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\S 0. Introduction.

This paper is devoted to the study of the Reidemeister torsion. It is a piecewise
linear invariant for n-dimensional manifolds and originally defined by Reidemeister,
Franz and de Rham. In 1985 Casson defined an interesting topological invariant
of homology 3-spheres by making use of a beautiful construction on the space of
$SU(2)$-representations of the fundamental group. Later Johnson developed a similar
theory of Casson’s one by using the Reidemeister torsion as its essential ingredient. He
also derived an explicit formula for the Reidemeister torsion of Brieskom homology
3-spheres for $SL(2;C)$-irreducible representations. In this paper, we call this type
Reidemeister torsion the $SL(2;C)$-torsion following Johnson. Let $M_{n}$ be a 3-manifold
obtained by the $1/n$-surgery on a torus $(p, q)$-knot. It is a Brieskom homology 3-sphere
$\Sigma(p, q, pqn\pm 1)$ . The fundamental group $\pi_{1}M_{n}$ admits a presentation as follows;

$\pi_{1}M_{n}=\langle x, y|x^{p}=y^{q}, ml^{n}=1\rangle$

where $m$ is a meridian of the torus knot which is a word of $x$ and $y$ and 1 is similarly
a longitude. Johnson proved the following theorem.

THEOREM (Johnson). The distinct conjugacy classes of the $SL(2;C)$-irreducible
representations of $\pi_{1}M_{n}$ are given by $\rho_{\langle a.b,k)}$ such that

(1) $0<a<p,$ $0<b<q,$ $a\equiv b$ mod2,
(2) $0<k<N=|pqn+1|,$ $k\equiv na$ mod 2,
(3) tr $\rho_{\{a.b,k)}(x)=2\cos\pi a/p$ ,
(4) $tr\rho_{\langle a,b.k)}(y)=2\cos\pi b/q$ ,
(5) tr $\rho_{(a.b,k)}(m)=2\cos\pi k/N$.

In this case the $SL(2;C)$-torsion $\tau_{\langle a,b.k)}$ for $\rho_{\langle a,b.k)}$ is given by

$\tau_{(a.b,k)}=\left\{\begin{array}{ll}2(1- cos \pi a/p)( 1 - cos \pi b/q) (1+\cos\pi kpq/N) & a\equiv b\equiv 1, k\equiv n mod 2\\0 & a\equiv b\equiv 0 or k\not\equiv n mod2.\end{array}\right.$
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His methods can be applied to more general Seifert fibered spaces and give a way
to compute the $SL(2;C)$-torsion of them.

The main result of this paper is the following theorem. Let $M^{3}$ denote the orientable
Seifert fibered space given by the following Seifert index

$\{b, (\epsilon, g);(\alpha_{1}, \beta_{1}), \cdots, (\alpha_{m}, \beta_{m})\}$ .
MAIN THEOREM. Let $\rho$ : $\pi_{1}M\rightarrow SL(2;C)$ be an irreducible representation. Then the

$SL(2;C)$-torsion $\tau(M;V_{\rho})$ is given by

$\tau(M;V_{p})=$ $1_{(2-2\cos\frac{\prod_{=1}^{m}(1-s\pi}{N+1})\prod_{i=}^{4-m-2gm}1)^{v}{}^{t}cos\frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}})}^{i}2^{4-m-4g}0(-1)^{v}{}^{t}cos\frac{\rho_{i}k_{i}(\rho)\pi}{1(1-(-\alpha_{i}})$

$ifif\iota fH\neq L\epsilon=nH\neq I,\epsilon=oH=I$

where
(1) $H=\rho(h)$ ,
(2) $h$ is a representative element ofgeneric fiber in $\pi_{1}M$,

(3) $\rho_{i},$ $v_{i}\in Z$ such that $\left|\begin{array}{ll}\alpha_{i} & \rho_{t}\\\beta_{i} & v_{i}\end{array}\right|=-1$ and $0<\rho_{i}<\alpha_{i}$ ,

(4) $k_{i}(\rho)\in Z$ such that $0\leq k_{i}\leq\alpha_{i}$ , and $k_{i}(\rho)\equiv\beta_{i}$ mod2,
(5) $N=\beta_{1}/\alpha_{1}+\cdots+\beta_{m}/\alpha_{m}$ ,
(6) $s\in Z$ such that $0\leq s\leq 2N+2$ .
REMARK. (1) In general the dimension of the space of representations of a Seifert

fibered space is not zero; in particular the distinct classes of irreducible representations
are not finite. However the set of the SI42; $C$)-torsion tums out to be a finite subset
in $R$ by this theorem; that is SI42; $C$)-torsion is a constant function on each connected
component of the space of irreducible representations.

(2) It may be a problem to determine whether there exists a 3-manifold with
continuous variations of the $SL(2;C)$-torsion. In fact the answer is yes. In our paper [3],
we will prove that the double of the figure-eight knot exterior in $S^{3}$ has continuous
variations of the SI42; $C$)-torsion.

Now we describe the contents of this paper. In \S 1 we give the necessary definitions
and properties of the S142; $C$)-torsion following Milnor. In \S 2 we examine the
Reidemeister torsion for the 2-dimensional torus and the solid torus. These results
will be used later for the torus decomposition formula. In \S 3 we investigate
$SL(2;C)$-irreducible representation of Seifert fibered spaces. In \S 4, we give a proof
of Main theorem for the case of $H=-I$. In \S 5, we prove the non-acyclicity of the
chain.complex $C_{*}(M;V_{\rho})$ in the case of $H=I$ .

The author would like to express his gratitude to Professor Shigeyuki Morita for
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his encouragement and many useful suggestions. He also would like to thank Professor
Yoshihiko Mitsumatsu for pointing out related topics.

\S 1. Definition of the $SL\langle 2;C$)-torsion.

First let us describe the definition of the $SL(2;C)$-torsion, that is, the Reidemeister
torsion for $SL(2;C)$-representations. See Johnson [2] and Milnor [4], [5], [6] for details.

Let $W$ be an n-dimensional vector space over $C$ and let $b=(b_{1}, \cdots, b_{n})$ and
$c=(c_{1}, \cdots, c_{n})$ be two bases for $W$. Setting $b_{i}=\sum_{j=1}^{n}p_{ij}c_{j}$ , we obtain a nonsingular
matrix $P=(p_{ij})$ with entries in $C$. Let $[b/c]$ denote the determinant of $P$ .

