Reidemeister Torsion of Seifert Fibered Spaces for $S L(2 ; C)$-Representations

Teruaki KITANO

Tokyo Institute of Technology
(Communicated by T. Nagano)

§0. Introduction.

This paper is devoted to the study of the Reidemeister torsion. It is a piecewise linear invariant for n-dimensional manifolds and originally defined by Reidemeister, Franz and de Rham. In 1985 Casson defined an interesting topological invariant of homology 3 -spheres by making use of a beautiful construction on the space of $S U(2)$-representations of the fundamental group. Later Johnson developed a similar theory of Casson's one by using the Reidemeister torsion as its essential ingredient. He also derived an explicit formula for the Reidemeister torsion of Brieskorn homology 3-spheres for $S L(2 ; C)$-irreducible representations. In this paper, we call this type Reidemeister torsion the $S L(2 ; C)$-torsion following Johnson. Let M_{n} be a 3-manifold obtained by the $1 / n$-surgery on a torus (p, q)-knot. It is a Brieskorn homology 3 -sphere $\Sigma(p, q, p q n \pm 1)$. The fundamental group $\pi_{1} M_{n}$ admits a presentation as follows;

$$
\pi_{1} M_{n}=\left\langle x, y \mid x^{p}=y^{q}, m l^{n}=1\right\rangle
$$

where m is a meridian of the torus knot which is a word of x and y and l is similarly a longitude. Johnson proved the following theorem.

Theorem (Johnson). The distinct conjugacy classes of the $S L(2 ; C)$-irreducible representations of $\pi_{1} M_{n}$ are given by $\rho_{(a, b, k)}$ such that
(1) $0<a<p, 0<b<q, a \equiv b \bmod 2$,
(2) $0<k<N=|p q n+1|, k \equiv n a \bmod 2$,
(3) $\operatorname{tr} \rho_{(a, b, k)}(x)=2 \cos \pi a / p$,
(4) $\operatorname{tr} \rho_{(a, b, k)}(y)=2 \cos \pi b / q$,
(5) $\operatorname{tr} \rho_{(a, b, k)}(m)=2 \cos \pi k / N$.

In this case the $\operatorname{SL}(2 ; C)$-torsion $\tau_{(a, b, k)}$ for $\rho_{(a, b, k)}$ is given by

$$
\tau_{(a, b, k)}=\left\{\begin{array}{lll}
2(1-\cos \pi a / p)(1-\cos \pi b / q)(1+\cos \pi k p q / N) & a \equiv b \equiv 1, k \equiv n & \bmod 2 \\
0 & a \equiv b \equiv 0 \text { or } k \equiv n & \bmod 2
\end{array}\right.
$$

[^0]His methods can be applied to more general Seifert fibered spaces and give a way to compute the $S L(2 ; C)$-torsion of them.

The main result of this paper is the following theorem. Let M^{3} denote the orientable Seifert fibered space given by the following Seifert index

$$
\left\{b,(\varepsilon, g) ;\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{m}, \beta_{m}\right)\right\} .
$$

Main theorem. Let $\rho: \pi_{1} M \rightarrow S L(2 ; C)$ be an irreducible representation. Then the $S L(2 ; C)$-torsion $\tau\left(M ; V_{\rho}\right)$ is given by

$$
\tau\left(M ; V_{\rho}\right)= \begin{cases}0 & \text { if } H=I \\ 2^{4-m-4 g} \prod_{i=1}^{m}\left(1-(-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right) & \text { if } H \neq I, \varepsilon=o \\ \left(2-2 \cos \frac{s \pi}{N+1}\right)^{4-m-2 g} \prod_{i=1}^{m}\left(1-(-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right) & \text { if } H \neq I, \varepsilon=n\end{cases}
$$

where
(1) $H=\rho(h)$,
(2) h is a representative element of generic fiber in $\pi_{1} M$,
(3) $\rho_{i}, v_{i} \in Z$ such that $\left|\begin{array}{ll}\alpha_{i} & \rho_{i} \\ \beta_{i} & v_{i}\end{array}\right|=-1$ and $0<\rho_{i}<\alpha_{i}$,
(4) $k_{i}(\rho) \in Z$ such that $0 \leq k_{i} \leq \alpha_{i}$, and $k_{i}(\rho) \equiv \beta_{i} \bmod 2$,
(5) $N=\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}$,
(6) $s \in Z$ such that $0 \leq s \leq 2 N+2$.

Remark. (1) In general the dimension of the space of representations of a Seifert fibered space is not zero; in particular the distinct classes of irreducible representations are not finite. However the set of the $S L(2 ; C)$-torsion turns out to be a finite subset in \boldsymbol{R} by this theorem; that is $S L(2 ; C)$-torsion is a constant function on each connected component of the space of irreducible representations.
(2) It may be a problem to determine whether there exists a 3-manifold with continuous variations of the $S L(2 ; C)$-torsion. In fact the answer is yes. In our paper [3], we will prove that the double of the figure-eight knot exterior in S^{3} has continuous variations of the $S L(2 ; C)$-torsion.

Now we describe the contents of this paper. In $\S 1$ we give the necessary definitions and properties of the $S L(2 ; C)$-torsion following Milnor. In §2 we examine the Reidemeister torsion for the 2 -dimensional torus and the solid torus. These results will be used later for the torus decomposition formula. In §3 we investigate $S L(2 ; C)$-irreducible representation of Seifert fibered spaces. In §4, we give a proof of Main theorem for the case of $H=-I$. In $\S 5$, we prove the non-acyclicity of the chain complex $C_{*}\left(M ; V_{\rho}\right)$ in the case of $H=I$.

The author would like to express his gratitude to Professor Shigeyuki Morita for
his encouragement and many useful suggestions. He also would like to thank Professor Yoshihiko Mitsumatsu for pointing out related topics.

§ 1. Definition of the $S L(2 ; C)$-torsion.

First let us describe the definition of the $S L(2 ; C)$-torsion, that is, the Reidemeister torsion for $S L(2 ; C)$-representations. See Johnson [2] and Milnor [4], [5], [6] for details.

Let W be an n-dimensional vector space over C and let $b=\left(b_{1}, \cdots, b_{n}\right)$ and $c=\left(c_{1}, \cdots, c_{n}\right)$ be two bases for W. Setting $b_{i}=\sum_{j=1}^{n} p_{i j} c_{j}$, we obtain a nonsingular matrix $P=\left(p_{i j}\right)$ with entries in \boldsymbol{C}. Let $[\mathbf{b} / \boldsymbol{c}]$ denote the determinant of P.

Suppose

$$
C_{*}: 0 \longrightarrow C_{m} \xrightarrow{\partial_{m}} C_{m-1} \xrightarrow{\partial_{m-1}} \cdots \longrightarrow C_{1} \xrightarrow{\partial_{1}} C_{0} \longrightarrow 0
$$

is an acyclic chain complex of finite dimensional vector spaces over \boldsymbol{C}. We assume that a preferred basis \boldsymbol{c}_{q} for $C_{q}\left(C_{*}\right)$ is given for each q. Choose some basis \boldsymbol{b}_{q} for $B_{q}\left(C_{*}\right)$ and take a lift of it in $C_{q+1}\left(C_{*}\right)$, which we denote by \tilde{b}_{q}.

