Tokyo J. Math. Vol. 17, No. 1, 1994

Reidemeister Torsion of Seifert Fibered Spaces for SL(2; C)-Representations

Teruaki KITANO

Tokyo Institute of Technology (Communicated by T. Nagano)

§0. Introduction.

This paper is devoted to the study of the Reidemeister torsion. It is a piecewise linear invariant for *n*-dimensional manifolds and originally defined by Reidemeister, Franz and de Rham. In 1985 Casson defined an interesting topological invariant of homology 3-spheres by making use of a beautiful construction on the space of SU(2)-representations of the fundamental group. Later Johnson developed a similar theory of Casson's one by using the Reidemeister torsion as its essential ingredient. He also derived an explicit formula for the Reidemeister torsion of Brieskorn homology 3-spheres for SL(2; C)-irreducible representations. In this paper, we call this type Reidemeister torsion the SL(2; C)-torsion following Johnson. Let M_n be a 3-manifold obtained by the 1/n-surgery on a torus (p, q)-knot. It is a Brieskorn homology 3-sphere $\Sigma(p, q, pqn \pm 1)$. The fundamental group $\pi_1 M_n$ admits a presentation as follows;

$$\pi_1 M_n = \langle x, y \mid x^p = y^q, ml^n = 1 \rangle$$

where m is a meridian of the torus knot which is a word of x and y and l is similarly a longitude. Johnson proved the following theorem.

THEOREM (Johnson). The distinct conjugacy classes of the SL(2; C)-irreducible representations of $\pi_1 M_n$ are given by $\rho_{(a,b,k)}$ such that

- (1) $0 < a < p, 0 < b < q, a \equiv b \mod 2$,
- (2) $0 < k < N = |pqn+1|, k \equiv na \mod 2$,
- (3) $\operatorname{tr} \rho_{(a,b,k)}(x) = 2 \cos \pi a/p$,
- (4) tr $\rho_{(a,b,k)}(y) = 2\cos \pi b/q$,
- (5) tr $\rho_{(a,b,k)}(m) = 2\cos \pi k/N$.

In this case the SL(2; C)-torsion $\tau_{(a,b,k)}$ for $\rho_{(a,b,k)}$ is given by

$$\tau_{(a,b,k)} = \begin{cases} 2(1 - \cos \pi a/p)(1 - \cos \pi b/q)(1 + \cos \pi k p q/N) & a \equiv b \equiv 1, \ k \equiv n \mod 2\\ 0 & a \equiv b \equiv 0 \text{ or } k \neq n \mod 2. \end{cases}$$

Received October 5, 1992

His methods can be applied to more general Seifert fibered spaces and give a way to compute the SL(2; C)-torsion of them.

The main result of this paper is the following theorem. Let M^3 denote the orientable Seifert fibered space given by the following Seifert index

$$\{b, (\varepsilon, g); (\alpha_1, \beta_1), \cdots, (\alpha_m, \beta_m)\}$$

MAIN THEOREM. Let $\rho : \pi_1 M \to SL(2; \mathbb{C})$ be an irreducible representation. Then the $SL(2; \mathbb{C})$ -torsion $\tau(M; V_{\rho})$ is given by

$$\tau(M; V_{\rho}) = \begin{cases} 0 & \text{if } H = I \\ 2^{4-m-4g} \prod_{i=1}^{m} \left(1 - (-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}} \right) & \text{if } H \neq I, \ \varepsilon = o \\ \left(2 - 2 \cos \frac{s\pi}{N+1} \right)^{4-m-2g} \prod_{i=1}^{m} \left(1 - (-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}} \right) & \text{if } H \neq I, \ \varepsilon = n \end{cases}$$

where

- (1) $H=\rho(h)$,
- (2) h is a representative element of generic fiber in $\pi_1 M$,
- (3) $\rho_i, v_i \in \mathbb{Z}$ such that $\begin{vmatrix} \alpha_i & \rho_i \\ \beta_i & v_i \end{vmatrix} = -1$ and $0 < \rho_i < \alpha_i$,
- (4) $k_i(\rho) \in \mathbb{Z}$ such that $0 \le k_i \le \alpha_i$, and $k_i(\rho) \equiv \beta_i \mod 2$,
- (5) $N=\beta_1/\alpha_1+\cdots+\beta_m/\alpha_m$,
- (6) $s \in \mathbb{Z}$ such that $0 \le s \le 2N+2$.

REMARK. (1) In general the dimension of the space of representations of a Seifert fibered space is not zero; in particular the distinct classes of irreducible representations are not finite. However the set of the SL(2; C)-torsion turns out to be a finite subset in **R** by this theorem; that is SL(2; C)-torsion is a constant function on each connected component of the space of irreducible representations.

(2) It may be a problem to determine whether there exists a 3-manifold with continuous variations of the SL(2; C)-torsion. In fact the answer is yes. In our paper [3], we will prove that the double of the figure-eight knot exterior in S^3 has continuous variations of the SL(2; C)-torsion.

Now we describe the contents of this paper. In §1 we give the necessary definitions and properties of the SL(2; C)-torsion following Milnor. In §2 we examine the Reidemeister torsion for the 2-dimensional torus and the solid torus. These results will be used later for the torus decomposition formula. In §3 we investigate SL(2; C)-irreducible representation of Seifert fibered spaces. In §4, we give a proof of Main theorem for the case of H = -I. In §5, we prove the non-acyclicity of the chain complex $C_*(M; V_{\rho})$ in the case of H = I.

The author would like to express his gratitude to Professor Shigeyuki Morita for

REIDEMEISTER TORSION

his encouragement and many useful suggestions. He also would like to thank Professor Yoshihiko Mitsumatsu for pointing out related topics.

§1. Definition of the SL(2; C)-torsion.