Suppose

$C_{*}:$
$0\rightarrow C_{m}\rightarrow^{\partial_{m}}C_{m-1}\rightarrow\partial_{m- 1}\ldots\rightarrow C_{1}\rightarrow^{\partial_{1}}C_{O}\rightarrow 0$

is an acyclic chain complex of finite dimensional vector spaces over $C$. We assume that
a preferred basis $c_{q}$ for $C_{q}(C_{*})$ is given for each $q$ . Choose some basis $b_{q}$ for $B_{q}(C_{*})$

and take a lift of it in $C_{q+1}(C_{*})$ , which we denote by $\tilde{b}_{q}$ .
Since $B_{q}(C_{*})=Z_{q}(C_{*})$ , the basis $b_{q}$ can serve as a basis for $Z_{q}(C_{*})$ . Furthermore

the sequence

$0\rightarrow Z_{q}(C_{*})\rightarrow C_{q}(C_{*})\rightarrow B_{q-1}(C_{*})\rightarrow 0$

is exact and the vectors $(b_{q},\tilde{b}_{q-1})$ form a basis for $C_{q}(C_{*})$ . It is easily shown that
$[b_{q},\tilde{b}_{q-1}/c_{q}]$ does not depend on the choice of the lift $\tilde{b}_{q-1}$ . Hence we simply denote
it by $[b_{q}, b_{q-1}/c_{q}]$ .

DEFINITION 1.1. The torsion of the chain complex $C_{*}$ is given by the alternating
product

$\prod_{q=0}^{m}[b_{q}, b_{q-1}/c_{q}]^{\langle-1)^{q}}$

and we denote it by $\tau(C_{*})$ .
REMARK. It is easy to see that $\tau(C_{*})$ depends only on the bases $\{c_{0}, \cdots, c_{m}\}$ .
Now we apply this torsion invariant of chain complexes to the following geometric

situations. Let $X$be a finite cell complex and $\tilde{X}$ a universal covering of $X$. The fundamental
group $\pi_{1}X$ acts on $\tilde{X}$ as deck transformations. Then the chain complex $C_{*}(\tilde{X} ; Z)$ has
the structure of a chain complex of free $Z[\pi_{1}X]$-modules. Let $\rho:\pi_{1}X\rightarrow SL(2;C)$ be
a representation. We denote the 2-dimensional vector space $C^{2}$ by $V$. Using the
representation $\rho,$

$V$ has the structure of a $Z[\pi_{1}X]$-module and then we denote it by
$V_{\rho}$ . Define the chain complex $C_{*}(X;V_{\rho})$ by $C_{*}(\tilde{X};Z)\otimes_{Z[\pi_{1}X]}V_{\rho}$ and choose a preferred
basis
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$\{\sigma_{1}\otimes e_{1}, \sigma_{1}\otimes e_{2}, \cdots, \sigma_{k_{q}}\otimes e_{1}, \sigma_{k_{q}}\otimes e_{2}\}$

of $C_{q}(X;V_{p})$ where $\{e_{1}, e_{2}\}$ is a canonical basis of $V$ and $\sigma_{1},$ $\cdots,$ $\sigma_{k_{q}}$ are q-cells giving
the preferred basis of $C_{q}(\tilde{X};Z)$ .

We consider the situation where $C_{*}(X;V_{p})$ is acyclic. Namely all homology groups
vanish; $H_{*}(X;V_{\rho})=0$ . In this case we call $\rho$ an acyclic representation.

DEFINITiON 1.2. Let $\rho:\pi_{1}X\rightarrow SL(2;C)$ be an acyclic representation. Then the
Reidemeister torsion of $X$ with $V_{p}$-coefficients is defined to be the torsion of the chain
complex $C_{*}(X;V_{\rho})$ . We denote it by $\tau(X;V_{\rho})$ .

REMARK. (1) We define the SI42; $C$)-torsion $\tau(X;V_{\rho})$ to be zero for a non-acyclic
representation $\rho$ .

(2) The Reidemeister torsion $\tau(X;V_{p})$ depends on several choices. However it is
well known that the Reidemeister torsion is a piecewise linear invariant. See Johnson[2],
Milnor [4], [6].

The key lemma of the proof of Main theorem is the following. It gives the torus
decomposition formula of the Reidemeister torsion of 3-manifolds. See Johnson [2],
Milnor [6].

LEMMA 1.3. $Let0\rightarrow C_{*}^{\prime}\rightarrow C_{*}\rightarrow C_{*}^{\prime\prime}\rightarrow 0beanexactsequenceofn$-dimensionalchain
complexes with preferred bases $\{c_{i}^{\prime}\},$ $\{c_{i}\}$ and $\{c_{i}^{\prime\prime}\}$ such that $[c_{i}^{\prime}, c_{i}^{\prime\prime}/c_{i}]=1$ for $\forall i$. Suppose
any two of the complexes are acyclic. Then the third one is also acyclic and the torsion
of the three complexes are all well-defined. Moreover the next formula holds:

$\tau(C_{*})=(-1)^{z_{\iota--0}^{n}\rho_{i-1}\rho i’}\tau(C_{*}^{\prime})\tau(C_{*}^{\prime\prime})$

where $\beta_{i}^{\prime}=\dim\partial C_{i+1}^{\prime}$ and $\beta_{i}^{\prime\prime}=\dim\partial C_{t+1}^{\prime\prime}$ .
$PR\infty F$ . It is easy to show the acyclicity of the third one from the homology long

exact sequenoe of $0\rightarrow C_{*}^{\prime}\rightarrow C_{*}\rightarrow C_{*}^{\prime\prime}\rightarrow 0$ .
To see the required formula, we consider the next diagram for $\forall i$.

