$ with $J_{1}$ ! and $J_{2}$ ! in the presentation
of $k$ replaoed by trivial arcs. Since $k=k_{1}\# J_{1}$ ! $\# J_{2}$ !, it follows:

$\sigma_{\langle 1/3)}(k)=\sigma_{\{1/3)}(J_{1}!)+\sigma_{\langle 1/3)}(J_{2}!)+\sigma_{\langle 1/3)}(k_{1})$ . (1)

Let $k_{2}$ be the knot $k_{1}$ with $J_{2}$ replaoed by a trivial arc; $k_{2}$ is a rigt handed trefoil knot.
Note that $k_{1}$ is the satellite knot with pattem $k_{2}\subset\overline{S^{s}-N(l)}$ and companion $J_{2}$ . The
winding number ofthe pattem in the solid torus is 2. Using the formula of the signatures
of sate.llite knots by Litherland [5, Theorem 2], we obtain:

$\sigma_{\langle 1\prime 3)}(k_{1})=\sigma_{(2/3)}(J_{2})+\sigma_{\langle 1\prime 3)}(k_{2})$ . (2)
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Note that $\sigma_{\langle 1/3)}(k_{2})=-2$ , and $-\sigma_{\langle 1/3)}(K!)=\sigma_{\langle 1/3)}(K)=\sigma_{13/3)}(K)$ for any knot $K$. It
then follows from (1) and (2) that $\sigma_{\langle 1/3)}(k)=-\sigma_{\langle 1/3)}(J_{1})-2$ . By Theorem 4(3) we get
$|\sigma_{\langle 1/3)}(J_{1})+2|\leq 2$ , so that $\sigma_{(1/3)}(J_{1})=0,$ $-2$ or $-4$ as claimed in Proposition 3.

If we takeJ to beaknot satisfying $|-\sigma_{\langle 1/3)}(J_{2})+\sigma_{\langle 1/3)}(J)|>2$ , then Case2is the
only possible case. Hence Proposition 3 is proved.

References

[1] A. CASSON and C. McA. GORDON, Cobordism of classical knots, A la Recherche de la Topologie
Perdue (ed. by A. Marin and L. Guillou), Progress in Math. 62 (1986), Birkh\"auser, 181-199.

[2] P. M. GILMER, Slice knots in $S^{3}$ , Quart. J. Math. Oxford (2), 34 (1983), 305-322.
[3] J. LEVINE, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-2u.
[4] J. LEVINE, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
[5] R. A. LITHERLAND, Signatures of iterated torus knots, Topology of Low-Dimensional Manifolds,

Lecture Notes in Math. 722 (1979), Springer, 71-84.
[6] K. TANIYAMA, Cobordism oftheta curves in $S^{3}$ , to appear in Math. Proc. Cambridge Philos. Soc. (1993).
[7] K. WOLCOTT, The knotting of theta curves and other graphs in $S^{3}$ , Geometry and Topology (ed. by

C. McCrory and T. Shifrin), Maroel Dekker (1987), 325-346.

Present Address:
FACULTY OF ENGINEERING, TOKYO DENKI UNIVERSITY,
KANDA-NISHIKICHO, TOKYO, 101 JAPAN.