First let us describe the definition of the SL(2; C)-torsion, that is, the Reidemeister torsion for SL(2; C)-representations. See Johnson [2] and Milnor [4], [5], [6] for details.

Let W be an n-dimensional vector space over C and let $\boldsymbol{b} = (b_1, \dots, b_n)$ and $\boldsymbol{c} = (c_1, \dots, c_n)$ be two bases for W. Setting $b_i = \sum_{j=1}^n p_{ij}c_j$, we obtain a nonsingular matrix $P = (p_{ij})$ with entries in C. Let $[\boldsymbol{b}/\boldsymbol{c}]$ denote the determinant of P.

Suppose

$$C_*: \quad 0 \longrightarrow C_m \xrightarrow{\partial_m} C_{m-1} \xrightarrow{\partial_{m-1}} \cdots \longrightarrow C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$$

is an acyclic chain complex of finite dimensional vector spaces over C. We assume that a preferred basis c_q for $C_q(C_*)$ is given for each q. Choose some basis b_q for $B_q(C_*)$ and take a lift of it in $C_{q+1}(C_*)$, which we denote by \tilde{b}_q .

Since $B_q(C_*) = Z_q(C_*)$, the basis b_q can serve as a basis for $Z_q(C_*)$. Furthermore the sequence

$$0 \to Z_q(C_*) \to C_q(C_*) \to B_{q-1}(C_*) \to 0$$

is exact and the vectors $(\boldsymbol{b}_q, \tilde{\boldsymbol{b}}_{q-1})$ form a basis for $C_q(C_*)$. It is easily shown that $[\boldsymbol{b}_q, \tilde{\boldsymbol{b}}_{q-1}/c_q]$ does not depend on the choice of the lift $\tilde{\boldsymbol{b}}_{q-1}$. Hence we simply denote it by $[\boldsymbol{b}_q, \boldsymbol{b}_{q-1}/c_q]$.

DEFINITION 1.1. The torsion of the chain complex C_* is given by the alternating product

$$\prod_{q=0}^{m} [b_{q}, b_{q-1}/c_{q}]^{(-1)^{q}}$$

and we denote it by $\tau(C_*)$.

REMARK. It is easy to see that $\tau(C_*)$ depends only on the bases $\{c_0, \dots, c_m\}$.

Now we apply this torsion invariant of chain complexes to the following geometric situations. Let X be a finite cell complex and \tilde{X} a universal covering of X. The fundamental group $\pi_1 X$ acts on \tilde{X} as deck transformations. Then the chain complex $C_*(\tilde{X}; Z)$ has the structure of a chain complex of free $Z[\pi_1 X]$ -modules. Let $\rho: \pi_1 X \to SL(2; C)$ be a representation. We denote the 2-dimensional vector space C^2 by V. Using the representation ρ , V has the structure of a $Z[\pi_1 X]$ -module and then we denote it by V_{ρ} . Define the chain complex $C_*(X; V_{\rho})$ by $C_*(\tilde{X}; Z) \otimes_{Z[\pi_1 X]} V_{\rho}$ and choose a preferred basis

$$\{\sigma_1 \otimes \boldsymbol{e}_1, \sigma_1 \otimes \boldsymbol{e}_2, \cdots, \sigma_{k_a} \otimes \boldsymbol{e}_1, \sigma_{k_a} \otimes \boldsymbol{e}_2\}$$

of $C_q(X; V_{\rho})$ where $\{e_1, e_2\}$ is a canonical basis of V and $\sigma_1, \dots, \sigma_{k_q}$ are q-cells giving the preferred basis of $C_q(\tilde{X}; \mathbb{Z})$.

We consider the situation where $C_*(X; V_{\rho})$ is acyclic. Namely all homology groups vanish; $H_*(X; V_{\rho}) = 0$. In this case we call ρ an acyclic representation.

DEFINITION 1.2. Let $\rho: \pi_1 X \to SL(2; \mathbb{C})$ be an acyclic representation. Then the Reidemeister torsion of X with V_{ρ} -coefficients is defined to be the torsion of the chain complex $C_*(X; V_{\rho})$. We denote it by $\tau(X; V_{\rho})$.

REMARK. (1) We define the SL(2; C)-torsion $\tau(X; V_{\rho})$ to be zero for a non-acyclic representation ρ .

(2) The Reidemeister torsion $\tau(X; V_{\rho})$ depends on several choices. However it is well known that the Reidemeister torsion is a piecewise linear invariant. See Johnson[2], Milnor [4], [6].

The key lemma of the proof of Main theorem is the following. It gives the torus decomposition formula of the Reidemeister torsion of 3-manifolds. See Johnson [2], Milnor [6].

LEMMA 1.3. Let $0 \to C'_* \to C_* \to C''_* \to 0$ be an exact sequence of n-dimensional chain complexes with preferred bases $\{c'_i\}$, $\{c_i\}$ and $\{c''_i\}$ such that $[c'_i, c''_i/c_i] = 1$ for $\forall i$. Suppose any two of the complexes are acyclic. Then the third one is also acyclic and the torsion of the three complexes are all well-defined. Moreover the next formula holds:

$$\tau(C_{\star}) = (-1)^{\sum_{i=0}^{n} \beta'_{i-1}\beta''_{i}} \tau(C'_{\star}) \tau(C'_{\star})$$

where $\beta'_i = \dim \partial C'_{i+1}$ and $\beta''_i = \dim \partial C''_{i+1}$.

PROOF. It is easy to show the acyclicity of the third one from the homology long exact sequence of $0 \rightarrow C'_* \rightarrow C_* \rightarrow C''_* \rightarrow 0$.

To see the required formula, we consider the next diagram for $\forall i$.