$0$ $0$ $0$

$0_{I\downarrow\downarrow}0\rightarrow C_{i}^{\prime}\rightarrow C_{i}\rightarrow C_{i}\rightarrow 0\rightarrow\partial C\rightarrow\partial C\rightarrow\partial C_{i+1}^{\prime}\rightarrow 0I_{i+1}I_{i+1}\downarrow,$

,

$0\rightarrow\partial C_{j}^{\prime}\downarrow\rightarrow\partial C_{i}\downarrow\rightarrow\partial C_{i}\downarrow\rightarrow 0$

1 1 1
DIAGRAM 1.
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Choose bases $b_{i}^{\prime}$ of $\partial C_{i+1}^{\prime}$ and $b_{i}^{\prime\prime}$ of $\partial C_{i+1}^{\prime\prime}$ and then we get a basis of $\partial C_{i+1}$ ,
$b_{i}=(b_{i}^{\prime}, b_{i}^{\prime\prime})$ . We will show that

$\tau(C_{*}^{\prime})\tau(C_{*}^{\prime\prime})\tau(C_{*})^{-1}=(-1)^{z_{i=0\beta_{i-1}\beta_{i}’}^{n}’}$

Here from the definition of the torsion,

$\tau(C_{*}^{\prime})\tau(C_{*}^{\prime\prime})\tau(C_{*})^{-1}=\prod_{i=0}^{n}[b_{i}^{\prime}, b_{i-1}^{\prime}/c_{i}^{\prime}]^{\langle-1)^{i}}[b_{i}^{\prime\prime}, b_{i-1}^{\prime\prime}/c_{i}^{\prime\prime}]^{(-1)^{i}}[b_{i}, b_{i-1}/c_{i}]^{\langle-1)^{i+1}}$

Note that this value does not depend on the choice of $b_{i}^{\prime}$ and $b_{i}^{\prime\prime}$ . Consequently we may
assume that

$[b_{i}^{\prime}, b_{i-1}^{\prime}/c_{i}^{\prime}]=[b_{i}^{\prime\prime}, b_{i-1}^{\prime\prime}/c_{i}^{\prime\prime}]=1$ .
Hence

$\tau(C_{*}^{\prime})\tau(C_{*}^{\prime\prime})\tau(C_{*})^{-1}=\prod_{i=0}^{n}[b_{i}, b_{i-1}/c_{i}]^{\langle-1)^{i+1}}$

Moreover, from the assumptions, we may choose identifications
$\partial C_{i+1}\cong\partial C_{i}^{\prime}\oplus\partial C_{i}^{\prime\prime}$ , $C_{i}\cong C_{i}^{\prime}\oplus C_{i}^{\prime\prime}$ , $\partial C_{i}\cong\partial C_{i}^{\prime}\oplus\partial C_{i}^{\prime\prime}$ ,

$C_{i}^{\prime}\cong\partial C_{i+1}^{\prime}\oplus\partial C_{i}^{\prime}$ , $C_{i}^{\prime\prime}\cong\partial C_{i+1}^{\prime\prime}\oplus\partial C_{i}^{\prime\prime}$ .

Thereby we can identify $C_{i}$ with $\partial C_{i+1}^{\prime}\oplus\partial C_{i}^{\prime}\oplus\partial C_{i+1}^{\prime\prime}\oplus\partial C_{i}^{\prime\prime}$ and get a basis for $C_{i}$

$(b_{i}^{\prime}, b_{i-1}^{\prime}, b_{i}^{\prime\prime}, b_{i-1}^{\prime\prime})=(c_{i}^{\prime}, c_{i}^{\prime\prime})=c_{i}$ .
Moreover we have the following as an oriented basis,

$(b_{i}^{\prime}, b_{i-1}^{\prime}, b_{i}^{\prime\prime}, b_{i-1}^{\prime\prime})=(-1)^{\beta_{i-1}\beta_{i}’}(b_{i}^{\prime}, b_{i}^{\prime\prime}, b_{i-1}^{\prime}, b_{i-1}^{\prime\prime})$

$=(-1)^{\beta_{i- 1}\beta’}{}^{t’}(b_{i}, b_{i-1})$ .
Hence

$[b_{i}^{\prime}, b_{i-1}^{\prime}/c_{i}^{\prime}][b_{i}^{\prime\prime}, b_{i-1}^{\prime\prime}/c_{i}^{\prime\prime}][b_{i}, b_{i-1}/c_{i}]^{-1}$

$=1\cdot 1\cdot(-1)^{\beta_{i- 1}\beta_{i}’}=(-1)^{\beta i- 1}\rho_{1^{\prime}}$

Therefore
$\tau(C_{*}^{\prime})\tau(C_{*}^{\prime\prime})\tau(C_{*})^{-1}=(-1)^{z_{i=0}^{n}\rho_{i-1}\rho_{t}^{\prime\prime}}$

This completes the proof of Lemma 1.3.

\S 2. Examples of SI42; $C$)-torsion.

In this section, we compute the $SL\langle 2;$ $C$)-torsi\‘On of the torus $T^{2}$ and the solid
torus $S$ . First we consider the condition of the acyclicity of $T^{2}$ . When a representation
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$\rho$ is fixed, we denote the matrix $\rho(x)$ for $\forall x$ by the corresponding capital letter $X$. Recall
that we denote the 2-dimensional complex vector space $C^{2}$ by $V$ and the canonical basis
of $V$ by $\{e_{1}, e_{2}\}$ .

DEFINITION 2.1. A parabolic element of SI42; $C$) is a nontrivial element which
fixes some nonzero vector in $V$. Equivalently an element is parabolic if it is conjugate to
$\left(\begin{array}{ll}l & t\\0 & 1\end{array}\right)$ for $\exists t\in C-\{0\}$ .

DEFINITION 2.2. Let $\rho:\pi_{1}T^{2}\rightarrow sq2;C$) be a representation. Then it is called a
parabolic representation if $X$ is either trivial or a parabolic element in SI42; $C$) for
$\forall x\in\pi_{1}T^{2}$ .

We can easily prove the following lemma.

LEMMA 2.3. Let $\rho:\pi_{1}T^{2}\rightarrow SI42;C$) be a representation. Thefollowing statements
are equivalent:

(1) $\rho$ is a parabolic representation.
(2) $\det(X-I)=0$ for $\forall x\in\pi_{1}T^{2}$ whereI is the unit matrix in $SL(2;C)$ .
Now we describe the condition of acyclicity.

