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Abstract. We shall determine their levels of some special classes of sets of strings such as { $X\subseteq\Sigma^{r}$ ;

$P[X]\neq NP[X]\}$ in the Kleene arithmetical hierarchy on subclasses of $9(\Sigma^{*})$ . We shall show that such
several classes are proper $\Pi_{2}^{O}$ , that is, they are $\Pi_{2}^{O}$ but not $\Sigma_{2}^{0}$ .

Introduction.

We consider classification of some special classes of sets of strings such as
$\{X\subseteq\Sigma^{*} : P[X]\neq NP[X]\}$ . That is, we determine their levels in the Kleene arithmetical
hierarchy on subclasses of $\mathcal{P}(\Sigma^{*})$ . At first glance, this class is $\Sigma_{3}^{0}$ , but by using an
$NP[X]$-complete set, it is seen that this class is $\Pi_{2}^{0}$ . For the notions and notations used
above, see the following sections.

The classes we shall treat with are the following, where $X$ranges over subsets $of\Sigma^{*}$ ;

$E0=\{X:P[X]\neq NP[X]\}$ ,
El $=\{X:coNP[X]\neq NP[X]\}$ ,
$E2=\{X:DEXT[X]\neq NEXT[X]\}$ ,
$E3=\{X : coNEXT[X]\neq NEXT[X]\}$ ,
$E4=\{X:P[X]\neq PH[X]\}$ ,
$E5=\{X:NP[X]\neq PH[X]\}$ ,
$E6=\{X:NP[X]\neq PSPACE[X]\}$ ,
$E7=\{X:NP[X]\neq EXPTIME[X]\}$ ,
$E8=\{X:PH[X]\neq PSPACE[X]\}$ , and
$E9=\{X : PSPACE[X]\neq EXPTIME[X]\}$ .

Their inclusion relation is as follows: $E1\subset EO$ ([BGS 75]), $here\subset means$ the proper
inclusion. $E3\subset E2$ (it can be shown that there exists a recursive oracle $A$ such that
$DEXT[A]\neq NEXT[A]=coNEXT[A])$ . And $E2\subset E0$ ([BWM 82]). Since $NP[X]\subseteq$

$PH[X]\subseteq PSPACE[X]\subseteq EXPTIME[X]$ , we have E5, $E8\subseteq E6\subseteq E7$ , and $E9\subseteq E7$ .
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Since $P[X]=NP[X]$ (resp. coNP[X] $=NP[X]$) implies $P[X]=PH[X]$ (resp. NP[X] $=$

$PH[X])$, we have $E0=E4$ and $E1=E5$ . Clearly, $E5\neq E7$ . Also, $E6\neq E0$ ([BDG 90;
p. 156]). All $Ei’ s$ are not empty. For example, for $E9\neq\phi$ , see e.g., [Orp 83], though
Orponen gives a stronger result. As seen below, they are all co-meager. Further, it is
well-known that the complement $\neg EO$ is not empty ([BGS 75]), and also $\neg E7$ is not
empty ([De 76], [He 84]). Therefore, all $\neg E\iota s$ are not empty. These facts are needed
below in this paper.

SUMMARY: $EluE8\subseteq E6\subseteq E7=E1\cup E8\cup E9$ ,

$E1=E5$ , $E6\subset E0=E4$ ,

$E3\subset E2\subset E0$ .
The aim of this paper is to show that all classes $E\iota s$ are $\Pi_{2}^{0}$ but not $\Sigma_{2}^{0}$ , in fact

not even $F_{\sigma}$ .