Choose bases b'_i of $\partial C'_{i+1}$ and b''_i of $\partial C''_{i+1}$ and then we get a basis of ∂C_{i+1} , $b_i = (b'_i, b''_i)$. We will show that

$$\tau(C'_{*})\tau(C''_{*})\tau(C_{*})^{-1} = (-1)^{\sum_{i=0}^{n} \beta'_{i-1}\beta''_{i}}$$

Here from the definition of the torsion,

$$\tau(C'_{*})\tau(C''_{*})\tau(C_{*})^{-1} = \prod_{i=0}^{n} [b'_{i}, b'_{i-1}/c'_{i}]^{(-1)^{i}} [b''_{i}, b''_{i-1}/c''_{i}]^{(-1)^{i}} [b_{i}, b_{i-1}/c_{i}]^{(-1)^{i+1}}$$

Note that this value does not depend on the choice of b'_i and b''_i . Consequently we may assume that

$$[b'_i, b'_{i-1}/c'_i] = [b''_i, b''_{i-1}/c''_i] = 1$$
.

Hence

$$\tau(C'_{*})\tau(C''_{*})\tau(C_{*})^{-1} = \prod_{i=0}^{n} [b_{i}, b_{i-1}/c_{i}]^{(-1)^{i+1}}.$$

Moreover, from the assumptions, we may choose identifications

$$\partial C_{i+1} \cong \partial C'_i \oplus \partial C''_i , \quad C_i \cong C'_i \oplus C''_i , \quad \partial C_i \cong \partial C'_i \oplus \partial C''_i ,$$
$$C'_i \cong \partial C'_{i+1} \oplus \partial C'_i , \qquad C''_i \cong \partial C''_{i+1} \oplus \partial C''_i .$$

Thereby we can identify C_i with $\partial C'_{i+1} \oplus \partial C'_i \oplus \partial C''_{i+1} \oplus \partial C''_i$ and get a basis for C_i

 $(b'_i, b'_{i-1}, b''_i, b''_{i-1}) = (c'_i, c''_i) = c_i$.

Moreover we have the following as an oriented basis,

$$(\boldsymbol{b}'_{i}, \, \boldsymbol{b}'_{i-1}, \, \boldsymbol{b}''_{i}, \, \boldsymbol{b}''_{i-1}) = (-1)^{\beta'_{i-1}\beta''_{i}} (\boldsymbol{b}'_{i}, \, \boldsymbol{b}''_{i}, \, \boldsymbol{b}'_{i-1}, \, \boldsymbol{b}''_{i-1})$$
$$= (-1)^{\beta'_{i-1}\beta''_{i}} (\boldsymbol{b}_{i}, \, \boldsymbol{b}_{i-1}) .$$

Hence

$$\begin{bmatrix} b'_{i}, b'_{i-1}/c'_{i} \end{bmatrix} \begin{bmatrix} b''_{i}, b''_{i-1}/c''_{i} \end{bmatrix} \begin{bmatrix} b_{i}, b_{i-1}/c_{i} \end{bmatrix}^{-1}$$

= 1 \cdot 1 \cdot (-1)^{\beta'_{i-1}\beta''_{i}} = (-1)^{\beta'_{i-1}\beta''_{i}}.

Therefore

$$\tau(C'_{\star})\tau(C''_{\star})\tau(C_{\star})^{-1} = (-1)^{\sum_{i=0}^{n}\beta'_{i-1}\beta''_{i}}$$

This completes the proof of Lemma 1.3.

§2. Examples of SL(2; C)-torsion.

In this section, we compute the SL(2; C)-torsion of the torus T^2 and the solid torus S. First we consider the condition of the acyclicity of T^2 . When a representation

 ρ is fixed, we denote the matrix $\rho(x)$ for $\forall x$ by the corresponding capital letter X. Recall that we denote the 2-dimensional complex vector space C^2 by V and the canonical basis of V by $\{e_1, e_2\}$.

DEFINITION 2.1. A parabolic element of SL(2; C) is a nontrivial element which fixes some nonzero vector in V. Equivalently an element is parabolic if it is conjugate to $\begin{pmatrix} 1 & t \\ -t \end{pmatrix}$ for $\exists t \in C$. (0)

 $\begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} \text{ for } \exists t \in \mathbf{C} - \{0\}.$

DEFINITION 2.2. Let $\rho: \pi_1 T^2 \to SL(2; \mathbb{C})$ be a representation. Then it is called a parabolic representation if X is either trivial or a parabolic element in $SL(2; \mathbb{C})$ for $\forall x \in \pi_1 T^2$.

We can easily prove the following lemma.

LEMMA 2.3. Let $\rho : \pi_1 T^2 \rightarrow SL(2; \mathbb{C})$ be a representation. The following statements are equivalent:

(1) ρ is a parabolic representation.

(2) det(X-I) = 0 for $\forall x \in \pi_1 T^2$ where I is the unit matrix in SL(2; C).

Now we describe the condition of acyclicity.

PROPOSITION 2.4. Let $\rho: \pi_1 T^2 \to SL(2; \mathbb{C})$ be a representation. Then all homology groups vanish: $H_*(T^2, V_\rho) = 0$ if and only if ρ is a non-parabolic representation. In this case, the $SL(2; \mathbb{C})$ -torsion is given by

$$\tau(T^2; V_o) = 1$$
.