PROPOSITiON 2.4. Let $\rho:\pi_{1}T^{2}\rightarrow SI42;C$) be a representation. Then all homology
groups vanish: $H_{*}(T^{2}, V_{\rho})=0$ if and only if $\rho$ is a non-parabolic representation. In this
case, the SI42; $C$)-torsion is given by

$\tau(T^{2} ; V_{\rho})=1$ .
$PR\infty F$ . Suppose $\rho$ is a non-parabolic representation. We fix an orientation on

$T^{2}$ . By assumption, there is an element $x\in\pi_{1}T^{2}$ such that $\det(X-I)\neq 0$ . We take
$y\in\pi_{1}T^{2}$ such that the geometric intersection number $x\cdot y=1$ . We assume that a cell
structure of $T^{2}$ is given by the following;

(0) one O-cell $p$ ,
(1) two l-cells $x$ and $y$,
(2) one 2-cell $w$,

with the attaching map given by $\partial w=xyx^{-1}y^{-1}$ . By easy computation, this chain
complex is given as follows;

$0\rightarrow w\otimes V\rightarrow^{\partial_{2}}x\otimes V\otimes y\otimes Vp\otimes V\underline{\partial_{1}}\rightarrow 0$

where

$\partial_{2}=\left(\begin{array}{l}-(Y-l)\\X-I\end{array}\right)$ , $\partial_{1}=(X-I Y-l)$ .

Since $\det(X-I)\neq 0,$ $\partial_{1}$ is surjective and then $\dim(Ker\partial_{1})=2$ . Similarly $\partial_{2}$ is injective
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and $\dim({\rm Im}\partial_{2})=2$ . On the other hand, we have
${\rm Im}\partial_{2}\subset Ker\partial_{1}$

by the definition of the boundary operators. Hence

${\rm Im}\partial_{2}=Ker\partial_{1}$ .
Therefore this chain complex $C_{*}(T^{2} ; V_{\rho})$ is acyclic. Then $\tau(T^{2} ; V_{p})$ is given by the
following. Since a canonical basis of $V\oplus V$ is given by $\{(e_{1},0), (e_{2},0), (0, e_{1})(0, e_{2})\}$ ,
we may identify the bases

$c_{2}=\{e_{1}, e_{2}\}$ ,

$c_{1}=\{(e_{1},0), (e_{2},0), (0, e_{1}), (0, e_{2})\}$ ,

$c_{0}=\{e_{1}, e_{2}\}$ .
We take a basis $b_{i}$ of $B_{i}$ for $\forall i\in\{0,1\}$ which satisfies $b_{1}=\partial c_{2},$ $b_{0}=\partial c_{1}$ . Then by the
definition of the $SL(2;C)$-torsion,

$\tau(T^{2} ; V_{p})=[b_{1}/c_{2}][b_{1}, b_{0}/c_{1}]^{-1}[b_{0}/c_{0}]$ .
By straightforward computation,

$[b_{1}/c_{2}]=1$ ,

$[b_{1}, b_{0}/c_{0}]=\det\left(\begin{array}{ll}-(Y-I) & 0\\X-I & I\end{array}\right)=\det(Y-I)$ ,

$[b_{0}/c_{0}]=\det(Y-I)$ .
Therefore the $SL(2;C)$-torsion is given by

$\tau(T^{2} ; V_{\rho})=1$ .
Conversely we assume that $\rho$ is a parabolic representation. If $\rho$ is a trivial

representation, it is clear tbat $C_{*}(T^{2} ; V_{\rho})$ is a usual V-coefficient chain complex and
not acyclic. Hence we may assume $\rho$ is nontrivial. Then there is an element $x\in\pi_{1}T^{2}$

such that $X=\rho(x)\neq I$ . Let $v\in V$ denote the fixed vector of $X$ and $L$ the complex line
spanned by $v$ . Let $y\in\pi_{1}T^{2}$ be any other element such that $Y=\rho(y)\neq I$ . Since Ycommutes
with $X$, they have a common eigenvector which must be $v$ or its multiple. Since $Y$ is a
parabolic element of $SL(2;C),$ $Y$ also fixes the vector $v$ . Then we have

${\rm Im}\partial_{1}\subset L$

and then $\partial_{1}$ is not surjective. Hence $H_{0}(T^{2} ; V_{p})\neq 0$ . This completes the proof.

REMARK. If $\tau(M;V_{\rho})$ is well-defined for an even dimensional closed orientable
manifold $M$, then the absolute value of the Reidemeister torsion
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$|\tau(M;V_{\rho})|=1$ .

See Ray-Singer [8] for details.

Next we consider the solid torus $S=S^{1}\times D^{2}$ with $\pi_{1}S\cong Z$ generated by $x$ .

PROPOSITION 2.5. Let $\rho:\pi_{1}S\rightarrow SL(2;C)$ be a representation. The representatior
$\rho$ is non-parabolic $\iota f$ and only if the chain complex $C_{*}(S;V_{p})$ is acyclic. In this case the
$SL(2;C)$-torsion of $S$ is given by

$\tau(S;V_{\rho})=\det(X-I)$ .
$PR\infty F$ . It is easy to see that $S$ has the same simple homotopy type as $S^{1}$ . We

may assume that a cell structure of $S^{1}$ is given by one O-cell $p$ and one l-cell $x$ . Then
the corresponding chain complex is given by

$0\rightarrow x\otimes V\rightarrow^{\partial=X-I}p\otimes V\rightarrow 0$ .

Hence $C_{*}(S;V_{p})$ is acyclic if and only if $\det(X-I)\neq 0$ . Therefore $\rho$ is a non-paraboli $($

representation. If we take a basis $b_{0}=\{\partial e_{1}, \partial e_{2}\}$ for $B_{0}(C_{*})$, then the SI42; $C$)-torsion
is given by

$\tau(S;V_{p})=[b_{0}/c_{1}]^{-1}[b_{0}/c_{0}]=1\cdot\det(X-I)=\det(X-I)$ .
This c.ompletes the proof of Proposition 2.5.

\S 3. Irreducible representations of Seifert flbered spaces.

In this section, we investigate the SI42; $C$)-irreducible representation of the Seifer
fibered space $M$ given by the Seifert index $\{b, (\epsilon, g), (\alpha_{1}, \beta_{1}), \cdots, (\alpha_{m}, \beta_{m})\}$ . It is wel
known that the fundamental group of $M$ has a presentation as follows. If $\epsilon=0$ , tha
is, if the orbit surface is orientable, then

$\pi_{1}M=\langle a_{1},$ $b_{1},$ $\cdots,$ $a_{g},$ $b_{g},$ $q_{1},$ $\cdots,$ $q_{m},$ $h|[a_{i}, h]=[b_{i}, h]=[q_{i}, h]=1$ ,

$q_{i}^{\alpha_{i}}h^{\beta_{i}}=1,$ $ q_{1}\cdots q_{m}[a_{1}, b_{1}]\cdots[a_{g}, b_{g}]=h^{b}\rangle$ .