Since $B_{q}\left(C_{*}\right)=Z_{q}\left(C_{*}\right)$, the basis b_{q} can serve as a basis for $Z_{q}\left(C_{*}\right)$. Furthermore the sequence

$$
0 \rightarrow Z_{q}\left(C_{*}\right) \rightarrow C_{q}\left(C_{*}\right) \rightarrow B_{q-1}\left(C_{*}\right) \rightarrow 0
$$

is exact and the vectors ($\boldsymbol{b}_{q}, \tilde{\boldsymbol{b}}_{\boldsymbol{q}-1}$) form a basis for $C_{q}\left(C_{*}\right)$. It is easily shown that [$\left.\boldsymbol{b}_{q}, \tilde{\boldsymbol{b}}_{\boldsymbol{q}-1} / \boldsymbol{c}_{q}\right]$ does not depend on the choice of the lift $\tilde{\boldsymbol{b}}_{\boldsymbol{q}-1}$. Hence we simply denote it by $\left[\boldsymbol{b}_{\boldsymbol{q}}, \boldsymbol{b}_{\boldsymbol{q}-1} / \boldsymbol{c}_{\boldsymbol{q}}\right]$.

Definition 1.1. The torsion of the chain complex C_{*} is given by the alternating product

$$
\prod_{q=0}^{m}\left[b_{q}, b_{q-1} / c_{q}\right]^{(-1)^{q}}
$$

and we denote it by $\tau\left(C_{*}\right)$.
Remark. It is easy to see that $\tau\left(C_{*}\right)$ depends only on the bases $\left\{c_{0}, \cdots, c_{m}\right\}$.
Now we apply this torsion invariant of chain complexes to the following geometric situations. Let X be a finite cell complex and \tilde{X} a universal covering of X. The fundamental group $\pi_{1} X$ acts on \tilde{X} as deck transformations. Then the chain complex $C_{*}(\tilde{X} ; \boldsymbol{Z})$ has the structure of a chain complex of free $Z\left[\pi_{1} X\right]$-modules. Let $\rho: \pi_{1} X \rightarrow S L(2 ; C)$ be a representation. We denote the 2 -dimensional vector space C^{2} by V. Using the representation ρ, V has the structure of a $Z\left[\pi_{1} X\right]$-module and then we denote it by V_{ρ}. Define the chain complex $C_{*}\left(X ; V_{\rho}\right)$ by $C_{*}(\tilde{X} ; \boldsymbol{Z}) \otimes_{Z\left[\pi_{1} X\right]} V_{\rho}$ and choose a preferred basis

$$
\left\{\sigma_{1} \otimes e_{1}, \sigma_{1} \otimes e_{2}, \cdots, \sigma_{k_{q}} \otimes e_{1}, \sigma_{k_{q}} \otimes e_{2}\right\}
$$

of $C_{q}\left(X ; V_{\rho}\right)$ where $\left\{e_{1}, e_{2}\right\}$ is a canonical basis of V and $\sigma_{1}, \cdots, \sigma_{k_{q}}$ are q-cells giving the preferred basis of $C_{q}(\tilde{X} ; Z)$.

We consider the situation where $C_{*}\left(X ; V_{\rho}\right)$ is acyclic. Namely all homology groups vanish; $H_{*}\left(X ; V_{\rho}\right)=0$. In this case we call ρ an acyclic representation.

Definition 1.2. Let $\rho: \pi_{1} X \rightarrow S L(2 ; C)$ be an acyclic representation. Then the Reidemeister torsion of X with V_{ρ}-coefficients is defined to be the torsion of the chain complex $C_{*}\left(X ; V_{\rho}\right)$. We denote it by $\tau\left(X ; V_{\rho}\right)$.

Remark. (1). We define the $S L(2 ; C)$-torsion $\tau\left(X ; V_{\rho}\right)$ to be zero for a non-acyclic representation ρ.
(2) The Reidemeister torsion $\tau\left(X ; V_{\rho}\right)$ depends on several choices. However it is well known that the Reidemeister torsion is a piecewise linear invariant. See Johnson[2], Milnor [4], [6].

The key lemma of the proof of Main theorem is the following. It gives the torus decomposition formula of the Reidemeister torsion of 3-manifolds. See Johnson [2], Milnor [6].

Lemma 1.3. Let $0 \rightarrow C_{*}^{\prime} \rightarrow C_{*} \rightarrow C_{*}^{\prime \prime} \rightarrow 0$ be an exact sequence of n-dimensional chain complexes with preferred bases $\left\{\boldsymbol{c}_{i}^{\prime}\right\},\left\{c_{i}\right\}$ and $\left\{\boldsymbol{c}_{i}^{\prime \prime}\right\}$ such that $\left[c_{i}^{\prime}, c_{i}^{\prime \prime} / c_{i}\right]=1$ for $\forall i$. Suppose any two of the complexes are acyclic. Then the third one is also acyclic and the torsion of the three complexes are all well-defined. Moreover the next formula holds:

$$
\tau\left(C_{*}\right)=(-1)^{\Sigma_{n}^{n}=0 \beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}} \tau\left(C_{*}^{\prime}\right) \tau\left(C_{*}^{\prime \prime}\right)
$$

where $\beta_{i}^{\prime}=\operatorname{dim} \partial C_{i+1}^{\prime}$ and $\beta_{i}^{\prime \prime}=\operatorname{dim} \partial C_{i+1}^{\prime \prime}$.
Proof. It is easy to show the acyclicity of the third one from the homology long exact sequence of $0 \rightarrow C_{*}^{\prime} \rightarrow C_{*} \rightarrow C_{*}^{\prime \prime} \rightarrow 0$.

To see the required formula, we consider the next diagram for $\forall i$.