PROOF. Suppose ρ is a non-parabolic representation. We fix an orientation on T^2 . By assumption, there is an element $x \in \pi_1 T^2$ such that $\det(X-I) \neq 0$. We take $y \in \pi_1 T^2$ such that the geometric intersection number $x \cdot y = 1$. We assume that a cell structure of T^2 is given by the following;

- (0) one 0-cell p,
- (1) two 1-cells x and y,
- (2) one 2-cell w,

with the attaching map given by $\partial w = xyx^{-1}y^{-1}$. By easy computation, this chain complex is given as follows;

$$0 \longrightarrow w \otimes V \xrightarrow{\partial_2} x \otimes V \otimes y \otimes V \xrightarrow{\partial_1} p \otimes V \longrightarrow 0$$

where

$$\partial_2 = \begin{pmatrix} -(Y-I) \\ X-I \end{pmatrix}, \quad \partial_1 = (X-I \quad Y-I).$$

Since det $(X-I) \neq 0$, ∂_1 is surjective and then dim $(\text{Ker }\partial_1) = 2$. Similarly ∂_2 is injective

and dim $(Im \partial_2) = 2$. On the other hand, we have

$$\operatorname{Im} \partial_2 \subset \operatorname{Ker} \partial_1$$

by the definition of the boundary operators. Hence

$$\operatorname{Im} \partial_2 = \operatorname{Ker} \partial_1$$
.

Therefore this chain complex $C_*(T^2; V_\rho)$ is acyclic. Then $\tau(T^2; V_\rho)$ is given by the following. Since a canonical basis of $V \oplus V$ is given by $\{(e_1, 0), (e_2, 0), (0, e_1)(0, e_2)\}$, we may identify the bases

$$c_2 = \{e_1, e_2\},$$

$$c_1 = \{(e_1, 0), (e_2, 0), (0, e_1), (0, e_2)\},$$

$$c_0 = \{e_1, e_2\}.$$

We take a basis b_i of B_i for $\forall i \in \{0, 1\}$ which satisfies $b_1 = \partial c_2$, $b_0 = \partial c_1$. Then by the definition of the SL(2; C)-torsion,

$$\tau(T^{2}; V_{\rho}) = [\boldsymbol{b}_{1}/\boldsymbol{c}_{2}][\boldsymbol{b}_{1}, \boldsymbol{b}_{0}/\boldsymbol{c}_{1}]^{-1}[\boldsymbol{b}_{0}/\boldsymbol{c}_{0}].$$

By straightforward computation,

$$[b_{1}/c_{2}] = 1,$$

$$[b_{1}, b_{0}/c_{0}] = \det\begin{pmatrix} -(Y-I) & 0 \\ X-I & I \end{pmatrix} = \det(Y-I),$$

$$[b_{0}/c_{0}] = \det(Y-I).$$

Therefore the SL(2; C)-torsion is given by

$$\tau(T^2; V_{\rho}) = 1$$
.

Conversely we assume that ρ is a parabolic representation. If ρ is a trivial representation, it is clear that $C_*(T^2; V_{\rho})$ is a usual V-coefficient chain complex and not acyclic. Hence we may assume ρ is nontrivial. Then there is an element $x \in \pi_1 T^2$ such that $X = \rho(x) \neq I$. Let $v \in V$ denote the fixed vector of X and L the complex line spanned by v. Let $y \in \pi_1 T^2$ be any other element such that $Y = \rho(y) \neq I$. Since Y commutes with X, they have a common eigenvector which must be v or its multiple. Since Y is a parabolic element of SL(2; C), Y also fixes the vector v. Then we have

$$\operatorname{Im} \partial_1 \subset L$$

and then ∂_1 is not surjective. Hence $H_0(T^2; V_o) \neq 0$. This completes the proof.

REMARK. If $\tau(M; V_{\rho})$ is well-defined for an even dimensional closed orientable manifold M, then the absolute value of the Reidemeister torsion

$$|\tau(M; V_o)| = 1$$
.

See Ray-Singer [8] for details.

Next we consider the solid torus $S = S^1 \times D^2$ with $\pi_1 S \cong Z$ generated by x.

PROPOSITION 2.5. Let $\rho : \pi_1 S \to SL(2; \mathbb{C})$ be a representation. The representation ρ is non-parabolic if and only if the chain complex $C_*(S; V_{\rho})$ is acyclic. In this case the $SL(2; \mathbb{C})$ -torsion of S is given by

$$\tau(S; V_o) = \det(X - I) .$$

PROOF. It is easy to see that S has the same simple homotopy type as S^1 . We may assume that a cell structure of S^1 is given by one 0-cell p and one 1-cell x. Then the corresponding chain complex is given by

$$0 \longrightarrow x \otimes V \xrightarrow{\partial = X - I} p \otimes V \longrightarrow 0.$$

Hence $C_*(S; V_{\rho})$ is acyclic if and only if $det(X-I) \neq 0$. Therefore ρ is a non-parabolic representation. If we take a basis $b_0 = \{\partial e_1, \partial e_2\}$ for $B_0(C_*)$, then the SL(2; C)-torsion is given by

$$t(S; V_{\rho}) = [b_0/c_1]^{-1} [b_0/c_0] = 1 \cdot \det(X - I) = \det(X - I).$$

This completes the proof of Proposition 2.5.

§3. Irreducible representations of Seifert fibered spaces.

In this section, we investigate the $SL(2; \mathbb{C})$ -irreducible representation of the Seifert fibered space M given by the Seifert index $\{b, (\varepsilon, g), (\alpha_1, \beta_1), \dots, (\alpha_m, \beta_m)\}$. It is well known that the fundamental group of M has a presentation as follows. If $\varepsilon = o$, that is, if the orbit surface is orientable, then

$$\pi_1 M = \langle a_1, b_1, \cdots, a_g, b_g, q_1, \cdots, q_m, h \mid [a_i, h] = [b_i, h] = [q_i, h] = 1,$$
$$q_i^{\alpha_i} h^{\beta_i} = 1, q_1 \cdots q_m [a_1, b_1] \cdots [a_g, b_g] = h^b \rangle.$$

If $\varepsilon = n$, that is, if the orbit surface is nonorientable, then

$$\pi_1 M = \langle v_1, \cdots, v_g, q_1, \cdots, q_m, h \mid v_i h v_i^{-1} = h^{-1}, q_i h q_i^{-1} = h,$$
$$q_i^{\alpha_i} h^{\beta_i} = 1, q_1 \cdots q_m v_1^2 \cdots v_g^2 = h \rangle.$$

REMARK. In the case of $\varepsilon = o$ generators a_i , b_i and q_i come from the fundamental group of the orbit surface. Then we can choose the representative closed curves on the orbit surface q_1, \dots, q_m such that $q_1 \dots q_m[a_1, b_1] \dots [a_g, b_g] = 1$. Similarly we choose the curves in the case of $\varepsilon = n$.