\S 1. Prelim.inaries.
We use standard notations for structural theory ofcomplexity and recursion theory

(see, e.g., [BDG 88], [BDG 90], and [Ro 67]). Let $\Sigma=\{0,1\}$ be the alphabet, and $\Sigma$

the set of all finite strings over $\Sigma$ with empty string $\lambda$ . The elements of $\Sigma^{*}$ can be
enumerated as follows:

$\lambda,$ $0,1,00,01,10,11,000,$ $W1,$ $\cdots$ .
We denote the $(n+1)st$ string in the enumeration by $z_{n}$ . For $X\subseteq\Sigma^{*}$ , sometimes $X$ is
identified with the characteristic function $X(n)=1$ if $z_{n}\in X$, and $=0$ otherwise. $w,$ $x,$ $y$,
and $z$ denote strings. Let $N$ be the set of all natural numbers. $i,$ $j,$ $k,$ $m$, and $n$ denote
members of $N$. Let $\mathcal{P}(\Sigma^{*})$ be the class of all subsets of $\Sigma^{*}$ . $X$ and $Y$ denote members
of $9(\Sigma^{*})$ , and with some exceptions we call classes subsets of $9(\Sigma^{*})$ . As usual, we
regard it as the Cantor space. That is, let $w$ be the string $w(0)w(1)\cdots w(n-1)$, where
each $w(\iota)$ is $0$ or 1. Then, the basic open sets are $\{U_{w} : w\in\Sigma^{*}\}$ , where $U_{w}=\{X:X(\iota)=w(\iota)$

for $i=0,1,$ $\cdots,$ $n-1$ }.
Let $E$ be a class, that is $E\subseteq\Psi(\Sigma^{*})$ . $E$ is $\Pi_{2}^{0}$ if it can be expressed in the form

$X\in E\Leftrightarrow\forall y\exists zR(X, y, z)$ ,

where $R(X, y, z)$ is a recursive relation ($[Ro67; \S 15]$ , though Rogers uses the notation
$\Pi_{2}^{\langle s)}$ instead of $\Pi_{2}^{0}$). Similarly for $\Pi_{k}^{0}(k>0)$ . And $E$ is $\Sigma_{2}^{0}$ when it is of the dual form:

$X\in E\Leftrightarrow\exists y\forall zR(X, y, z)$ .
Similarly for $\Sigma_{k}^{0}(k>0)$ . $EisF_{\sigma}$ if it isacountable union of closed sets, $andEisG_{\delta}$ if
its complement $\neg E(=(\Sigma^{*})-E)$ is $F_{\sigma}$ . Here we temporaily use the word ,sets’ for
subsets of $9(\Sigma^{*})$ according to the traditional usage. Clearly, each $\Sigma_{2}^{O}$ set is $F_{\sigma}$ and each $\Pi_{2}^{O}$
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set is $G_{\delta}$ , bm not vice versa.
$E$ is dense if it intersects every basic open set. $E$ is nowhere dense if every basic

open set contains a basic open set which is disjoint with E. $E$ is meager if it is a
countable union of nowhere dense sets. $E$ is co-meager if $\neg E$ is meager. By the Baire
Category Theorem, in $\mathscr{P}(\Sigma^{*})$ every co-meager set is not meager.

The special complexity classes such as $P[X],$ $NP[X]$ , etc. occurred in the definitions
of our $Ei’ s$ will be explained in \S 3. For further information about these classes, see,
e.g., the textbooks: [BDG 88] and [BDG 90].

Prior to our results, similar results (but different from ours) appeared in [Ha 77]
and [Gr 80]. For example, Grant showed that { $i\in N;\phi_{i}$ is total and $P[\phi_{i}]\neq NP[\phi_{i}]$ }
is $\Pi_{2}^{0}$-complete, where $\{\phi_{i} : i\in N\}$ is a standard enumeration of the partial recursive
functions, and $\Pi_{2}^{0}$ is one of the second levels in the Kleene arithmetical hierarchy on
subsets ofN(see [Ro67; \S 14]; though Rogers uses $\Pi_{2}$ instead of $\Pi_{2}^{0}$).

\S 2. The main theorem.