Choose bases b_{i}^{\prime} of $\partial C_{i+1}^{\prime}$ and $b_{i}^{\prime \prime}$ of $\partial C_{i+1}^{\prime \prime}$ and then we get a basis of ∂C_{i+1}, $\boldsymbol{b}_{i}=\left(\boldsymbol{b}_{i}^{\prime}, \boldsymbol{b}_{i}^{\prime \prime}\right)$. We will show that

$$
\tau\left(C_{*}^{\prime}\right) \tau\left(C_{*}^{\prime \prime}\right) \tau\left(C_{*}\right)^{-1}=(-1)^{\Sigma_{i=0}^{n} \beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}}
$$

Here from the definition of the torsion,

$$
\tau\left(C_{*}^{\prime}\right) \tau\left(C_{*}^{\prime \prime}\right) \tau\left(C_{*}\right)^{-1}=\prod_{i=0}^{n}\left[\boldsymbol{b}_{i}^{\prime}, \boldsymbol{b}_{i-1}^{\prime} / \boldsymbol{c}_{i}^{\prime}\right]^{(-1)^{i}}\left[\boldsymbol{b}_{i}^{\prime \prime}, \boldsymbol{b}_{i-1}^{\prime \prime} / \boldsymbol{c}_{i}^{\prime \prime}\right]^{(-1)^{i}}\left[\boldsymbol{b}_{i}, \boldsymbol{b}_{i-1} / c_{i}\right]^{(-1)^{i+1}}
$$

Note that this value does not depend on the choice of $\boldsymbol{b}_{\boldsymbol{i}}^{\prime}$ and $\boldsymbol{b}_{\boldsymbol{i}}^{\prime \prime}$. Consequently we may assume that

$$
\left[b_{i}^{\prime}, \boldsymbol{b}_{i-1}^{\prime} / c_{i}^{\prime}\right]=\left[b_{i}^{\prime \prime}, b_{i-1}^{\prime \prime} / \mathbf{c}_{i}^{\prime \prime}\right]=1
$$

Hence

$$
\tau\left(C_{*}^{\prime}\right) \tau\left(C_{*}^{\prime \prime}\right) \tau\left(C_{*}\right)^{-1}=\prod_{i=0}^{n}\left[\boldsymbol{b}_{i}, \boldsymbol{b}_{i-1} / \boldsymbol{c}_{i}\right]^{(-1)^{i+1}}
$$

Moreover, from the assumptions, we may choose identifications

$$
\begin{aligned}
\partial C_{i+1} & \cong \partial C_{i}^{\prime} \oplus \partial C_{i}^{\prime \prime}, \quad C_{i} \cong C_{i}^{\prime} \oplus C_{i}^{\prime \prime}, \quad \partial C_{i} \cong \partial C_{i}^{\prime} \oplus \partial C_{i}^{\prime \prime}, \\
C_{i}^{\prime} & \cong \partial C_{i+1}^{\prime} \oplus \partial C_{i}^{\prime}, \quad C_{i}^{\prime \prime} \cong \partial C_{i+1}^{\prime \prime} \oplus \partial C_{i}^{\prime \prime}
\end{aligned}
$$

Thereby we can identify C_{i} with $\partial C_{i+1}^{\prime} \oplus \partial C_{i}^{\prime} \oplus \partial C_{i+1}^{\prime \prime} \oplus \partial C_{i}^{\prime \prime}$ and get a basis for C_{i}

$$
\left(b_{i}^{\prime}, b_{i-1}^{\prime}, b_{i}^{\prime \prime}, b_{i-1}^{\prime \prime}\right)=\left(c_{i}^{\prime}, c_{i}^{\prime \prime}\right)=c_{i}
$$

Moreover we have the following as an oriented basis,

$$
\begin{aligned}
\left(b_{i}^{\prime}, b_{i-1}^{\prime}, b_{i}^{\prime \prime}, b_{i-1}^{\prime \prime}\right) & =(-1)^{\beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}}\left(b_{i}^{\prime}, b_{i}^{\prime \prime}, b_{i-1}^{\prime}, b_{i-1}^{\prime \prime}\right) \\
& =(-1)^{\beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}}\left(b_{i}, b_{i-1}\right)
\end{aligned}
$$

Hence

$$
\begin{gathered}
{\left[b_{i}^{\prime}, b_{i-1}^{\prime} / c_{i}^{\prime}\right]\left[b_{i}^{\prime \prime}, b_{i-1}^{\prime \prime} / c_{i}^{\prime \prime}\right]\left[b_{i}, b_{i-1} / c_{i}\right]^{-1}} \\
=1 \cdot 1 \cdot(-1)^{\beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}}=(-1)^{\beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}} .
\end{gathered}
$$

Therefore

$$
\tau\left(C_{*}^{\prime}\right) \tau\left(C_{*}^{\prime \prime}\right) \tau\left(C_{*}\right)^{-1}=(-1)^{\Sigma_{i=0}^{n} \beta_{i-1}^{\prime} \beta_{i}^{\prime \prime}}
$$

This completes the proof of Lemma 1.3.

§2. Examples of $S L(2 ; C)$-torsion.

In this section, we compute the $S L(2 ; C)$-torsion of the torus T^{2} and the solid torus S. First we consider the condition of the acyclicity of T^{2}. When a representation
ρ is fixed, we denote the matrix $\rho(x)$ for $\forall x$ by the corresponding capital letter X. Recall that we denote the 2-dimensional complex vector space C^{2} by V and the canonical basis of V by $\left\{e_{1}, e_{2}\right\}$.

Definition 2.1. A parabolic element of $\operatorname{SL}(2 ; C)$ is a nontrivial element which fixes some nonzero vector in V. Equivalently an element is parabolic if it is conjugate to $\left(\begin{array}{ll}1 & t \\ 0 & 1\end{array}\right)$ for $\exists t \in C-\{0\}$.

Definition 2.2. Let $\rho: \pi_{1} T^{2} \rightarrow S L(2 ; C)$ be a representation. Then it is called a parabolic representation if X is either trivial or a parabolic element in $S L(2 ; C)$ for $\forall x \in \pi_{1} T^{2}$.

We can easily prove the following lemma.
Lemma 2.3. Let $\rho: \pi_{1} T^{2} \rightarrow S L(2 ; C)$ be a representation. The following statements are equivalent:
(1) ρ is a parabolic representation.
(2) $\operatorname{det}(X-I)=0$ for $\forall x \in \pi_{1} T^{2}$ where I is the unit matrix in $S L(2 ; C)$.

Now we describe the condition of acyclicity.
Proposition 2.4. Let $\rho: \pi_{1} T^{\mathbf{2}} \rightarrow S L(2 ; C)$ be a representation. Then all homology groups vanish: $H_{*}\left(T^{2}, V_{\rho}\right)=0$ if and only if ρ is a non-parabolic representation. In this case, the $S L(2 ; C)$-torsion is given by

$$
\tau\left(T^{2} ; V_{\rho}\right)=1
$$

Proof. Suppose ρ is a non-parabolic representation. We fix an orientation on T^{2}. By assumption, there is an element $x \in \pi_{1} T^{2}$ such that $\operatorname{det}(X-I) \neq 0$. We take $y \in \pi_{1} T^{2}$ such that the geometric intersection number $x \cdot y=1$. We assume that a cell structure of T^{2} is given by the following;
(0) one 0 -cell p,
(1) two 1-cells x and y,
(2) one 2 -cell w,
with the attaching map given by $\partial w=x y x^{-1} y^{-1}$. By easy computation, this chain complex is given as follows;

$$
0 \longrightarrow w \otimes V \xrightarrow{\partial_{2}} x \otimes V \otimes y \otimes V \xrightarrow{\partial_{1}} p \otimes V \longrightarrow 0
$$

where

$$
\partial_{2}=\binom{-(Y-I}{X-I}, \quad \partial_{1}=\left(\begin{array}{ll}
X-I & Y-I
\end{array}\right)
$$