REIDEMEISTER TORSION

We fix this presentation for $\pi_1 M$ and consider only SL(2; C)-irreducible representations. The next lemma gives us a clue to compute the SL(2; C)-torsion.

LEMMA 3.1. Let $\rho: \pi_1 M \to SL(2; \mathbb{C})$ be an irreducible representation. Then the image of the generic fiber h is given by

$$H = \rho(h) = \begin{cases} \pm I & (\varepsilon = o) \\ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} & (\varepsilon = n) \end{cases}$$

where I is the unit matrix in SL(2; C), $\lambda \in C$ such that $\lambda^{2N+2} = 1$, $N = \beta_1 / \alpha_1 + \cdots + \beta_m / \alpha_m$.

PROOF. By the irreducibility of ρ , it is easy to see that H is a non-parabolic element.

Case 1: $\varepsilon = o$. Suppose $H \neq \pm I$. Let *u* be an eigenvector for an eigenvalue λ of *H*. Since *H* commutes with $A_i = \rho(a_i)$, $B_i = \rho(b_i)$ and $Q_j = \rho(q_j)$, all vectors $A_i u$, $B_i u$ and $Q_j u$ is contained in the vector space spanned by *u*. It contradicts the irreducibility of ρ . Thus $H = \pm I$.

Case 2: $\varepsilon = n$. Since we consider the conjugacy classes of representations, we may suppose *H* is the diagonal matrix $H = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix}$.

Subcase 1: m=0. In this case *M* has no exceptional fibers; it is an S^1 -bundle over a non-orientable surface of genus *g*. By the relation $V_i H = H^{-1} V_i$,

$$V_i H e_1 = \lambda V_i e_1 = H^{-1} V_i e_1$$
.

Accordingly we get

$$HV_i \boldsymbol{e}_1 = \lambda^{-1} V_i \boldsymbol{e}_1$$

and $V_i e_1$ is contained in the eigenspace for an eigenvalue λ^{-1} as in Case 1. Similarly $V_i e_2$ is contained in the eigenspace for λ . Thus we may set for each *i*

$$V_i = \begin{pmatrix} 0 & a_i \\ b_i & 0 \end{pmatrix} \quad \text{such that } a_i b_i = -1 \; .$$

By simple computation, we have

$$V_i^2 = -I.$$

The relation of $\pi_1 M$ implies

$$H = V_1^2 V_2^2 \cdots V_g^2 = (-I)^g$$
.

Hence

$$H=\pm I$$
.

Subcase 2: $m \ge 1$. Then M has the exceptional fibers q_1, \dots, q_m . For $\forall q_j$, we set the

corresponding matrix

$$Q_j = \begin{pmatrix} s_j & t_j \\ u_j & v_j \end{pmatrix}.$$

The condition $HQ_i = Q_i H$ implies

$$\begin{pmatrix} \lambda s_j & \lambda t_j \\ \lambda^{-1} u_j & \lambda^{-1} v_j \end{pmatrix} = \begin{pmatrix} \lambda s_j & \lambda^{-1} t_j \\ \lambda u_j & \lambda^{-1} v_j \end{pmatrix}.$$

If we compare each entry of the left-side with the one of the right-side,

$$\lambda = \lambda^{-1}$$
 or $t_j = u_j = 0$.

If $\lambda = \lambda^{-1}$, then we get $\lambda = \pm 1$ and consequently $H = \pm I$. If $\lambda \neq \lambda^{-1}$, then every Q_j is a diagonal matrix. In this case, the relation $q_j^{\alpha_j} h^{\beta_j} = 1$ implies

$$\begin{pmatrix} s_j^{\alpha_j} & 0 \\ 0 & v_j^{\alpha_j} \end{pmatrix} = \begin{pmatrix} \lambda^{-\beta_j} & 0 \\ 0 & \lambda^{\beta_j} \end{pmatrix}.$$

Hence we get

$$s_i = \lambda^{-\beta_j/\alpha_j}$$
 and $v_i = \lambda^{\beta_j/\alpha_j}$.

On the other hand, we get

$$V_i = \begin{pmatrix} 0 & a_i \\ b_i & 0 \end{pmatrix} \quad \text{such that } V_i^2 = -I$$

as in the subcase 1. The relation $h = q_1 \cdots q_m v_1^2 \cdots v_g^2$ implies

$$\begin{pmatrix} \lambda & 0 \\ 0 & \lambda^{-1} \end{pmatrix} = (-I)^g \begin{pmatrix} s_1 \cdots s_m & 0 \\ 0 & v_1 \cdots v_m \end{pmatrix}$$
$$= (-1)^g \begin{pmatrix} \lambda^{-(\beta_1/\alpha_1 + \cdots + \beta_m/\alpha_m)} & 0 \\ 0 & \lambda^{\beta_1/\alpha_1 + \cdots + \beta_m/\alpha_m} \end{pmatrix}.$$

Hence the following holds:

$$\lambda^{-(\beta_1/\alpha_1+\cdots+\beta_m/\alpha_m)}=(-1)^g\lambda.$$

Therefore setting $N = \beta_1 / \alpha_1 + \cdots + \beta_m / \alpha_m$, we get

$$\lambda^{2N+2} = 1 .$$

This completes the proof.

From the above lemma, we get easily the following corollary.