Let $C[\sim]$ be a class of oracle-dependent sets. $C[\sim]$ is recursively presentable if
there is an enumeration of oracle Turing machines $\{M_{O}^{\sim}, M_{1}^{\sim}, \cdots, M_{k}^{\sim}, \cdots\}$ such that
for every oracle $X$

(1) $C[X]=\{L(M_{k}^{X}):k\in N\}$ ,

where $L(M)$ denotes the set of all strings accepted by the machine $M$, and (2) the relation
$M_{k}^{X}$ accepts $y$

’ is recursive with respect to $k,$ $y,$ and \={o}racle X. (We call (2) the recursive
condition for the enumeration $\{M_{k}^{\sim} : k\in N\}.$)

This is the relativized version of recursive presentability in [Sch 82].
An oracle-dependent set $H(X)$ is $C[X]$ -complete with respect to p-m-reduction

[resp. linear reduction] if $H(X)\in C[X]$ and for each $L\in C[X]$ there is a function
$f:\Sigma^{*}\rightarrow\Sigma^{*}$ (independent of $X$) computable in polynomial time [resp. in linear time]
of the length of the input such that for every $y$

$y\in L\Leftrightarrow f(y)\in H(X)$ .
Since $H(X)$ is in $C[X]$ , the relation $y\in H(X)$ is recursive with respect to $y$ and $X$ .
For $C[X]$ , let coC[X] $=\{L:\neg L\in C[X]\}$ , where $\neg L=\Sigma^{*}-L$ . $C[X]$ is polynomially
closed [resp. linearly closed] if $f^{-1}(L)\in C[X]$ for every $L\in C[X]$ and for every $f$

computable in polynomial time [resp. in linear time].
Let $X=$. Ymean that the symmetric difference $X\triangle Y$ is finite. $E$ is closed underfinite

variation if $X\in E\Leftrightarrow Y\in E$ whenever $X=$. Y. Then, clearly we have

LEMMA 2.1. If $E$ is closed under finite variation, then so is $\neg E$ . And further, if
$E$ is not empty, then it is dense. $\square $

THEOREM 1. Let $B[\sim]$ and $C[\sim]$ be recursively presentable classes, and let
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$E=\{X;B[X]\neq C[X]\}$ . Suppose that the following conditions are satisfied:
(a) (a1) $B[X]\subseteq C[X]$ for all X, or(a2) $B[X]=coC[X]$ for all X,
(b) there exists a $C[X]$-complete set $H(X)$ with respect to either (b1) p-m-reduction

or (b2) linear reduction,
(c) (c1) $B[X]$ is polynomially closed, or (c2) it is linearly closed,
(d) $E$ is neither meager nor the whole space $9(\Sigma^{*})$ , andfinally
(e) $E$ is closed underfinite variation.

Then, $E$ isproper $\Pi_{2}^{0}$ ; infact, it is not $F_{\sigma}$ . Here we combine (b1) with (c1), and(b2) with (c2).

LEMMA 2.2. Let $E$ be $F_{\sigma}$ and assume that it is not meager. Then, $E$ intersects every
dense $D:E\cap D\neq\emptyset$ .

$PR\infty F$ . Since $E$ is $F_{\sigma}$ , it can be expressed as follows:

$E=\bigcup_{k=0}^{\infty}A_{k}$ ,

where each $A_{k}$ is closed. Since $E$ is not meager, there is a $k$ such that $A_{k}$ is not nowhere
dense. So, the closure of $A_{k}$ ( $=A_{k}$ itself) contains a basic open set. Hence, the $A_{k}$

intersects every dense set, a fortiori so does E. $\square $

$PR\infty F$ OF THEOREM 1. We consider the case (a1), (b1), and (c1). Then we have
(3) $X\not\in E\Leftrightarrow H(X)\in B[X]$ .
For, suppose $H(X)\in B[X]$ , and $le\sim tL\in C[X]$ be arbitrary. Then, there is a polynomial
time computable function $f$ such that for any $y$

$y\in L\Leftrightarrow f0’)\in H(X)$ .
Since $B[X]$ is polynomially closed, we have $L\in B[X]$ . So, $C[X]\subseteq B[X]$ , and hence
$B[X]=C[X]$ . Therefore, $X\not\in E$ . The forward direction of (3) is clear. Now, by (3), we
have