Since $\operatorname{det}(X-\eta) \neq 0, \partial_{1}$ is surjective and then $\operatorname{dim}\left(\operatorname{Ker} \partial_{1}\right)=2$. Similarly ∂_{2} is injective
and $\operatorname{dim}\left(\operatorname{Im} \partial_{2}\right)=2$. On the other hand, we have

$$
\operatorname{Im} \partial_{2} \subset \operatorname{Ker} \partial_{1}
$$

by the definition of the boundary operators. Hence

$$
\operatorname{Im} \partial_{2}=\operatorname{Ker} \partial_{1}
$$

Therefore this chain complex $C_{*}\left(T^{2} ; V_{\rho}\right)$ is acyclic. Then $\tau\left(T^{2} ; V_{\rho}\right)$ is given by the following. Since a canonical basis of $V \oplus V$ is given by $\left\{\left(\boldsymbol{e}_{1}, \mathbf{0}\right),\left(e_{2}, \mathbf{0}\right),\left(0, e_{1}\right)\left(0, e_{2}\right)\right\}$, we may identify the bases

$$
\begin{aligned}
& \boldsymbol{c}_{2}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\}, \\
& \boldsymbol{c}_{1}=\left\{\left(\boldsymbol{e}_{1}, \mathbf{0}\right),\left(e_{2}, \boldsymbol{0}\right),\left(\mathbf{0}, \boldsymbol{e}_{1}\right),\left(\mathbf{0}, \boldsymbol{e}_{2}\right)\right\}, \\
& \boldsymbol{c}_{0}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right\} .
\end{aligned}
$$

We take a basis b_{i} of B_{i} for ${ }^{\forall} i \in\{0,1\}$ which satisfies $b_{1}=\partial c_{2}, b_{0}=\partial c_{1}$. Then by the definition of the $S L(2 ; C)$-torsion,

$$
\tau\left(T^{2} ; V_{\rho}\right)=\left[b_{1} / c_{2}\right]\left[b_{1}, b_{0} / c_{1}\right]^{-1}\left[b_{0} / c_{0}\right] .
$$

By straightforward computation,

$$
\begin{aligned}
& {\left[b_{1} / c_{2}\right]=1} \\
& {\left[b_{1}, b_{0} / c_{0}\right]=\operatorname{det}\left(\begin{array}{cc}
-(Y-I) & 0 \\
X-I & I
\end{array}\right)=\operatorname{det}(Y-I)} \\
& {\left[b_{0} / c_{0}\right]=\operatorname{det}(Y-I)}
\end{aligned}
$$

Therefore the $S L(2 ; C)$-torsion is given by

$$
\tau\left(T^{2} ; V_{\rho}\right)=1
$$

Conversely we assume that ρ is a parabolic representation. If ρ is a trivial representation, it is clear that $C_{*}\left(T^{2} ; V_{\rho}\right)$ is a usual V-coefficient chain complex and not acyclic. Hence we may assume ρ is nontrivial. Then there is an element $x \in \pi_{1} T^{2}$ such that $X=\rho(x) \neq I$. Let $v \in V$ denote the fixed vector of X and L the complex line spanned by v. Let $y \in \pi_{1} T^{2}$ be any other element such that $Y=\rho(y) \neq I$. Since Y commutes with X, they have a common eigenvector which must be v or its multiple. Since Y is a parabolic element of $S L(2 ; C), Y$ also fixes the vector v. Then we have

$$
\operatorname{Im} \partial_{1} \subset L
$$

and then ∂_{1} is not surjective. Hence $H_{0}\left(T^{2} ; V_{\rho}\right) \neq 0$. This completes the proof.
Remark. If $\tau\left(M ; V_{\rho}\right)$ is well-defined for an even dimensional closed orientable manifold M, then the absolute value of the Reidemeister torsion

$$
\left|\tau\left(M ; V_{\rho}\right)\right|=1
$$

See Ray-Singer [8] for details.
Next we consider the solid torus $S=S^{1} \times D^{2}$ with $\pi_{1} S \cong Z$ generated by x.
Proposition 2.5. Let $\rho: \pi_{1} S \rightarrow S L(2 ; C)$ be a representation. The representation ρ is non-parabolic if and only if the chain complex $C_{*}\left(S ; V_{\rho}\right)$ is acyclic. In this case the SL($2 ; C$)-torsion of S is given by

$$
\tau\left(S ; V_{\rho}\right)=\operatorname{det}(X-I)
$$

Proof. It is easy to see that S has the same simple homotopy type as S^{1}. We may assume that a cell structure of S^{1} is given by one 0 -cell p and one 1-cell x. Then the corresponding chain complex is given by

$$
0 \longrightarrow x \otimes V \xrightarrow{\partial=X-I} p \otimes V \longrightarrow 0
$$

Hence $C_{*}\left(S ; V_{\rho}\right)$ is acyclic if and only if $\operatorname{det}(X-I) \neq 0$. Therefore ρ is a non-parabolic representation. If we take a basis $b_{0}=\left\{\partial e_{1}, \partial e_{2}\right\}$ for $B_{0}\left(C_{*}\right)$, then the $S L(2 ; C)$-torsion is given by

$$
\tau\left(S ; V_{\rho}\right)=\left[b_{0} / c_{1}\right]^{-1}\left[b_{0} / c_{0}\right]=1 \cdot \operatorname{det}(X-I)=\operatorname{det}(X-I)
$$

This completes the proof of Proposition 2.5.

§3. Irreducible representations of Seifert fibered spaces.

In this section, we investigate the $S L(2 ; C)$-irreducible representation of the Seifert fibered space M given by the Seifert index $\left\{b,(\varepsilon, g),\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{m}, \beta_{m}\right)\right\}$. It is well known that the fundamental group of M has a presentation as follows. If $\varepsilon=0$, that is, if the orbit surface is orientable, then

$$
\begin{array}{r}
\pi_{1} M=\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g}, q_{1}, \cdots, q_{m}, h\right|\left[a_{i}, h\right]=\left[b_{i}, h\right]=\left[q_{i}, h\right]=1 \\
\left.q_{i}^{\alpha_{i}} h^{\beta_{i}}=1, q_{1} \cdots q_{m}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=h^{b}\right\rangle .
\end{array}
$$

If $\varepsilon=n$, that is, if the orbit surface is nonorientable, then

$$
\begin{aligned}
\pi_{1} M=\left\langle v_{1}, \cdots, v_{g}, q_{1}, \cdots, q_{m}, h\right| v_{i} h v_{i}^{-1}=h^{-1}, q_{i} h q_{i}^{-1}=h \\
\left.q_{i}^{\alpha_{i}} h^{\beta_{i}}=1, q_{1} \cdots q_{m} v_{1}^{2} \cdots v_{g}^{2}=h\right\rangle .
\end{aligned}
$$

Remark. In the case of $\varepsilon=o$ generators a_{i}, b_{i} and q_{i} come from the fundamental group of the orbit surface. Then we can choose the representative closed curves on the orbit surface q_{1}, \cdots, q_{m} such that $q_{1} \cdots q_{m}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]=1$. Similarly we choose the curves in the case of $\varepsilon=n$.