COROLLARY 3.2. $Q_i = \rho(q_i)$ has only eigenvalues which are roots of unity.

REIDEMEISTER TORSION

§4. Proof of Main theorem (1).

In this section, we give a proof of Main theorem. Here we decompose M into tubular neighborhoods of exceptional fibers and their complement. Then we compute the SL(2; C)-torsion for each part and apply Lemma 1.3 to our situations. Since we can compute the SL(2; C)-torsion for $\varepsilon = n$ as in the case of $\varepsilon = o$, we will prove only the case of $\varepsilon = o$.

We put

$$\Sigma^* = \Sigma - (D_0^2 \cup \cdots \cup D_m^2)$$

where Σ is an orientable closed surface of genus g and D_0^2, \dots, D_m^2 are disjoint embedded open 2-disks. Also let M_m denote the trivial S^1 -bundle $\Sigma^* \times S^1$. We give a canonical torus decomposition of Seifert fibered space M as follows:

$$M \cong M_m \cup S_0 \cup S_1 \cdots \cup S_m$$

where any S_i is the solid torus. The solid torus S_0 is the one corresponding to the triviality obstruction b and S_i for $\forall i \in \{1, \dots, m\}$ is the one corresponding to the exceptional fiber.

LEMMA 4.1. Let $\rho: \pi_1(M) \to SL(2; \mathbb{C})$ be an irreducible representation. Suppose all homology groups of the boundary vanish: $H_*(\partial M_m; V_\rho) = 0$. Then $H_*(M; V_\rho) = 0$ if and only if $H_*(M_m; V_\rho) = H_*(S_0; V_p) = \cdots = H_*(S_m; V_\rho) = 0$. In this case, we have

 $\tau(M; V_{\rho}) = \tau(M_m; V_{\rho})\tau(S_0; V_{\rho}) \cdots \tau(S_m; V_{\rho}).$

PROOF. Apply Lemma 1.3 to the short exact sequence of the chain complex given by the torus decomposition of M;

$$0 \to \bigoplus_{i=0}^{m} C_{\ast}(\partial S_{i}; V_{\rho}) \to C_{\ast}(M_{m}; V_{\rho}) \oplus \bigoplus_{i=0}^{m} C_{\ast}(S_{i}; V_{\rho}) \to C_{\ast}(M; V_{\rho}) \to 0$$

By the proof of Proposition 2.4, dim $\partial C_*(\partial S_i; V_\rho)$ is even. Therefore we have Lemma 4.1.

PROPOSITION 4.2. Let $\rho : \pi_1(M) \to SL(2; \mathbb{C})$ be an irreducible representation. We denote the restriction of ρ to $\pi_1(M_m)$ by the same symbol ρ . Then all homology groups vanish: $H_*(M_m; V_\rho) = 0$ if and only if $H = \rho(h) = -I$. In this case the SL(2; \mathbb{C})-torsion is given by

$$\tau(M_m; V_o) = 2^{2-2m-4g}$$
.

PROOF. It is easy to see that M_m has the same simple homotopy type as the direct product of the one point union of 2g + m circles $S^1 \vee \cdots \vee S^1$ and S^1 . We denote this space by $(\bigvee_i S_i) \times S^1$. Then $\bigvee_i S_i$ has a natural cell decomposition given by one 0-cell u and 2g + m 1-cells a_i , b_i , q_j . It gives a cell decomposition of $(\bigvee_i S_i) \times S^1$ by

(1) 0-cell u,

- (2) 1-cells $a_1, \dots, a_g, b_1, \dots, b_g, q_1, \dots, q_m$, h corresponding to the generators of $\pi_1 M$.
- (3) 2-cells $v_{a_1}, v_{a_2}, \dots, v_{a_g}, v_{b_1}, \dots, v_{b_g}, v_{q_1}, \dots, v_{q_m}$ respectively with boundary a_i , b_i and q_i .

By using this cell structure, we can determine the structure of $C_*(M_m; V_\rho)$. Recall that $\{e_1, e_2\}$ is a canonical basis of V. The 2-chain module $C_2(M_m; V_\rho)$ is a free $Z[\pi_1 M_m]$ -module on $\{v_{a_j} \otimes e_i, v_{b_j} \otimes e_i, v_{q_j} \otimes e_i\}$ for $\forall i \in \{1, 2\}$ and $\forall j \in \{1, \dots, g\}$. Similarly $C_1(M_m; V_\rho)$ is a free $Z[\pi_1 M_m]$ -module on $\{a_j \otimes e_i, b_j \otimes e_i, q_j \otimes e_i\}$ and $C_0(M_m)$ is a free $Z[\pi_1 M_m]$ -module on $\{u \otimes e_i\}$. Then the boundary operators are given by

 $\partial_{2} = \begin{pmatrix} I - H & 0 & \cdots & 0 \\ 0 & I - H & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & I - H \\ A_{1} - I & A_{2} - I & B_{1} - I & Q_{1} - I & Q_{m} - I \end{pmatrix},$

It is easy to see that $C_*(M_m; V_\rho)$ is acyclic if and only if H = -I. Let b_i be a basis of the boundary $B_i(M_m; V_\rho)$ for i=0, 1. Then the SL(2; C)-torsion is given by

$$\tau(M_m; V_{\rho}) = [\boldsymbol{b}_1/\boldsymbol{c}_2] [\boldsymbol{b}_1, \boldsymbol{b}_0/\boldsymbol{c}_1]^{-1} [\boldsymbol{b}_0/\boldsymbol{c}_0].$$

We may choose a lift of b_1 which coincides with c_2 and the one of b_0 which coincides with $\{h \otimes e_1, h \otimes e_2\}$. By simple computation,

$$\tau(M_m; V_{\rho}) = 1 \cdot (\det(I-H))^{-(2g+m)} \cdot \det(H-I) = (\det(I-H))^{-(2g+m+1)}.$$

Then substituting -I for H, we have

$$\tau(M_m; V_{\rho}) = \left(\det\begin{pmatrix} 2 & 0\\ 0 & 2 \end{pmatrix}\right)^{-(2g+m)+1}$$
$$= 2^{-2(2g+m)+2}.$$

This completes the proof of Proposition 4.2.