$X\in E\Leftrightarrow\neg\exists k\forall y$ [$y\in H(X)\leftrightarrow M_{k}^{X}$ accepts $y$],

where $M_{k}^{\sim}’ s$ are the oracle Turing machines associated with $B[\sim]$ in the definition of
its recursive presentability. This shows $E$ is $\Pi_{2}^{0}$ . Similarly, if (a2) holds instead of (a1),
then again we have (3), since $C[X]\subseteq coC[X]$ implies coC[X] $=C[X]$ . Hence, $E$ is $\Pi_{2}^{0}$

also.
Now, suppose that $E$ is $F_{\sigma}$ . Since $\neg E$ is nonempty and closed under finite varia-

tion, it is dense, by Lemma 2.1. Since $E$ is not meager, by Lemma 2.2, we have $E\cap$

$\neg E\neq\phi$ . This is a contradiction. Consequently, $E$ can not be $F_{\sigma}$ . Similarly for the case
that (b2) and (c2) hold.

$\square $
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\S 3. Determining the levels of $Ei’ s$ .
Now, using Theorem 1, we shall show that all $Ei’ s$ are proper $\Pi_{2}^{O}$ classes.
Let $P_{k}^{\sim}$ [resp. $NP_{k}^{\sim}$ ] be the k-th deterministic [resp. nondeterministic] polynomial

time bounded oracle Turing machine such that the enumeration $\{P_{k}^{\sim} : k\in N\}$ [resp.
$\{NP_{k}^{\sim} : k\in N\}]$ satisfies the recursive condition. Let $E_{k}^{\sim}$ [resp. $NE_{k}^{\sim}$ ] be the k-th
deterministic [resp. nondeterministic] $2^{1in}$ time bounded oracle Turing machine such
that the enumeration satisfies the recursive condition, where $2^{1in}$ means $2^{cn}$ for some
constant numbers $c$ . Let $EP_{k}^{\sim}$ be the k-th deterministic $2^{poly}$ time bounded oracle Turing
machine such that the enumeration satisfies the recursive condition, where $2^{poly}$ means
2$p(n)$ for some polynomials $\mu n$). Let $PS_{k}^{\sim}$ be the k-th polynomial space bounded oracle
Turing machine such that the enumeration satisfies the recursive condition. We borrow
$H_{n}^{\sim}$ from Sch\"oning’s paper [Sch 82; p. 99] in the relativized form. This enumeration
also satisfies the recursive condition. Then we have

$P[X]=\{L\langle P_{k}^{X}):k\in N\}$ ,
NP[X] $=\{L(NP_{k}^{X}):k\in N\}$ ,
DEXT[X] $=\{L\langle E_{k}^{X}):k\in N\}$ ,
NEXT[X] $=\{L\langle NE_{k}^{X}):k\in N\}$ ,
$PH[X]=\{L\langle H_{k}^{X}):k\in N\}$ ,
PSPACE[X] $=\{L(PS_{k}^{X}):k\in N\}$ , and
EXPTIME[X] $=\{L(EP_{k}^{X}):k\in N\}$ .

The classes $P[X],$ $NP[X]$ , etc. (including coNP[X] and coNEXT[X]) occurred in the
definitions of $Ei’ s$ are all recursively presentable ([Sch 82] for non-relativized forms).

Let $K(X),$ $KE(X),$ $KS(X)$, and JE$(X)$ be as follows:
$K(X)=$ {$0^{k}1x10^{n}$ : Some computation of $NP_{k}^{X}$ accepts $x$ in $\leqq n$ steps},
$KE(X)=$ {$0^{k}1x10^{n}$ : Some computation of $NE_{k}^{X}$ accepts $x$ in $\leqq 2^{n}$ steps},
$KS(X)=$ {$0^{k}1x10^{n}$ : $PS_{k}^{X}$ accepts $x$ in $\leqq n$ spaces}, and
JE$(X)=$ {$0^{k}1x10^{n}$ ; $EP_{k}^{X}$ accepts $x$ in $\leqq 2^{n}$ steps}.

Then, $K(X),$ $KS(X)$, and JE$(X)$ are $NP[X]$-complete, $PSPACE[X]$-complete, and
$EXPTIME[X]$-complete with respect to p-m-reduction, respectively. $KE(X)$ is
$NEXT[X]$ -complete with respect to linear reduction.

All the complexity classes occurred in the definitions of $Ei’ s$ are either polynomially
closed or linearly closed, and they all are closed under finite variation.