We fix this presentation for $\pi_{1} M$ and consider only $S L(2 ; C)$-irreducible representations. The next lemma gives us a clue to compute the $S L(2 ; C)$-torsion.

Lemma 3.1. Let $\rho: \pi_{1} M \rightarrow S L(2 ; C)$ be an irreducible representation. Then the image of the generic fiber h is given by

$$
H=\rho(h)= \begin{cases} \pm I & (\varepsilon=o) \\
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) & (\varepsilon=n)\end{cases}
$$

where I is the unit matrix in $S L(2 ; C), \lambda \in C$ such that $\lambda^{2 N+2}=1, N=\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}$.
Proof. By the irreducibility of ρ, it is easy to see that H is a non-parabolic element.
Case 1: $\varepsilon=o$. Suppose $H \neq \pm I$. Let u be an eigenvector for an eigenvalue λ of H. Since H commutes with $A_{i}=\rho\left(a_{i}\right), B_{i}=\rho\left(b_{i}\right)$ and $Q_{j}=\rho\left(q_{j}\right)$, all vectors $A_{i} u, B_{i} u$ and $Q_{j} u$ is contained in the vector space spanned by u. It contradicts the irreducibility of ρ. Thus $H= \pm I$.

Case 2: $\varepsilon=n$. Since we consider the conjugacy classes of representations, we may suppose H is the diagonal matrix $H=\left(\begin{array}{cc}\lambda & 0 \\ 0 & \lambda^{-1}\end{array}\right)$.
Subcase 1: $m=0$. In this case M has no exceptional fibers; it is an S^{1}-bundle over a non-orientable surface of genus g. By the relation $V_{i} H=H^{-1} V_{i}$,

$$
V_{i} H e_{1}=\lambda V_{i} e_{1}=H^{-1} V_{i} e_{1} .
$$

Accordingly we get

$$
H V_{i} e_{1}=\lambda^{-1} V_{i} e_{1}
$$

and $V_{i} e_{1}$ is contained in the eigenspace for an eigenvalue λ^{-1} as in Case 1. Similarly $V_{i} e_{2}$ is contained in the eigenspace for λ. Thus we may set for each i

$$
V_{i}=\left(\begin{array}{cc}
0 & a_{i} \\
b_{i} & 0
\end{array}\right) \quad \text { such that } a_{i} b_{i}=-1
$$

By simple computation, we have

$$
V_{i}^{2}=-I
$$

The relation of $\pi_{1} M$ implies

$$
H=V_{1}^{2} V_{2}^{2} \cdots V_{g}^{2}=(-I)^{g} .
$$

Hence

$$
H= \pm I .
$$

Subcase 2: $m \geq 1$. Then M has the exceptional fibers q_{1}, \cdots, q_{m}. For $\forall q_{j}$, we set the
corresponding matrix

$$
Q_{j}=\left(\begin{array}{ll}
s_{j} & t_{j} \\
u_{j} & v_{j}
\end{array}\right)
$$

The condition $H Q_{j}=Q_{j} H$ implies

$$
\left(\begin{array}{cc}
\lambda s_{j} & \lambda t_{j} \\
\lambda^{-1} u_{j} & \lambda^{-1} v_{j}
\end{array}\right)=\left(\begin{array}{cc}
\lambda s_{j} & \lambda^{-1} t_{j} \\
\lambda u_{j} & \lambda^{-1} v_{j}
\end{array}\right)
$$

If we compare each entry of the left-side with the one of the right-side,

$$
\lambda=\lambda^{-1} \quad \text { or } \quad t_{j}=u_{j}=0
$$

If $\lambda=\lambda^{-1}$, then we get $\lambda= \pm 1$ and consequently $H= \pm I$. If $\lambda \neq \lambda^{-1}$, then every Q_{j} is a diagonal matrix. In this case, the relation $q_{j}^{\alpha_{j}} h^{\beta_{j}}=1$ implies

$$
\left(\begin{array}{cc}
s_{j}^{\alpha_{j}} & 0 \\
0 & v_{j}^{\alpha \alpha_{j}}
\end{array}\right)=\left(\begin{array}{cc}
\lambda^{-\beta_{j}} & 0 \\
0 & \lambda^{\beta_{j}}
\end{array}\right) .
$$

Hence we get

$$
s_{j}=\lambda^{-\beta_{j} / \alpha_{j}} \quad \text { and } v_{j}=\lambda^{\beta_{j} / \alpha_{j}} .
$$

On the other hand, we get

$$
V_{i}=\left(\begin{array}{cc}
0 & a_{i} \\
b_{i} & 0
\end{array}\right) \quad \text { such that } V_{i}^{2}=-I
$$

as in the subcase 1. The relation $h=q_{1} \cdots q_{m} v_{1}^{2} \cdots v_{g}^{2}$ implies

$$
\begin{aligned}
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \lambda^{-1}
\end{array}\right) & =(-I)^{g}\left(\begin{array}{cc}
s_{1} \cdots s_{m} & 0 \\
0 & v_{1} \cdots v_{m}
\end{array}\right) \\
& =(-1)^{g}\left(\begin{array}{cc}
\lambda^{-\left(\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}\right)} & 0 \\
0 & \lambda^{\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}}
\end{array}\right) .
\end{aligned}
$$

Hence the following holds:

$$
\lambda^{-\left(\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}\right)}=(-1)^{g} \lambda .
$$

Therefore setting $N=\beta_{1} / \alpha_{1}+\cdots+\beta_{m} / \alpha_{m}$, we get

$$
\lambda^{2 N+2}=1 .
$$

This completes the proof.
From the above lemma, we get easily the following corollary.
Corollary 3.2. $\quad Q_{i}=\rho\left(q_{i}\right)$ has only eigenvalues which are roots of unity.

§4. Proof of Main theorem (1).

In this section, we give a proof of Main theorem. Here we decompose M into tubular neighborhoods of exceptional fibers and their complement. Then we compute the $S L(2 ; C)$-torsion for each part and apply Lemma 1.3 to our situations. Since we can compute the $S L(2 ; C)$-torsion for $\varepsilon=n$ as in the case of $\varepsilon=o$, we will prove only the case of $\varepsilon=o$.