Because ∂M_m is the disjoint union of tori, the fundamental group $\pi_1 M$ is generated by *h* and $\{q_1, \dots, q_m\}$. Then $C_*(\partial M_m; V_\rho)$ is acyclic if and only if H = -I by Proposition 2.4.

PROPOSITION 4.3. If H = -I, then the SL(2; C)-torsion of S₀ is given by

$$\tau(S_0; V_{\rho}) = 2^2$$

PROOF. Let ρ_0 and v_0 be integers such that $\begin{vmatrix} 1 & \rho_0 \\ b & v_0 \end{vmatrix} = -1$. We define an element $l_0 \in \pi_1 M_m$ by $q_0^{\rho_0} h^{v_0}$. The sewing of the solid torus S_0 makes the curve $m_0 = q_0 h^b$ on the component of ∂M_m null-homotopic in S_0 . On the other hand the closed curve l_0 is the generator in $\pi_1 S_0 \cong \mathbb{Z}$. Then the relation implies

$$L_{0} = \rho(l_{0}) = Q_{0}^{\rho_{0}} H^{\nu_{0}}.$$

Since $q_{0} = (h^{b})^{-1} = (q_{1} \cdots q_{m}[a_{1}, b_{1}] \cdots [a_{g}, b_{g}])^{-1}$ and $\nu_{0} - b\rho_{0} = -1$,
$$L_{0} = (Q_{1} \cdots Q_{m}[A_{1}, B_{1}] \cdots [A_{g}, B_{g}])^{-\rho_{0}} H^{\nu_{0}}$$
$$= H^{-b\rho_{0} + \nu_{0}} = H^{-1} = -I$$

Therefore the SL(2; C)-torsion of S_0 is given as follows;

$$\tau(S_0; V_{\rho}) = \det(L_0 - I)$$
$$= \det\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}$$
$$= 2^2.$$

This completes the proof.

PROPOSITION 4.4. If H = -I, then the SL(2; C)-torsion of S_i is given by

$$\tau(S_i; V_{\rho}) = 2 \left(1 - (-1)^{\nu_i} \cos \frac{\rho_i k_i(\rho) \pi}{\alpha_i} \right).$$

PROOF. Let ρ_i and v_i be integers such that $\begin{vmatrix} \alpha_i & \rho_i \\ \beta_i & v_i \end{vmatrix} = -1$ and $0 < \rho_i < \alpha_i$. We define the generator $l_i \in \pi_1 S_i$ by $q_i^{\rho_i} h^{v_i}$. Here the image of l_i is given by

$$L_i = \rho(l_i) = Q_i^{\rho_i} H^{\nu_i} = (-1)^{\nu_i} Q_i^{\rho_i}.$$

By Proposition 2.5, we have

$$t(S_i; V_{\rho}) = \det(L_i - I) = \det((-1)^{\nu_i} Q_i^{\rho_i} - I) = 2 - (-1)^{\nu_i} \operatorname{tr} Q_i^{\rho_i}$$

In view of relations $q_i^{\alpha_i} h^{\beta_i} = 1$ and H = -I, the identity $Q_i^{\alpha_i} = (-I)^{\beta_i}$ holds. Then we may denote the eigenvalues of Q_i by $\exp(\sqrt{-1}k_i(\rho)\pi/\alpha_i)$ and $\exp(-\sqrt{-1}k_i(\rho)\pi/\alpha_i)$ where $0 \le k_i(\rho) \le \alpha_i$ and $k_i(\rho) \equiv \beta_i \mod 2$. Hence we get

$$\tau(S_i; V_{\rho}) = 2\left(1 - (-1)^{\nu i} \cos \frac{\rho_i k_i(\rho) \pi}{\alpha_i}\right).$$

This completes the proof of Proposition 4.4.

By using Lemma 4.1, the SL(2; C)-torsion $\tau(M; V_{\rho})$ of the Seifert fibered space is

given by

$$\tau(M; V_{\rho}) = \tau(M_{m}; V_{\rho})\tau(S_{0}; V_{\rho})\cdots\tau(S_{m}; V_{\rho})$$

$$= 2^{2-2m-4g} \cdot 2^{2} \cdot 2^{m} \cdot \prod_{i=1}^{m} \left(1 - (-1)^{v_{i}} \cos \frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}}\right)$$

$$= 2^{4-m-4g} \prod_{i=1}^{m} \left(1 - (-1)^{v_{i}} \cos \frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}}\right).$$

We have a proof of Main theorem for the case of H = -I.

§5. Proof of Main theorem (2).

If H = I, we cannot apply Lemma 4.1 to our situations because a given representation is not acyclic when we restrict it to the complement of exceptional fibers. However then the representation ρ is not acyclic. Now we prove the following proposition.

PROPOSITION 5.1. Let $\rho : \pi_1(M) \to SL(2; \mathbb{C})$ be an irreducible representation such that $H = \rho(h) = I$. Then ρ is not acyclic; that is, $H_*(M; V_{\rho}) \neq 0$.