Now, we use Poizat’s result [Po 86]. So, we state an outline of parts of his paper
with some slight modification.

We consider arithmetical predicates (i.e., $\Sigma_{k}^{0}$ or $\Pi_{k}^{0}$ predicates for some k) of the
form $\phi(XXu)$, where $X$ ranges over $\mathscr{P}(\Sigma^{*})$ and $u$ over $\Sigma^{*}$ , as before. $\phi(XXu)$ is finitely
testable if there exists a number-theoretic function $\alpha:N\rightarrow N$ such that for any string
$u$ and any set $X$

$\forall n\geqq\alpha(|u|)[\phi(X)(u)\leftrightarrow\phi(X|nXu)]$ ,
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where $X|n$ is the initial n-segment of $X$ .
Let $C(X)$ be a set of arithmetical predicates of the form $\phi(XXu)$ . For $\phi(XXu)$, let

$\phi[X]=$ { $u\in\Sigma^{*}:$ $\phi(XXu)$ holds},
and let

$C[X]=\{\phi[X]:\phi(XXu)\in C(X)\}$ .
Poizat considers the following 4 hypotheses:
Hypothesis 1. Each predicate in $C(X)$ is finitely testable.
Hypothesis 2. If $X=Y$, then $C[X]=C[Y]$ .
Hypothesis 3. For any $A\in C[X]$ , if $B=A$ then $B\in C[X]$ .
Hypothesis 4. There is a mapping $\#:\mathcal{P}(\Sigma^{*})\rightarrow \mathcal{P}(\Sigma^{*})$ such that (a) $C[X]=$

$C[\# X]$ , and (b) for any $A\in C[X]$ there exists a predicate $\psi$ in $C(X)$ such that $A=\psi[\# X]$

and it has the following property: if $Y=.\# Z$ , then $\psi[Y]\fallingdotseq\psi[\# Z]$ . (In [Po 86], Poizal
imposes a stronger condition: if $Y=.Z$ then $\psi[Y]=\psi[Z]$ . However, it may be hard tc
show that any given concrete class satisfies this condition. This modification does nol
affect the following Theorem.)

Then

POIZAT’S THEOREM. Let $C(X)$ and $1XX$) be two sets of arithmetical predicates o)
the form $\phi(XXu)$ which satisfy the Hypothese $1\sim 4$ with the same mapping $\#:X\mapsto\# X$ .
Let $C[X]$ and $D[X]$ be the corresponding classes of sets, as before. Suppose that there
exists an oracle $A$ such that $C[A]\neq D[A]$ . Then, the set {X : $C[X]\neq D[X]$} is co-meager.

In order to apply our Theorem 1 we must show that all $E\iota s$ are not meager. For
this purpose it suffices to show that all Ei’s are co-meager. Bennett-Gill [BG 81] noted
that EO and El are co-meager, and Babai [Ba 87] noted that E8 is co-meager by
applying the Poizat theorem. However, since the Hypothesis 4 needs a slight correction,
here we show, as an example, that E9 is co-meager. As stated before, the class E9 is
not empty, that is, there is an oracle $A$ such that $PSPACE[A]\neq EXPTIME[A]$ . So,
for our purpose it suffices to show that both PSPACE(X) and EXPTIME(X) satisfy
the Hypotheses $1\sim 4$ with the same mapping $\#$ .

We do this for EXPTIME(X) only. Proofs for other sets are similar.
Let $\phi_{i}(XXu)\Leftrightarrow EP_{i}^{X}$ accepts $u$ . Then
EXPTIME(X) $=\{\phi_{i}(XXu):i\in N\}$ , and
$EX\ovalbox{\tt\small REJECT}[X]=\{\phi_{i}[X]:i\in N\}=\{L\langle EP_{i}^{X}):i\in N\}$ .

Now,
Hypothesis 1. For $\phi_{i}(XXu)$, we can take $\alpha(n)=2^{\beta\langle n)+1}-1$ , as the $\alpha$ in the definition

of finite testability, where $\beta(n)=2^{p_{I}(n)}$ is the time bound function for the machine $EP_{i}^{\sim}$ .
Because the maximal number of strings of length $n$ in the enumeration of the members
of $\Sigma^{*}$ is $2^{n+1}-2$ .