If $\epsilon=n$ , that is, if the orbit surface is nonorientable, then

$\pi_{1}M=\langle v_{1},$ $\cdots,$ $v_{g},$ $q_{1},$ $\cdots,$ $q_{m},$ $h|v_{i}hv_{i}^{-1}=h^{-1},$ $q_{i}hq_{i}^{-1}=h$ ,

$q_{i}^{\alpha_{l}}h^{\beta_{i}}=1,$ $ q_{1}\cdots q_{m}v_{1}^{2}\cdots v_{g}^{2}=h\rangle$ .
REMARK. In the case of $\epsilon=0$ generators $a_{i},$

$b_{i}$ and $q_{i}$ come from the fundamenta
group of the orbit surfaoe. Then we can choose the representative closed curves on th $($

orbit surface $q_{1},$ $\cdots,$ $q_{m}$ such that $q_{1}\cdots q_{m}[a_{1}, b_{1}]\cdots[a_{g}, b_{g}]=1$ . Similarly we choos
the curves in the case of $\epsilon=n$ .
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We fix this presentation for $\pi_{1}M$ and consider only $SL(2;C)$-irreducible repre-
sentations. The next lemma gives us a clue to compute the $SL(2;C)$-torsion.

LEMMA 3.1. Let $\rho:\pi_{1}M\rightarrow SL(2;C)$ be an irreducible representation. Then the
image of the generic fiber $h$ is given by

$H=\rho(h)=$ $\left\{\begin{array}{ll}\pm I & (\epsilon=0)\\[Matrix] & (\epsilon=n)\end{array}\right.$

where I is the unit matrix in $SL(2;C),$ $\lambda\in Csuch$ that $\lambda^{2N+2}=1,$ $N=\beta_{1}/\alpha_{1}+\cdots+\beta_{m}/\alpha_{m}$ .
$PR\infty F$ . By the irreducibility of $\rho$ , it is easy to see that $H$ is a non-parabolic element.
Case 1: $\epsilon=0$ . Suppose $H\neq\pm I$. Let $u$ be an eigenvector for an eigenvalue $\lambda$ of

$H$. Since $H$ commutes with $A_{i}=\rho(a_{i}),$ $B_{i}=\rho(b_{i})$ and $Q_{j}=\rho(q_{j})$, all vectors $A_{i}u,$ $B_{i}u$ and
$Q_{j}u$ is contained in the vector space spanned by $u$ . It contradicts the irreducibility of
$\rho$ . Thus $H=\pm I$ .

Case 2: $\epsilon=n$ . Since we consider the conjugacy classes of representations, we may

suppose $H$ is the diagonal matrix $H=\left(\begin{array}{ll}\lambda & 0\\0 & \lambda^{-1}\end{array}\right)$ .

Subcase 1: $m=0$ . In this case $M$ has no exceptional fibers; it is an $S^{1}$ -bundle over a
non-orientable surface of genus $g$ . By the relation $V_{i}H=H^{-1}V_{i}$ ,

$V_{i}He_{1}=\lambda V_{i}e_{1}=H^{-1}V_{i}e_{1}$ .
Accordingly we get

$HV_{i}e_{1}=\lambda^{-1}V_{i}e_{1}$

and $V_{i}e_{1}$ is contained in the eigenspace for an eigenvalue $\lambda^{-1}$ as in Case 1. Similarly
$V_{i}e_{2}$ is contained in the eigenspace for $\lambda$ . Thus we may set for each $i$

$V_{i}=\left(\begin{array}{ll}0 & a_{i}\\b_{i} & 0\end{array}\right)$ such that $a_{i}b_{i}=-1$ .

By simple computation, we have

$V_{i}^{2}=-I$ .
The relation of $\pi_{1}M$ implies

$H=V_{1}^{2}V_{2}^{2}\cdots V_{g}^{2}=(-I)^{g}$ .

Hence

$H=\pm I$ .

Subcase 2: $m\geq 1$ . Then $M$ has the exceptional fibers $q_{1},$ $\cdots,$ $q_{m}$ . For $\forall q_{j}$ , we set the
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corresponding matrix

$Q_{j}=\left(\begin{array}{ll}s_{j} & t_{j}\\u_{j} & v_{j}\end{array}\right)$ .

The condition $HQ_{j}=Q{}_{j}H$ implies

$\left(\begin{array}{ll}\lambda s_{j} & \lambda t_{j}\\\lambda^{-1}u_{j} & \lambda^{-1}v_{j}\end{array}\right)=\left(\begin{array}{ll}\lambda s_{j} & \lambda^{-1}t_{j}\\\lambda u_{j} & \lambda^{-1}v_{j}\end{array}\right)$ .

If we compare each entry of the left-side with the one of the right-side,
$\lambda=\lambda^{-1}$ or $t_{j}=u_{j}=0$ .

If $\lambda=\lambda^{-1}$ , then we get $\lambda=\pm 1$ and consequently $H=\pm I$. If $\lambda\neq\lambda^{-1}$ , then every $Q_{j}$ is a
diagonal matrix. In this case, the relation $q_{j^{j}}^{\alpha}h^{\beta_{j}}=1$ implies

$\left(\begin{array}{ll}s_{j}^{a_{j}} & 0\\0 & v_{j^{j}}^{\alpha}\end{array}\right)=\left(\begin{array}{ll}\lambda^{-\beta_{j}} & 0\\0 & \lambda^{\beta_{j}}\end{array}\right)$ .

Hence we get
$s_{j}=\lambda^{-\beta_{j}\prime\alpha_{j}}$ and $v_{j}=\lambda^{\beta_{j}\prime a_{j}}$ .

On the other hand, we get

$V_{i}=\left(\begin{array}{ll}0 & a_{i}\\b_{i} & 0\end{array}\right)$ such that $V_{i}^{2}=-I$

as in the subcase 1. The relation $h=q_{1}\cdots q_{m}v_{1}^{2}\cdots v_{g}^{2}$ implies

$\left(\begin{array}{ll}\lambda & 0\\0 & \lambda^{-1}\end{array}\right)=(-I)^{g}\left(s_{1} & 0 & s_{m} & v_{1} & 0\cdots & v_{m}\right)$

$=(-1)^{g}\left(\begin{array}{llllll}\lambda^{-(\beta_{1}/\alpha_{1}+} & \cdots & +\beta_{m}\prime\alpha_{m}) & & 0 & \\0 & & & \lambda^{\beta_{1}/\alpha_{1}+} & \cdots & +\beta_{m}/\alpha_{m}\end{array}\right)$ .