PROOF. The proof is by contradiction. We assume all homology groups of M vanish: $H_*(M; V_{\rho}) = 0$. Then the following sequences given by the Mayer-Vietoris sequence are exact.

$$0 \to H_2(\partial M_m; V_\rho) \to H_2(M_m; V_\rho) \to 0,$$

$$0 \to H_1(\partial M_m; V_\rho) \to H_1(M_m; V_\rho) \oplus \bigoplus_{i=0}^m H_1(S_i; V_\rho) \to 0,$$

$$0 \to H_0(\partial M_m; V_\rho) \to H_0(M_m; V_\rho) \oplus \bigoplus_{i=0}^m H_0(S_i; V_\rho) \to 0.$$

Case 1: There exists a non-parabolic element in $\{A_i, B_i, Q_j\}$. From the proof of Proposition 4.2, in the chain complex $C_*(M_m; V_\rho)$,

$$\operatorname{rank}(\partial_2) = \operatorname{rank}(\partial_1) = 2$$
.

In this case, by easy computation, the homology groups of M_m are given as follows;

$$H_2(M_m; V_\rho) \cong V^{2g+m-1},$$

$$H_1(M_m; V_\rho) \cong V^{2g+m-1},$$

$$H_0(M_m; V_\rho) = 0.$$

By the above exact sequences and the Poincaré duality, we have the following identifications;

$$H_0(\partial M_m; V_\rho) \cong H_2(\partial M_m; V_\rho) \cong H_2(M_m; V_\rho) \cong V^{2g+m-1}.$$

On the other hand, we have

$$H_0(\partial M_m; V_\rho) \cong H_0(M_m; V_\rho) \oplus \bigoplus_{i=0}^m H_0(S_i; V_\rho)$$
$$\cong \{0\} \oplus V^{m+1-k}$$
$$\cong V^{m+1-k}$$

where k is the number of the solid tori with non-trivial 0-dimensional homology group. Hence we have

$$k=2-2g$$
.

Because k is a non-negative integer, the genus g=0 or 1.

First we assume g=0; that is, k=2. In this case,

$$\pi_1 M = \langle q_1, \cdots, q_m, h | [q_i, h] = 1, q_i^{\alpha_i} h^{\beta_i} = 1, q_1 \cdots q_m = h^b \rangle.$$

Then we have

$$\bigoplus_{i=0}^{m} H_0(S_i; V_{\rho}) \cong V^{m-1}$$

by Propositions 4.3 and 4.4. For simplicity, we may assume

$$\operatorname{rank}(L_i-I)=0$$
 for $\forall i \in \{0, \dots, m-2\}$

and

$$\operatorname{rank}(L_i - I) = 2 \quad \text{for} \quad \forall i \in \{m - 1, m\}$$

For $\forall i \in \{0, \dots, m-2\}$, that is $L_i \in SL(2; C)$ is a parabolic element. On the other hand, from the relations of $\pi_1 M$, we have

$$L_i = Q_i^{\rho_i} H^{\nu_i} = Q_i^{\rho_i} = I \; .$$

Hence

$$Q_i = I$$
 for $\forall i \in \{0, \cdots, m-2\}$

and

$$Q_{m-1}Q_m = I$$

Hence the representation ρ is reducible because Q_{m-1} and Q_m have a common eigenvector.

Next we assume g=1; that is, k=0. In this case, we have

$$\pi_1 M = \langle a_1, b_1, q_1, \cdots, q_m, h | [a_1, h] = [b_1, h] = [q_i, h] = 1,$$
$$q_i^{a_i} h^{\beta_i} = 1, [a_1, b_1] q_1 \cdots q_m = h^b \rangle.$$

Then we have

$$\bigoplus_{i=0}^m H_0(S_i; V_\rho) \cong V^{m+1}.$$

Then for $\forall i \in \{0, \dots, m\}$

$$\operatorname{rank}(L_i - I) = 0$$

and $L_i \in SL(2; \mathbb{C})$ is parabolic or trivial. On the other hand, we have

$$L_i = Q_i^{\rho_i} H^{\nu_i} = Q_i^{\rho_i} = I \; .$$

Hence we have

$$Q_i = I$$
 for $\forall i \in \{0, \cdots, m\}$.

Then ρ factors through a representation of the group $\langle a_1, b_1 | [a_1, b_1] = 1 \rangle$. Since this group is abelian, this representation is reducible. This is a contradiction.

Case 2: All A_i , B_i , Q_i are parabolic elements. In this case, we have

$$Q_i = I$$
 for $\forall i \in \{0, \cdots, m\}$.

Then we have

$$\operatorname{rank}(\partial_2) = 2$$
 or 0

for $C_*(M_m; V_{\rho})$. Hence

$$H_2(M_m; V_\rho) \cong \begin{cases} V^{2g+m-1} & \text{if } \operatorname{rank}(\partial_2) = 2\\ V^{2g+m} & \text{if } \operatorname{rank}(\partial_2) = 0 \end{cases}.$$

By Poincaré duality and the exact sequence, we obtain

$$H_2(M_m; V_\rho) \cong H_2(\partial M_m; V_\rho) \cong H_0(M_m; V_\rho) \oplus V^{m+1}$$

Then we get the genus g=1. Hence this representation ρ is reducible since ρ factors through the representation of the group $\langle a_1, b_1 | [a_1, b_1] = 1 \rangle$ as in Case 1. This completes the proof of Proposition 5.1.

By the lemmas and the propositions, we get a proof of Main theorem.

References

- S. AKBULUT and J. D. MCCARTHY, Casson's invariant for oriented homology 3-spheres, Mathematical Notes 36 (1990), Princeton Univ. Press.
- [2] D. JOHNSON, A geometric form of Casson invariant and its connection to Reidemeister torsion,

unpublished lecture notes.

- [3] T. KITANO, Reidemeister torsion of the figure-eight knot exterior for SL(2; C)-representations, Osaka J. Math. (to appear).
- [4] J. MILNOR, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961), 575-590.
- [5] J. MILNOR, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137-147.
- [6] J. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [7] P. ORLIK, Seifert Manifolds, Lecture Notes in Math. 761 (1972), Springer.
- [8] D. B. RAY and I. M. SINGER, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210.

Present Address:

Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo, 152 Japan.