We put

$$
\Sigma^{*}=\Sigma-\left(D_{0}^{2} \cup \cdots \cup D_{m}^{2}\right)
$$

where Σ is an orientable closed surface of genus g and $D_{0}^{2}, \cdots, D_{m}^{2}$ are disjoint embedded open 2 -disks. Also let M_{m} denote the trivial S^{1}-bundle $\Sigma^{*} \times S^{1}$. We give a canonical torus decomposition of Seifert fibered space M as follows:

$$
M \cong M_{m} \cup S_{0} \cup S_{1} \cdots \cup S_{m}
$$

where any S_{i} is the solid torus. The solid torus S_{0} is the one corresponding to the triviality obstruction b and S_{i} for $\forall i \in\{1, \cdots, m\}$ is the one corresponding to the exceptional fiber.

Lemma 4.1. Let $\rho: \pi_{1}(M) \rightarrow S L(2 ; C)$ be an irreducible representation. Suppose all homology groups of the boundary vanish: $H_{*}\left(\partial M_{m} ; V_{\rho}\right)=0$. Then $H_{*}\left(M ; V_{\rho}\right)=0$ if and only if $H_{*}\left(M_{m} ; V_{\rho}\right)=H_{*}\left(S_{0} ; V_{p}\right)=\cdots=H_{*}\left(S_{m} ; V_{\rho}\right)=0$. In this case, we have

$$
\tau\left(M ; V_{\rho}\right)=\tau\left(M_{m} ; V_{\rho}\right) \tau\left(S_{0} ; V_{\rho}\right) \cdots \tau\left(S_{m} ; V_{\rho}\right)
$$

Proof. Apply Lemma 1.3 to the short exact sequence of the chain complex given by the torus decomposition of M;

$$
0 \rightarrow \oplus_{i=0}^{m} C_{*}\left(\partial S_{i} ; V_{\rho}\right) \rightarrow C_{*}\left(M_{m} ; V_{\rho}\right) \oplus \bigoplus_{i=0}^{m} C_{*}\left(S_{i} ; V_{\rho}\right) \rightarrow C_{*}\left(M ; V_{\rho}\right) \rightarrow 0
$$

By the proof of Proposition 2.4, $\operatorname{dim} \partial C_{*}\left(\partial S_{i} ; V_{\rho}\right)$ is even. Therefore we have Lemma 4.1.
Proposition 4.2. Let $\rho: \pi_{1}(M) \rightarrow S L(2 ; C)$ be an irreducible representation. We denote the restriction of ρ to $\pi_{1}\left(M_{m}\right)$ by the same symbol ρ. Then all homology groups vanish: $H_{*}\left(M_{m} ; V_{\rho}\right)=0$ if and only if $H=\rho(h)=-I$. In this case the $S L(2 ; C)$-torsion is given by

$$
\tau\left(M_{m} ; V_{\rho}\right)=2^{2-2 m-4 g} .
$$

Proof. It is easy to see that M_{m} has the same simple homotopy type as the direct product of the one point union of $2 g+m$ circles $S^{1} \vee \cdots \vee S^{1}$ and S^{1}. We denote this space by $\left(\bigvee_{i} S_{i}\right) \times S^{1}$. Then $\bigvee_{i} S_{i}$ has a natural cell decomposition given by one 0 -cell u and $2 g+m 1$-cells a_{i}, b_{i}, q_{j}. It gives a cell decomposition of $\left(\bigvee_{i} S_{i}\right) \times S^{1}$ by
(1) 0 -cell u,
(2) 1-cells $a_{1}, \cdots, a_{g}, b_{1}, \cdots, b_{g}, q_{1}, \cdots, q_{m}, h$ corresponding to the generators of $\pi_{1} M$.
(3) 2-cells $v_{a_{1}}, v_{a_{2}}, \cdots, v_{a_{g}}, v_{b_{1}}, \cdots, v_{b_{k}}, v_{q_{1}}, \cdots, v_{q_{m}}$ respectively with boundary a_{i}, b_{i} and q_{i}.
By using this cell structure, we can determine the structure of $C_{*}\left(M_{m} ; V_{\rho}\right)$. Recall that $\left\{e_{1}, e_{2}\right\}$ is a canonical basis of V. The 2-chain module $C_{2}\left(M_{m} ; V_{\rho}\right)$ is a free $Z\left[\pi_{1} M_{m}\right]$-module on $\left\{v_{a_{j}} \otimes e_{i}, v_{b_{j}} \otimes e_{i}, v_{q_{j}} \otimes e_{i}\right\}$ for $\forall i \in\{1,2\}$ and $\forall j \in\{1, \cdots, g\}$. Similarly $C_{1}\left(M_{m} ; V_{\rho}\right)$ is a free $Z\left[\pi_{1} M_{m}\right]$-module on $\left\{a_{j} \otimes e_{i}, b_{j} \otimes e_{i}, q_{j} \otimes e_{i}, h \otimes e_{i}\right\}$ and $C_{0}\left(M_{m}\right)$ is a free $Z\left[\pi_{1} M_{m}\right]$-module on $\left\{u \otimes e_{i}\right\}$. Then the boundary operators are given by

$$
\begin{aligned}
& \partial_{2}=\left(\begin{array}{cccccccc}
I-H & 0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & I-H & 0 & \cdots & \cdots & \cdots & \cdots & \cdots \\
\vdots & \vdots \\
0 & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & 0 \\
I-H \\
A_{1}-I & A_{2}-I & \cdots & B_{1}-I & \cdots & Q_{1}-I & \cdots & Q_{m}-I
\end{array}\right) \text {, } \\
& \partial_{1}=\left(A_{1}-I \cdots B_{1}-I \cdots Q_{1}-I \cdots Q_{m}-I \quad H-I\right) .
\end{aligned}
$$

It is easy to see that $C_{*}\left(M_{m} ; V_{\rho}\right)$ is acyclic if and only if $H=-I$. Let b_{i} be a basis of the boundary $B_{i}\left(M_{m} ; V_{\rho}\right)$ for $i=0,1$. Then the $S L(2 ; C)$-torsion is given by

$$
\tau\left(M_{m} ; V_{\rho}\right)=\left[b_{1} / c_{2}\right]\left[b_{1}, b_{0} / c_{1}\right]^{-1}\left[b_{0} / c_{0}\right]
$$

We may choose a lift of b_{1} which coincides with c_{2} and the one of b_{0} which coincides with $\left\{h \otimes e_{1}, h \otimes e_{2}\right\}$. By simple computation,

$$
\tau\left(M_{m} ; V_{\rho}\right)=1 \cdot(\operatorname{det}(I-H))^{-(2 g+m)} \cdot \operatorname{det}(H-I)=(\operatorname{det}(I-H))^{-(2 g+m+1)}
$$

Then substituting $-I$ for H, we have

$$
\begin{aligned}
\tau\left(M_{m} ; V_{\rho}\right) & =\left(\operatorname{det}\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)\right)^{-(2 g+m)+1} \\
& =2^{-2(2 g+m)+2}
\end{aligned}
$$

This completes the proof of Proposition 4.2.
Because ∂M_{m} is the disjoint union of tori, the fundamental group $\pi_{1} M$ is generated by h and $\left\{q_{1}, \cdots, q_{m}\right\}$. Then $C_{*}\left(\partial M_{m} ; V_{\rho}\right)$ is acyclic if and only if $H=-I$ by Proposition 2.4.