Hence the following holds:
$\lambda^{-\langle\beta_{1}\prime a_{1}+\cdots+\beta_{m}/\alpha_{m})}=(-1)^{g}\lambda$ .

Therefore setting $N=\beta_{1}/\alpha_{1}+\cdots+\beta_{m}/\alpha_{m}$ , we get

$\lambda^{2N+2}=1$ .

This completes the proof.

From the above lemma, we get easily the following corollary.

COROLLARY 3.2. $Q_{i}=\rho(q_{i})$ has only eigenvalues which are roots of unity.
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\S 4. Proof of Main theorem (1).

In this section, we give a proof of Main theorem. Here we decompose $M$ into
tubular neighborhoods of exceptional fibers and their complement. Then we compute
the SI42; $C$)-torsion for each part and apply Lemma 1.3 to our situations. Since we
can compute the $SL(2;C)$-torsion for $\epsilon=n$ as in the case of $\epsilon=0$ , we will prove only
the case of $\epsilon=0$ .

We put

$\Sigma^{*}=\Sigma-(D_{0^{U}}^{2}\cdots\cup D_{m}^{2})$

where $\Sigma$ is an orientable closed surface of genus $g$ and $D_{0}^{2},$
$\cdots,$

$D_{m}^{2}$ are disjoint embedded
open 2-disks. Also let $M_{m}$ denote the trivial $S^{1}$ -bundle $\Sigma^{*}\times S^{1}$ . We give a canonical
torus decomposition of Seifert fibered space $M$ as follows:

$M\cong M_{m}\cup S_{0}\cup S_{1}\cdots\cup S_{m}$

where any $S_{i}$ is the solid torus. The solid torus $S_{0}$ is the one corresponding to the
triviality obstruction $b$ and $S_{i}$ for $\forall i\in\{1, \cdots, m\}$ is the one corresponding to the
exceptional fiber.

LEMMA 4.1. Let $\rho$ : $\pi_{1}(M)\rightarrow SL(2;C)$ be an irreducible representation. Suppose
all homology groups of the boundary vanish: $H_{*}(\partial M_{m} ; V_{\rho})=0$ . Then $H_{*}(M;V_{p})=0$ if
and only if $H_{*}(M_{m} ; V_{p})=H_{*}(S_{0};V_{p})=\cdots=H_{*}(S_{m} ; V_{\rho})=0$ . In this case, we have

$\tau(M;V_{\rho})=\tau(M_{m} ; V_{p})\tau(S_{O} ; V_{\rho})\cdots\tau(S_{m} ; V_{\rho})$ .
$PR\infty F$ . Apply Lemma 1.3 to the short exact sequence of the chain complex given

by the torus decomposition of $M$ ;

$0\rightarrow\bigoplus_{i=0}^{m}C_{*}(\partial S_{i} ; V_{p})\rightarrow C_{*}(M_{m} ; V_{p})\oplus\bigoplus_{i=0}^{m}C_{*}(S_{i} ; V_{\rho})\rightarrow C_{*}(M;V_{p})\rightarrow 0$ .

By the proofofProposition 2.4, $\dim\partial C_{*}(\partial S_{i} ; V_{\rho})$ is even. Therefore we have Lemma 4.1.
PROPOSITION 4.2. Let $\rho$ : $\pi_{1}(M)\rightarrow SL(2;C)$ be an irreducible representation. $We$

denote the restriction of $\rho$ to $\pi_{1}(M_{m})$ by the same symbol $\rho$ . Then all homology groups
vanish: $H_{*}(M_{m} ; V_{\rho})=0$ if and only if $H=\rho(h)=-I$ . In this case the SI42; $C$)-torsion is
given by

$\tau(M_{m} ; V_{p})=2^{2-2m-4g}$ .
$PR\infty F$ . It is easy to see that $M_{m}$ has the same simple homotopy type as the direct

product of the one point union of $2g+m$ circles $S^{1}\vee\cdots\vee S^{1}$ and $S^{1}$ . We denote this
space by $(_{i}S_{i})\times S^{1}$ . Then $_{i}S_{i}$ has a natural cell decomposition given by one O-cell $u$

and $2g+m$ l-cells $a_{i},$ $b_{i},$
$q_{j}$ . It gives a cell decomposition of $(_{i}S_{i})\times S^{1}$ by

(1) O-cell $u$ ,
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(2) l-cells $a_{1},$ $\cdots,$ $a_{g},$
$b_{1},$ $\cdots,$ $b_{g},$ $q_{1},$ $\cdots,$ $q_{m},$ $h\infty rresponding$ to the generators

of $\pi_{1}M$.
(3) 2-oells $v_{a_{1}},$ $v_{a_{2}},$ $\cdots,$ $v_{a_{*}},$ $v_{b_{1}},$ $\cdots,$ $v_{b},$ $v_{q_{1}},$ $\cdots,$ $v_{q_{m}}$ respectively with boundary $a_{i}$ ,

$b_{i}$ and $q_{i}$ .
By using this cell structure, we can determine the structure of $C_{*}(M_{m} ; V_{\rho})$ . Recall that
$\{e_{1}, e_{2}\}$ is a canonical basis of $V$. The 2-chain module $C_{2}(M_{m} ; V_{p})$ is a free
$Z[\pi_{1}M_{m}]$-module on $\{v_{a_{j}}\otimes e_{i}, v_{b_{j}}\otimes e_{i}, v_{q_{j}}\otimes e_{i}\}$ for $\forall i\in\{1,2\}$ and $\forall j\in\{1, \cdots, g\}$ .
Similarly $C_{1}(M_{m} ; V_{p})$ is a free $Z[\pi_{1}M_{m}]$-module on $\{a_{j}\otimes e_{i}, b_{j}\otimes e_{i}, q_{j}\otimes e_{i}, h\otimes e_{i}\}$

and $C_{0}(M_{m})$ is a free $Z[\pi_{1}M_{m}]$-module on $\{u\otimes e_{i}\}$ . Then the boundary operators are
given by

$\partial_{2}=(_{A_{1}-IA_{2}^{-}-I\cdot B_{1}-IQ}I-00HI.0H$

.
$..\cdot 0..\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot.\cdot..\cdot..\cdot..\cdot..\cdot.\cdot.\cdot.;_{0}\cdot$

.