Hypothesis 2. Suppose $X=Y$, and let $A\in EXPTIME[X]$ . So, for some $i,$ $u\in A$
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iff $\phi_{i}(X)(u)$ . Since $X=$. $Y$, there exists a linear time bounded oracle Turing machine $M^{\sim}$

such that $X=L\langle M^{Y}$). Then we can readily find an index $k$ such that $EP_{i}^{M^{\gamma}}=EP_{k}^{Y}$ . Here
this equality means that two machines accept the same language. So, $A\in EXPTIME[Y]$ ,
and hence $EXPTIME[X]\subseteq EXPTIME[Y]$ . Similarly for the reverse inclusion.

Hypothesis 3. Let $A\in EXPTIME[X]$ , and suppose $B=.A$ . So, there is an index
$i$ and a natural number $m$ such that

$u\in A$ iff $\phi_{i}(X)(u)$ iff $EP_{i}^{X}$ accepts $u$, and $\forall n\geqq m[B(n)=A(n)]$ .
Then we shall find a $2^{poly}$ time bounded oracle Turing machine $T^{\sim}$ such that
(4) $u\in B\Leftrightarrow T^{X}$ accepts $u$ .
Here we use the notation ‘’ defined by $z_{n}‘=n$ . First of all, for inputs $u$ such that
$u’<m$, we define a segment of the machine $T^{\sim}$ by a finite table so that for every input

$u$ with $u’<m$ the segment satisfies the condition (4). On any input $u$ with $u’\geqq m,$ $T^{X}$

simulates $EP_{i}^{X}$ so that $T^{X}(u)=EP_{i}^{X}(u)$ holds. Then, (4) holds for each of these $u$ . Thus
we have $B\in EXPTIME[X]$ .

Hypothesis 4. Let $\# X=\pi(\Sigma^{*}, X)$ . Here $\pi$ is a pairing function: $\Sigma^{*}\times\Sigma^{*}\rightarrow\Sigma^{*}$

which is one-to-one onto and polynomially computable. Further, for given $y$ we can
compute the unique $u$ and $x$ in time $O(|y|)$ that $y=\pi(u, x)$ .

(a) $EXPTIME[X]=EXPTIME[\# X]$ . Proof. Let $X$ be given, and suppose
$A\in EXPTIME[X]$ . So, there is an index $i$ such that $u\in A\Leftrightarrow EP_{i}^{X}$ accepts $u$ . Then, we
must find a $2^{poly}$ time bounded oracle Turing machine $T^{\sim}$ such that

(5) $u\in A\Leftrightarrow T^{\$ X}$ accepts $u$ .
For any set $Y$, let $\rho(Y)=\{x\in\Sigma^{*} ; \exists u, y\in\Sigma^{*}[y\in Y\wedge y=\pi(u, x)]\}$ . Then $\rho(Y)=X$ if
$Y=\# X$ . Now, given input $u,$

$T^{Y}$ begins to simulate the computation of $EP_{i}^{\sim}$ on $u$ .
Suppose that $EP_{i}^{\sim}$ enters the query state. Let $w$ be the queried string. Then $T^{Y}$ writes
$\pi(u, w)$ on its oracle tape (this can be done in time $O(2^{p_{i}(|u|)})$), and queries whether
$\pi(u, w)\in Y$ . If the answer is yes, $the\iota 1w\in\rho(Y)$ and so $T^{Y}$ simulates the yes-branch of the
computation of $EP_{i}^{\sim}$ . Otherwise, it simulates the no-brancb $\cdot$ After the whole simplation
ends, $T^{Y}$ gives the same output ( $=an$ accepting or rejecting state) as this simulation
for $EP_{t}^{\sim}$ . This is a quasi-simulation for $EP_{i}^{\rho\langle Y)}$ on $u$ (it may not be an exact one, for
there can be a case that $\pi(u, w)\not\in Y$ but for other $v\pi(v, w)\in Y$ and $w\in\rho(Y))$. If $Y$ is of
the form $\# Z$ , then certainly the output of $T^{Y}$ is the same as that of $EP_{i}^{Z}$, since $\pi(u, w)\in Y$

