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1. Introduction.

We will consider {F,},_, 5 ..., ,, a family of piecewise C?> mappings from an interval
I into itself. We denote by P, the Perron-Frobenius operator corresponding to F,:

J P, f(x)g(x)dx = J S (x)g(F(x))dx for feL! and geL>,
I I

where we denote by L! (resp. L) the set of integrable functions (resp. the set of bounded
measurable functions). We denote by Spec(F,) the spectrum of P, restricted to BV, the
set of bounded functions. Here, as usual, we consider BV as a subset of L! by taking
L!-version and the norm

V(f)=inf{the total variation of f': fis a L!-version of f 1+ J | f(x)|dx .
I

We assume that F, converges to F, in piecewise C* (the definition will be stated in §2).
In this situation, though P, converges to P, in L!, P, does not necessarily converge to
P, in BV. This means that general perturbation theories cannot be applied. Nevertheless,
using Fredholm matrix which is defined in [10], our main theorem (Theorem A) states
that Spec(F ) can be approximated by Spec(F,).

THEOREM A. Assume that
(1) each F, is a piecewise C*> mapping with positive lower Lyapunov number &,
(t=1,2,---, 00), '
(2) F, converges to F, in piecewise C'.
Then for z,, which satisfies |z, | <e*=, z' € Spec(F ;) if and only if there exists a sequence
{z.} such that z, converges to z and z; ' € Spec(F o)
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This theorem can be applied to calculate Spec(F ). Take piecewise linear Markov
transformations F, which converges to F_ in piecewise C!. Although the Perron-
Frobenius operator P, does not converge to P, in BV, this theorem states that Spec(F )
can be approximated by Spec(F,). Therefore we can approximate Spec(F ) easily ac-
cording to the facts:

(1) the Fredholm matrices of Markov mappings are much simpler than those of
non-Markov mappings because we need not to trace the orbits of the division points
of the partition,

(2) the Fredholm matrix of a piecewise linear mapping is a finite dimensional matrix.

Applying Theorem A also to the perturbation theory (cf. [7]), we can conclude:
(1) When the dynamical system becomes non-ergodic, then in the neighborhood of
the dynamical system there exist eigenvalues which are close to 1. Therefore, as n
tends to oo, [ f(x)g(F"(x))du— | fdu-[gdu oscillates with long period which decays
slowly to zero for fe BV and ge L™.

(2) When the dynamical system becomes non-mixing but still ergodic, then in the
neighborhood of the dynamical system there exist eigenvalues near the some rational
root of 1. Therefore, | f(x)g(F"(x))du— [ fdu- [ gdu oscillates with period nearly cor-
responding to the root and decays slowly to zero.

' We considered in [7] the perturbation theory for simple cases such as

(a) p-transformations for which the slopes decrease to 1, and

(b) unimodal linear transformations for which the slopes decrease to \/7.

The case (a) corresponds to the case (1) and the case (b) to the case (2).

Now we will summarize the results concerning piecewise C?> mappings. Let F be a
piecewise C? mapping from an interval I into itself. The spectrum problem of the
Perron-Frobenius operator P corresponding to the mapping F as an operator on L! is
rather trivial: for instance, the unit disk is contained in the spectrum of P (cf. [13]).
Hence, we restrict P to BV. This is quite natural, since on the unit circle the spectrum
of P as an operator on L! coincides with Spec(F) and most of the ergodic properties of the
dynamical system can be stated in terms of the spectrum on the unit circle of the
Perron-Frobenius operator P (cf. [6], [11]). Moreover, we can study the decay rate of
correlation of the dynamical system by Spec(F) (cf. for example [10]).

As proved in [3], all A such that |A|<e™™® are contained in Spec(F), where h(F)
is the topological entropy of F. Thus we only need to consider the spectra which satis-
fies | A|>e "¢, where ¢ is the lower Lyapunov number. (Note that ¢ equals h(F) when
the dynamical system is ergodic.)

In [10], we characterize them in terms of the Fredholm matrix &(z) and its trunca-
tion @p(2):

THEOREM B. Let z, be a complex number such that |z, | <e*. Then z5 ' belongs to
Spec(F) if and only if there exists a sequence {zy}%_, such that limy_  zy=2z, and
det(I — Dp(zy))=0.
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By Theorem B, we can also characterize Spec(F) by the zeta function {(z)
(Ruelle-Artin-Mazur zeta function) as follows:

THEOREM C. The reciprocal 1/((z) of the zeta function has analytic extension to
the domain {z : |z|<e*}, and

Spec(F)n{A:|A|>e ¢}={z"1 1 1/L(z)=0, |z|<e}.

The key points of these theorems are as follows (cf. [10]):

(1) Signed symbolic dynamics: The structure of the dynamical system can be gotten
by tracing the orbits of division points. To trace them, usual symbolic dynamics is
insufficient.