$Q_{m}-II-H00)$ ,

$\partial_{1}=(A_{1}-I\cdots B_{1}-I\cdots Q_{1}-I\cdots Q_{m}-IH-I)$ .

It is easy to see that $C_{*}(M_{m} ; V_{p})$ is acyclic if and only if $H=-I$ . Let $b_{i}$ be a basis of
the boundary $B_{i}(M_{m} ; V_{p})$ for $i=0,1$ . Then the S142; $C$)-torsion is given by

$\tau(M_{m} ; V_{p})=[b_{1}/c_{2}][b_{1}, b_{0}/c_{1}]^{-1}[b_{0}/c_{0}]$ .
We may choose a lift of $b_{1}$ which coincides with $c_{2}$ and the one of $b_{O}$ which coincides
with $\{h\otimes e_{1}, h\otimes e_{2}\}$ . By simple computation,

$\tau(M_{m} ; V_{p})=1\cdot(\det(I-H))^{-(2g+m)}\cdot\det(H-I)=(\det(I-H))^{-\langle 2g+m+1)}$ .

Then substituting -I for $H$, we have

$\tau(M_{m} ; V_{p})=(\det\left(\begin{array}{ll}2 & 0\\0 & 2\end{array}\right))^{-\langle 2g+m)+1}$

$=2^{-2(2g+m)+2}$

This completes the proof of Proposition 4.2.

Because $\partial M_{m}$ is the disjoint union of tori, the fundamental group $\pi_{1}M$ is generated
by $h$ and $\{q_{1}, \cdots, q_{m}\}$ . Then $C_{*}(\partial M_{m} ; V_{p})$ is acyclic if and only if $H=-I$ by Proposi.
tion 2.4.

PROPOSmON 4.3. If $H=-I$, then the Sl42; $C$)-torsion of $S_{0}\dot{i}$ given by

$\tau(S_{o} ; V_{\rho})=2^{2}$
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PROOF. Let $\rho_{0}$ and $v_{0}$ be integers such that $\left|\begin{array}{ll}1 & \rho_{0}\\b & v_{0}\end{array}\right|=-1$ . We define an element
$l_{0}\in\pi_{1}M_{m}$ by $q_{0^{O}}^{p}h^{v_{0}}$ . The sewing of the solid torus $S_{0}$ makes the curve $m_{0}=q_{0}h^{b}$ on the
component of $\partial M_{m}$ null-homotopic in $S_{O}$ . On the other hand the closed curve $l_{0}$ is the
generator in $\pi_{1}S_{0}\cong Z$. Then the relation implies

$L_{0}=\rho(l_{0})=Q_{0^{O}}^{\rho}H^{\nu_{O}}$ .
Since $q_{0}=(h^{b})^{-1}=(q_{1}\cdots q_{m}[a_{1}, b_{1}]\cdots[a_{g}, b_{g}])^{-1}$ and $v_{0}-b\rho_{0}=-1$ ,

$L_{O}=(Q_{1}\cdots Q_{m}[A_{1}, B_{1}]\cdots[A_{g}, B_{g}])^{-\rho 0}H^{\nu_{O}}$

$=H^{-bp_{O}+\nu_{O}}=H^{-1}=-I$ .
Therefore the $SL(2;C)$-torsion of $S_{0}$ is given as follows;

$\tau(S_{0} ; V_{p})=\det(L_{0}-I)$

$=\det\left(\begin{array}{ll}-2 & 0\\0 & -2\end{array}\right)$

$=2^{2}$

This completes the proof.

PROPOSITION 4.4. If $H=-I$, then the $SL(2;C)$-torsion of $S_{i}$ is given by

$\tau(S_{i} ; V_{p})=2(1-(-1)^{v}{}^{t}cos\frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}})$ .

$PR\infty F$ . Let $\rho_{i}$ and $v_{i}$ be. integers such that $\left|\begin{array}{ll}\alpha_{i} & \rho_{i}\\\beta_{i} & v_{j}\end{array}\right|=-1$ and $0<\rho_{i}<\alpha_{i}$ . We define the
generator $l_{i}\in\pi_{1}S_{i}$ by $q_{i}^{p\iota}h^{v_{i}}$ . Here the image of $l_{i}$ is given by

$L_{i}=\rho(l_{i})=Q_{i}^{p}’ H^{v_{t}}=(-1)^{v}{}^{t}Q_{i^{i}}^{\rho}$ .
By Proposition 2.5, we have

$\tau(S_{i} ; V_{p})=\det(L_{i}-I)=\det((-1)^{v}{}^{t}Q_{i^{i}}^{p}-I)=2-(-1)^{v_{i}}$ tr $Q_{i}^{\rho\iota}$ .
In view of relations $q_{i}^{a_{i}}h^{\beta_{i}}=1$ and $H=-I$ , the identity $Q_{i}^{\alpha_{i}}=(-I)^{\beta_{i}}$ holds. Then we may
denote the eigenvalues of $Q_{i}$ by $\exp(\sqrt{-1}k_{i}(\rho)\pi/\alpha_{i})$ and $\exp(-\sqrt{-1}k_{i}(\rho)\pi/\alpha_{i})$ where
$0\leq k_{i}(\rho)\leq\alpha_{i}$ and $k_{i}(\rho)\cong\beta_{i}$ mod2. Hence we get

$\tau(S_{i} ; V_{p})=2(1-(-1)^{vi}\cos\frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}})$ .

This completes the proof of Proposition 4.4.

By using Lemma 4.1, the $SL(2;C)$-torsion $\tau(M;V_{\rho})$ of the Seifert fibered space is
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given by

$\tau(M;V_{p})=\tau(M_{m} ; V_{\rho})\tau(S_{0} ; V_{p})\cdots\tau(S_{m} ; V_{\rho})$

$=2^{2-2m-4g}\cdot 2^{2}\cdot 2^{m}\cdot\prod_{i=1}^{m}(1-(-1)^{\nu}{}^{t}cos\frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}})$

$=2^{4-m-4g}\prod_{i=1}^{m}(1-(-1)^{\nu}{}^{t}cos\frac{\rho_{i}k_{i}(\rho)\pi}{\alpha_{i}})$ .

We havea proof of Main theorem for the case ofH $=-I$ .

\S 5. Proof of Main theorem (2).

If$H=I$ , we cannot apply Lemma 4.1 to our situations because a given representation
is not acyclic when we restrict it to the complement of exceptional fibers. However
then the representation $\rho$ is not acyclic. Now we prove the following proposition.