iff $w\in Z$ . So we have (5). The $T^{\sim}$ is a $2^{poly}$ time bounded oracle Turing machine. Hence
we have $A\in EXPTIME[\# X]$ . Conversely, let $A\in EXPTIME[\# X]$ . Then for some $k,$ $u\in A$

iff $\phi_{k}(\# XXu)$. We define a $2^{poly}$ time bounded oracle Turing machine $M^{\sim}$ as follows:
Given input $uM^{X}$ simulates the computation of $EP_{k}^{\sim}$ on $u$ . Suppose $EP_{k}^{\sim}$ enters the
query state. Let $y$ be the queried string. $M^{X}$ calculates $w$ such that $\pi(u, w)=y$ . Recall
that $w$ is uniquely determined and can be computed in linear time of $|y|+|u|$ . And it
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queries whether $w\in X$ . After it enters yes- or no-state, it resumes simulating. Finally
it outputs the same value as $EP_{k}^{\sim}$ . This $M^{\sim}$ is a $2^{poly}$ time bounded oracle $Turin\not\in$

machine and for any $uu\in A$ iff $M^{X}$ accepts $u$ . Hence $A\in EXPTIME[X]$ .
(b) For each $A\in EXF\Gamma IME[X]$ , there is a predicate $\psi(XXu)$ in $EX\ovalbox{\tt\small REJECT}[X_{-}^{-}$

such that (b1) $A=\psi[\# X]$ and (b2) if $Y=.\# Z$ then $\psi[Y]=.\psi[\$ Z]$ . Proof. (b1) Le)
$A\in EX\ovalbox{\tt\small REJECT}[X]$ . Then, there is an index $i$ such that $u\in A$ iff $\phi_{i}(XXu)$ . We take tht
machine $T^{\sim}$ obtained in the proof of (a). As was shown above, $u\in A$ iff $T^{tX}$ accepts $u$

Let $\psi(XXu)$ be the predicate “ $T^{X}$ accepts $u’$ . Then $\psi(XXu)$ is in EXPTIME(X), and we
have $A=\psi[\# X]$ . $(b2)$ Suppose $Y=.\# Z$ . Then, there is a number $m$ (depending on $Y$ anc
$Z)$ such that

$\forall u,$ $w$($[|u|\geqq m$ or $|w|\geqq m]\Rightarrow[\pi(u,$ $w)\in Y$ iff $\pi(u$, w)\in $Z iff $w\in Z]$).

So, both computations of $T^{Y}$ and $T^{tZ}$ on $u$ are identical with that of $EP_{i}^{Z}$ on $u$ for any
$u$ with $|u|\geqq m$ . Hence, $\psi[Y]=.\psi[\# Z]$ .

Thus, we have shown that $EX\ovalbox{\tt\small REJECT}(X)$ satisfies the four Hypotheses.
Consequently, it is seen that all $E\iota s$ are co-meager and hence they are not meager

Hence, all the Ets satisfy the conditions $(a)\sim(e)$ for $E$ in Theorem 1. Therefore we have

THEOREM 2. All the classes $Ei’ s$ are $\Pi_{2}^{0}$ but not $\Sigma_{2}^{0}$ , in fact not even $F_{\sigma}$ .

\S 4. Conclusion.
$\dot{W}e$ have determined the levels of the classes $E\iota s$ in the Kleene Arithmetical

Hierarchy on subclasses of $\Psi(\Sigma^{*})$ . That is, they are proper $\Pi_{2}^{0}$ classes. However, there
are other similar classes whose exact levels we do not know. For example, we want tc
know the exact level of the class SEP $=\{X:P[X]\neq BPP[X]\}$ . (For the definition 01
BPP[X], see [BDG 88] and [BDG 90].) By directly evaluating SEP based on $th\epsilon$

definition of BPP[X], we can see that SEP is a $\Sigma_{3}^{0}$ class. However we do not know
whether it is $\Pi_{2}^{0}$ , not even whether it is $\Pi_{3}^{0}$ .
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