(2) Formal piecewise linear transformation: To define a Fredholm matrix, we need
piecewise linear transformations which approximates the transformation F, we
construct formal piecewise linear transformations on the symbolic dynamics where
F is realized.

(3) Renewal equation: This is a well-known notion in Markov processes. We define
the Fredholm matrix by constructing a renewal equation.

Roughly saying, the proofs of Theorem B and Theorem C can be proved as follows.

We consider a generating function of the form:

(. 000= 3. 2 | FeIalFGa)ax

= J{(I —zP)™ ! f(x)}g(x)dx ,

and construct a renewal equation of (f, g)(z). By this renewal equation we define a
Fredholm matrix &(z). The spectrum problem of P becomes first a problem of singularity
of (f, g)z), then by renewal equation it turns out to be an eigenvalue problem of the
Fredholm matrix, that is, if 1 is the eigenvalue of ®(z), then this shows z ! € Spec(F).
This is the main tool to prove Theorem A. These results will be summarized in §3.

2. Notations.

We will first state the notations and the conditions which the mappings F, must
satisfy. Let I be a bounded interval and each F, (t=1,2, -, o0) be a mapping from 7
into itself. There exists a finite set 4 which is totally ordered and the mappings {F,}
satisfy the following assumptions.

AssuMPTION (I) Each F,(t=1,2, - - -, o0) is piecewise C2: More precisely, for each
F,, there exists a partition {{a),},. , of I into subintervals with the index set 4 such that

(1) for a,be A such that a<b, an inequality x<y holds for any xe {a), and
ye<lb),
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(2) F, is monotone on each <{a),,
(3) F, can extend to cl{a), as C? function,
where clJ stands for the closure of a set J.

AssumpPTION (II) Thelower Lyapunov number &, correspondingto F,(1=1,2, - - -
00) is positive:

&, =liminf essinf llog | (FP)'(x)|>0.
I n

n— oo X€E

AssuMpTION (III) F, converges to F,, in piecewise C:
(1) The partition {{a),} converges to {{a),}, that is, for any ae 4

lim inf{x e (a),} =inf{xe<a),} ,

lim sup{xe{a),}=sup{xe<ad,}.
t— oo
(2) When x is not a division point of the partition {<a),}sc

lim F(x)=F o(x),

t— oo

lim F}(x)=F(x).

t— o0

(3) F/ is uniformly bounded:

sup esssup|F;(x)|<oo .
0<t<o xel

Note that by Assumption (II), we get for t=1,2,---, o0

essinf| F(x)|>0.
xel

Moreover, to avoid the notational confusion, we only treat, in this article, the cases
that F7(x) (n=>0) is not a division point (i.e. the endpoint of some {a),, ae A) for each
division point x of the partition corresponding to F,. Even for other cases, we can also
prove Theorem A just in a similar way. Note that the assumptions (I)(II) corresponds
to the conditions (A1)(A3) in [10], therefore each F, satisfy the theorems in [10],
which we will summarize in the next section.

Hereafter we fix p (e > <p<1) and consider z which satisfies | z| < 1/p.

The following lemma says that for sufficiently large ¢ each P, has only isolated
eigenvalues'in the domain {1 : | A|>e~ %=} (cf. [3]).

LEMMA 2.1. (1) There exist K,=K;(p) and t, such that for any t>t, and any n

esssup | (F7)(x)| ™' <K, p".
. xel
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(2) We also have

liminf £, > ¢ .

t— oo

ProoOF. Take >0 so small that p—25>e~*®. Then from the definition of &,
we can take K, (o) such that for any »

[(F%) |71 <Ky(00)(p—20)" .
Take N sufficiently large and ¢ sufficiently small such that
K (c0)ef(p—28)<(p—9S)V .

Then for any n> N, we get

essinf log | (F?)(x) | > essinf log | (F¥Y(x) | +essinf log | (F* V) (x)|
xel xel xel

<m<N-

> I:__n_] essinflog|(FN)(x)|+ inf essinflog|(F™)'(x)]|.
pJ xel 1 1 xel
Therefore

1 . 1 .
—essinf log | (F?Y(x)| > N essinf log | (FYY(x)|+ R(n) ,
I xel

n xe

where

R(n)=iin {([—n—:l——n—)essinflog|(F§")’(x)|+ inf essinflog|(F;")’(x)|}.
A[ xel . 1 xel

n : N <m<N-1

Hence for sufficiently large 7, we get

1 . .
—essinf log | (F?)'(x) | > —Itf— {essmf log | (FN)(x)|— s} + R(n)
n xel { xel.

>~ {log K\ (0)p ~ 201 +2} + R(o)

> —log(p—90)+ R(n).
Since R(n) converges to 0 as n— oo, there exists a constant K, such that
esssup | (F7)(x)| ™' <Ky p" .
xel
This proves (1). The assertion (2) follows from (1).