Proposition 4.3. If $H=-I$, then the $S L(2 ; C)$-torsion of S_{0} is given by

$$
\tau\left(S_{0} ; V_{\rho}\right)=2^{2}
$$

Proof. Let ρ_{0} and v_{0} be integers such that $\left|\begin{array}{ll}1 & \rho_{0} \\ b & v_{0}\end{array}\right|=-1$. We define an element $l_{0} \in \pi_{1} M_{m}$ by $q_{0}^{\rho_{0}} h^{\nu_{0}}$. The sewing of the solid torus S_{0} makes the curve $m_{0}=q_{0} h^{b}$ on the component of ∂M_{m} null-homotopic in S_{0}. On the other hand the closed curve l_{0} is the generator in $\pi_{1} S_{0} \cong \boldsymbol{Z}$. Then the relation implies

$$
L_{0}=\rho\left(l_{0}\right)=Q_{0}^{\rho_{0}} H^{\nu_{0}}
$$

Since $q_{0}=\left(h^{b}\right)^{-1}=\left(q_{1} \cdots q_{m}\left[a_{1}, b_{1}\right] \cdots\left[a_{g}, b_{g}\right]\right)^{-1}$ and $v_{0}-b \rho_{0}=-1$,

$$
\begin{aligned}
L_{0} & =\left(Q_{1} \cdots Q_{m}\left[A_{1}, B_{1}\right] \cdots\left[A_{g}, B_{g}\right]\right)^{-\rho_{0}} H^{v_{0}} \\
& =H^{-b \rho_{0}+v_{0}}=H^{-1}=-I .
\end{aligned}
$$

Therefore the $S L(2 ; C)$-torsion of S_{0} is given as follows;

$$
\begin{aligned}
\tau\left(S_{0} ; V_{\rho}\right) & =\operatorname{det}\left(L_{0}-I\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-2 & 0 \\
0 & -2
\end{array}\right) \\
& =2^{2} .
\end{aligned}
$$

This completes the proof.
Proposition 4.4. If $H=-I$, then the $S L(2 ; C)$-torsion of S_{i} is given by

$$
\tau\left(S_{i} ; V_{\rho}\right)=2\left(1-(-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right)
$$

Proof. Let ρ_{i} and v_{i} be integers such that $\left|\begin{array}{ll}\alpha_{i} & \rho_{i} \\ \beta_{i} & v_{i}\end{array}\right|=-1$ and $0<\rho_{i}<\alpha_{i}$. We define the generator $l_{i} \in \pi_{1} S_{i}$ by $q_{i}^{\rho_{i}} h^{\nu_{i}}$. Here the image of l_{i} is given by

$$
L_{i}=\rho\left(l_{i}\right)=Q_{i}^{\rho_{i}} H^{v_{i}}=(-1)^{v_{i}} Q_{i}^{\rho_{i}}
$$

By Proposition 2.5, we have

$$
\tau\left(S_{i} ; V_{\rho}\right)=\operatorname{det}\left(L_{i}-I\right)=\operatorname{det}\left((-1)^{v_{i}} Q_{i}^{\rho_{i}}-I\right)=2-(-1)^{v_{i}} \operatorname{tr} Q_{i}^{\rho_{i}} .
$$

In view of relations $q_{i}^{\alpha_{i}} h^{\beta_{i}}=1$ and $H=-I$, the identity $Q_{i}^{\alpha_{i}}=(-I)^{\beta_{i}}$ holds. Then we may denote the eigenvalues of Q_{i} by $\exp \left(\sqrt{-1} k_{i}(\rho) \pi / \alpha_{i}\right)$ and $\exp \left(-\sqrt{-1} k_{i}(\rho) \pi / \alpha_{i}\right)$ where $0 \leq k_{i}(\rho) \leq \alpha_{i}$ and $k_{i}(\rho) \equiv \beta_{i} \bmod 2$. Hence we get

$$
\tau\left(S_{i} ; V_{\rho}\right)=2\left(1-(-1)^{v i} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right)
$$

This completes the proof of Proposition 4.4.
By using Lemma 4.1, the $S L(2 ; C)$-torsion $\tau\left(M ; V_{\rho}\right)$ of the Seifert fibered space is
given by

$$
\begin{aligned}
\tau\left(M ; V_{\rho}\right) & =\tau\left(M_{m} ; V_{\rho}\right) \tau\left(S_{0} ; V_{\rho}\right) \cdots \tau\left(S_{m} ; V_{\rho}\right) \\
& =2^{2-2 m-4 g} \cdot 2^{2} \cdot 2^{m} \cdot \prod_{i=1}^{m}\left(1-(-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right) \\
& =2^{4-m-4 g} \prod_{i=1}^{m}\left(1-(-1)^{v_{i}} \cos \frac{\rho_{i} k_{i}(\rho) \pi}{\alpha_{i}}\right) .
\end{aligned}
$$

We have a proof of Main theorem for the case of $H=-I$.

§5. Proof of Main theorem (2).

If $H=I$, we cannot apply Lemma 4.1 to our situations because a given representation is not acyclic when we restrict it to the complement of exceptional fibers. However then the representation ρ is not acyclic. Now we prove the following proposition.

Proposition 5.1. Let $\rho: \pi_{1}(M) \rightarrow S L(2 ; C)$ be an irreducible representation such that $H=\rho(h)=I$. Then ρ is not acyclic; that is, $H_{*}\left(M ; V_{\rho}\right) \neq 0$.

Proof. The proof is by contradiction. We assume all homology groups of M vanish: $H_{*}\left(M ; V_{\rho}\right)=0$. Then the following sequences given by the Mayer-Vietoris sequence are exact.

$$
\begin{aligned}
& 0 \rightarrow H_{2}\left(\partial M_{m} ; V_{\rho}\right) \rightarrow H_{2}\left(M_{m} ; V_{\rho}\right) \rightarrow 0, \\
& 0 \rightarrow H_{1}\left(\partial M_{m} ; V_{\rho}\right) \rightarrow H_{1}\left(M_{m} ; V_{\rho}\right) \oplus \bigoplus_{i=0}^{m} H_{1}\left(S_{i} ; V_{\rho}\right) \rightarrow 0, \\
& 0 \rightarrow H_{0}\left(\partial M_{m} ; V_{\rho}\right) \rightarrow H_{0}\left(M_{m} ; V_{\rho}\right) \oplus \bigoplus_{i=0}^{m} H_{0}\left(S_{i} ; V_{\rho}\right) \rightarrow 0
\end{aligned}
$$

Case 1: There exists a non-parabolic element in $\left\{A_{i}, B_{i}, Q_{j}\right\}$. From the proof of Proposition 4.2, in the chain complex $C_{*}\left(M_{m} ; V_{\rho}\right)$,

$$
\operatorname{rank}\left(\partial_{2}\right)=\operatorname{rank}\left(\partial_{1}\right)=2
$$