PROPOSmON 5.1. Let $\rho:\pi_{1}(M)\rightarrow SI42;C)$ be an irreducible representation sud
that $H=\rho(h)=I$ . Then $\rho$ is not acyclic; that is, $H_{*}(M;V_{\rho})\neq 0$ .

$PR\infty F$ . The proof is by contradiction. We assume all homology groups of A4
vanish: $H_{*}(M;V_{p})=0$. Then the following sequences given by the Mayer-Vietori $i$

sequence are exact.

$0\rightarrow H_{2}(\partial M_{m} ; V_{\rho})\rightarrow H_{2}(M_{m} ; V_{p})\rightarrow 0$ ,

$0\rightarrow H_{1}(\partial M_{m} ; V_{\rho})\rightarrow H_{1}(M_{m} ; V_{\rho})\oplus\bigoplus_{i=0}^{m}H_{1}(S_{i} ; V_{p})\rightarrow 0$ ,

$0\rightarrow H_{0}(\partial M_{m} ; V_{\rho})\rightarrow H_{0}(M_{m} ; V_{\rho})\oplus\bigoplus_{i=0}^{m}H_{0}(S_{i} ; V_{\rho})\rightarrow 0$ .

Case 1: There exists a non-parabolic element in $\{A_{i}, B_{i}, Q_{j}\}$ . From the proof of
Proposition 4.2, in the chain complex $C_{*}(M_{m} ; V_{\rho})$ ,

rank$(\partial_{2})=rank(\partial_{1})=2$ .
In this case, by easy computation, the homology groups of $M_{n}$, are given as follows;

$H_{2}(M_{m} ; V_{\rho})\cong V^{2g+m-1}$ ,

$H_{1}(M_{m} ; V_{\rho})\cong V^{2g+m-1}$ ,

$H_{0}(M_{m} ; V_{\rho})=0$ .
By the above exact sequences and the Poincar\’e duality, we have the following
identifications;
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$H_{0}(\partial M_{m} ; V_{\rho})\cong H_{2}(\partial M_{m} ; V_{\rho})\cong H_{2}(M_{m} ; V_{p})\cong V^{2g+m-1}$

On the other hand, we have

$H_{0}(\partial M_{m} ; V_{\rho})\cong H_{0}(M_{m} ; V_{\rho})\oplus\bigoplus_{i=0}^{m}H_{0}(S_{i} ; V_{\rho})$

$\cong\{0\}\oplus V^{m+1-k}$

$\cong V^{m+1-k}$

where $k$ is the number of the solid tori with non-trivial O-dimensional homology group.
Hence we have

$k=2-2g$ .

Because $k$ is a non-negative integer, the genus $g=0$ or 1.
First we assume $g=0$; that is, $k=2$ . In this case,

$\pi_{1}M=\langle q_{1}, \cdots, q_{m}, h|[q_{i}, h]=1, q_{i}^{\alpha_{t}}h^{\beta_{i}}=1, q_{1}\cdots q_{m}=h^{b}\rangle$ .

Then we have

$\bigoplus_{i=0}^{m}H_{0}(S_{i} ; V_{p})\cong V^{m-1}$

by Propositions 4.3 and 4.4. For simplicity, we may assume

rank$(L_{i}-I)=0$ for $\forall i\in\{0, \cdots, m-2\}$

and

rank$(L_{i}-I)=2$ for $\forall i\in\{m-1, m\}$ .

For $\forall i\in\{0, \cdots, m-2\}$ , that is $L_{i}\in SL(2;C)$ is a parabolic element. On the other hand,
from the relations of $\pi_{1}M$, we have

$L_{l}=Q_{i^{l}}^{\rho}H^{\nu_{i}}=Q_{i^{i}}^{p}=I$ .
Hence

$Q_{i}=I$ for $\forall i\in\{0, \cdots, m-2\}$

and

$Q_{m-1}Q_{m}=I$ .
Hence the representation $\rho$ is reducible because $Q_{m-1}$ and $Q_{m}$ have a common eigenvector.

Next we assume $g=1$ ; that is, $k=0$ . In this case, we have
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$\pi_{1}M=\langle a_{1},$ $b_{1},$ $q_{1},$ $\cdots,$ $q_{m},$ $h|[a_{1}, h]=[b_{1}, h]=[q_{i}, h]=1$ ,
$q_{i}^{\alpha_{i}}h^{\beta_{t}}=1,$ $[a_{1}, b_{1}]q_{1}\cdots q_{m}=h^{b}\rangle$ .

Then we have

$\bigoplus_{i=0}^{m}H_{0}(S_{i} ; V_{\rho})\cong V^{m+1}$

Then for $\forall i\in\{0, \cdots, m\}$

rank$(L_{i}-I)=0$

and $L_{i}\in SL(2;C)$ is parabolic or trivial. On the other hand, we have
$L_{i}=Q_{i^{t}}^{p}H^{\nu_{i}}=Q_{i^{i}}^{\rho}=I$ .

Hence we have

$Q_{i}=I$ for $\forall t\in\{0, \cdots, m\}$ .
Then $\rho$ factors through a representation of the group $\langle a_{1}, b_{1}|[a_{1}, b_{1}]=1\rangle$ . Since this
group is abelian, this representation is reducible. This is a contradiction.

Case 2: All $A_{i},$ $B_{i},$ $Q_{i}$ are parabolic elements. In this case, we have

$Q_{i}=I$ for $\forall i\in\{0, \cdots, m\}$ .
Then we have

rank$(\partial_{2})=2$ or $0$

for $C_{*}(M_{m} ; V_{p})$ . Hence

$H_{2}(M_{m} ; V_{\rho})\cong\left\{\begin{array}{l}V^{2g+m-1}ifrank(\partial_{2})=2\\V^{2g+m}ifrank(\partial_{2})=0\end{array}\right.$

By Poincar\’e duality and the exact sequence, we obtain

$H_{2}(M_{m} ; V_{p})\cong H_{2}(\partial M_{m}; V_{\rho})\cong H_{O}(M_{m} ; V_{p})\oplus V^{n+1}$

Then we get the genus $g=1$ . Hence this representation $\rho$ is reducible since $\rho$ factors
through the representation ofthe group $\langle a_{1}, b_{1}|[a_{1}, b_{1}]=1\rangle$ as in Case 1. This completes
the proof of Proposition 5.1.

By the lemmas and the propositions, we get a proof of Main theorem.
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