In this case, by easy computation, the homology groups of M_{m} are given as follows;

$$
\begin{aligned}
& H_{2}\left(M_{m} ; V_{\rho}\right) \cong V^{2 g+m-1} \\
& H_{1}\left(M_{m} ; V_{\rho}\right) \cong V^{2 g+m-1} \\
& H_{0}\left(M_{m} ; V_{\rho}\right)=0
\end{aligned}
$$

By the above exact sequences and the Poincaré duality, we have the following identifications;

$$
H_{0}\left(\partial M_{m} ; V_{\rho}\right) \cong H_{2}\left(\partial M_{m} ; V_{\rho}\right) \cong H_{2}\left(M_{m} ; V_{\rho}\right) \cong V^{2 g+m-1}
$$

On the other hand, we have

$$
\begin{aligned}
H_{0}\left(\partial M_{m} ; V_{\rho}\right) & \cong H_{0}\left(M_{m} ; V_{\rho}\right) \oplus \oplus_{i=0}^{m} H_{0}\left(S_{i} ; V_{\rho}\right) \\
& \cong\{0\} \oplus V^{m+1-k} \\
& \cong V^{m+1-k}
\end{aligned}
$$

where k is the number of the solid tori with non-trivial 0-dimensional homology group. Hence we have

$$
k=2-2 g
$$

Because k is a non-negative integer, the genus $g=0$ or 1.
First we assume $g=0$; that is, $k=2$. In this case,

$$
\pi_{1} M=\left\langle q_{1}, \cdots, q_{m}, h \mid\left[q_{i}, h\right]=1, q_{i}^{\alpha_{i}} h^{\beta_{i}}=1, q_{1} \cdots q_{m}=h^{b}\right\rangle .
$$

Then we have

$$
\bigoplus_{i=0}^{m} H_{0}\left(S_{i} ; V_{\rho}\right) \cong V^{m-1}
$$

by Propositions 4.3 and 4.4. For simplicity, we may assume

$$
\operatorname{rank}\left(L_{i}-I\right)=0 \quad \text { for } \quad \forall i \in\{0, \cdots, m-2\}
$$

and

$$
\operatorname{rank}\left(L_{i}-I\right)=2 \quad \text { for } \quad \forall i \in\{m-1, m\}
$$

For $\forall i \in\{0, \cdots, m-2\}$, that is $L_{i} \in S L(2 ; C)$ is a parabolic element. On the other hand, from the relations of $\pi_{1} M$, we have

$$
L_{i}=Q_{i}^{\rho_{i}} H^{v_{i}}=Q_{i}^{\rho_{i}}=I
$$

Hence

$$
Q_{i}=I \quad \text { for } \quad \forall i \in\{0, \cdots, m-2\}
$$

and

$$
Q_{m-1} Q_{m}=I
$$

Hence the representation ρ is reducible because Q_{m-1} and Q_{m} have a common eigenvector.
Next we assume $g=1$; that is, $k=0$. In this case, we have

$$
\begin{aligned}
& \pi_{1} M=\left\langle a_{1}, b_{1}, q_{1}, \cdots, q_{m}, h\right|\left[a_{1}, h\right]= {\left[b_{1}, h\right]=\left[q_{i}, h\right]=1, } \\
&\left.q_{i}^{\alpha_{i}} h^{\beta_{i}}=1,\left[a_{1}, b_{1}\right] q_{1} \cdots q_{m}=h^{b}\right\rangle .
\end{aligned}
$$

Then we have

$$
\bigoplus_{i=0}^{m} H_{0}\left(S_{i} ; V_{\rho}\right) \cong V^{m+1}
$$

Then for $\forall i \in\{0, \cdots, m\}$

$$
\operatorname{rank}\left(L_{i}-I\right)=0
$$

and $L_{i} \in S L(2 ; C)$ is parabolic or trivial. On the other hand, we have

$$
L_{i}=Q_{i}^{\rho_{i}} H^{v_{i}}=Q_{i}^{\rho_{i}}=I
$$

Hence we have

$$
Q_{i}=I \quad \text { for } \quad \forall i \in\{0, \cdots, m\} .
$$

Then ρ factors through a representation of the group $\left\langle a_{1}, b_{1} \mid\left[a_{1}, b_{1}\right]=1\right\rangle$. Since this group is abelian, this representation is reducible. This is a contradiction.

Case 2: All A_{i}, B_{i}, Q_{i} are parabolic elements. In this case, we have

$$
Q_{i}=I \quad \text { for } \forall i \in\{0, \cdots, m\}
$$

Then we have

$$
\operatorname{rank}\left(\partial_{2}\right)=2 \text { or } 0
$$

for $C_{*}\left(M_{m} ; V_{\rho}\right)$. Hence

$$
H_{2}\left(M_{m} ; V_{\rho}\right) \cong \begin{cases}V^{2 g+m-1} & \text { if } \quad \operatorname{rank}\left(\partial_{2}\right)=2 \\ V^{2 g+m} & \text { if } \operatorname{rank}\left(\partial_{2}\right)=0\end{cases}
$$

By Poincaré duality and the exact sequence, we obtain

$$
H_{2}\left(M_{m} ; V_{\rho}\right) \cong H_{2}\left(\partial M_{m} ; V_{\rho}\right) \cong H_{0}\left(M_{m} ; V_{\rho}\right) \oplus V^{m+1}
$$

Then we get the genus $g=1$. Hence this representation ρ is reducible since ρ factors through the representation of the group $\left\langle a_{1}, b_{1} \mid\left[a_{1}, b_{1}\right]=1\right\rangle$ as in Case 1. This completes the proof of Proposition 5.1.

By the lemmas and the propositions, we get a proof of Main theorem.

References

[1] S. Akbulut and J. D. McCarthy, Casson's invariant for oriented homology 3-spheres, Mathematical Notes 36 (1990), Princeton Univ. Press.
[2] D. Johnson, A geometric form of Casson invariant and its connection to Reidemeister torsion,
unpublished lecture notes.
[3] T. Kitano, Reidemeister torsion of the figure-eight knot exterior for $S L(2 ; C)$-representations, Osaka J. Math. (to appear).
[4] J. Milnor, Two complexes which are homeomorphic but combinatorially distinct, Ann. of Math. 74 (1961), 575-590.
[5] J. Milnor, A duality theorem for Reidemeister torsion, Ann. of Math. 76 (1962), 137-147.
[6] J. Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966), 358-426.
[7] P. Orlik, Seifert Manifolds, Lecture Notes in Math. 761 (1972), Springer.
[8] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian manifolds, Adv. in Math. 7 (1971), 145-210.

Present Address:
Department of Mathematics, Tokyo Institute of Technology, Оh-okayama, Meguro-ku, Tokyo, 152 Japan.

[^0]: Received October 5, 1992