LEMMA 2.2. The following constant K, is bounded:
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esssup | Fy(x)|
xel

K, =limsup

t— o0

-
(essin_f | Fy(x) |>
xel

ProOOF. The boundedness of K, follows from the C' convergence of F, to F,, and
the uniform boundedness of | F;'(x)|.

2.1. Alphabets, words and sentences. We will define several notations which are
almost the same as in [9], [10]. We call each element a€ 4 an alphabet. For an alphabet
a, we set

—— 7
sgna=sgnF, L.m(a)t

_ { + if F(x)>0 for xeint{a),,
- if Ff(x)<0 for xeint{a),,
where int J is the interior of a set J. This definition does not depend on the parameter .

A finite sequence of alphabets will be called a word and for a word w=a, - - ay
(a;e A) we denote

|wl=N (the length of w),
w[K]=ag (1<K<N),
Wly=a, - ay (1I<M<N),

N
sgnw=[] sgna;,
i=1

0w=a2 "'aN.

We denote the empty word by ¢ and define |¢|=0, and sgne= +.
We call an infinite sequence of alphabets a=a,a, - - - a sentence and denote the
N-th coordinate by

«[N]=ay,
the initial N-word by
[cly=a, - - ay,
and the shifted sequence by
Ox=ajza, - - .

For words u=a,---ay, v=b,---by, and a sentence a=cc, -, we denote
u-v=a, --ayb, ---byandu-a=a; ---aycic, " .

We introduce orders in the following way. For x, yel, by the expression x <,y
(ce{+, —}) we mean x<y if 6=+ and x>y if 6= —. We also use this expression
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for alphabets, words and sentences in a natural way.
(i) For words w,, w,,

wy<w, if [w,ly=[w,]y and w,[N+1] <,w,[N+1] for some N,

where o =sgn[w,]y.
(i) For sentences a,, ay,

oy <, if [o; ]y <[,]y for some N .

Until now, the notations mentioned above do not depend on the parameter ¢. Now let
for a word w=a, - - - ay

N
<W>t= ‘Ol Ft—i+ 1(<ai>t)

and for a sentence «

a0

{a}e= () elKledn: -

Thus {w), (resp. {«},) is the subinterval (resp. the point) corresponding to a word w
(resp. a sentence «) with respect to the mapping F,.

We denote by Wy = A" the set of all words with length N and set W= Un=o Wn
where W,={e}. We denote by S the set of all sentences. By the assumption §,>0 the
set {a}, consists of exactly one point if {a},# . In [10], we restrict Wy, W and S the
set of words or sentences for which {w), # & or {a}, % &. But in our situation, we need
to consider w or a for which {w),= Q and {a},= &, because the symbolic dynamics
may change with F,.

2.2. Plus and minus ekpansions. As we discussed in [9], [10], the structure of
the dynamics becomes much clearer if it is considered on the signed symbolic dynamics.
In [10], we did not treat signed words & for which {&} = . But for later use, we need
to define such signed sentences. Thus we slightly change the definitions, nevertheless
the results in [10] still hold in our new definitions.

For each x e I, we define a sentence of =afa3- - - €S, called the expansion of x, by
the condition F;™(x)e (a7, for all i. Then, x={«F}, since &>0. For a sentence a we
consider signed sentences a*, «~ and denote by S the set of all signed sentences. We
can consider Fas a shift operator on S. We define for a sentencexe Sand s € {+, -}

) o} _{sup{xe(a[l]),} if o>sup{e: xe<a[11),},
* linf{x e (a[1]D,} if a<inf{of: xea[11),},

(2) otherwise

(o) _{sup{xel: af<a’, f[1]=0af1]} if o=+,
" linf{xel: &¥>a°, of[1]=a[1]} if o=—,
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where we consider the topology on S induced from the order. Note that if {a},# &,
then {a’}, equals {a}, as an expansion.
We can define F, on S

lim  Fj(x) if a>sup{oy: xe{a[1]),},
(3) F;(aa) = xtsup<a[1]).
lim Ffx) if a<inf{er: xe<a[11>,),

xlinfla[1]),

(4) otherwise

lim F)(x) if o=+,
xt{a}e

Fya%)=
lim Fj(x) if o=—.
x| {a%}e
We define order on § by
(1) if a<$, then o’ <f* (0, 7€{+, —}), and
2 at<a".
The condition (2) may seem unnatural, but as we explained in [10], when a™* (resp.

a”) is realized by some F,, then a* (resp. ™) is the limit of the expansion of the points
from below (resp. upper).

We also consider w* and w™ for we U -, W~ and we define [w* |=|w™ |=|w|.
We denote

Wy={w’:|w|=N,oe{+, -1},
W= U WN 9
© N=1
A=W,={a": aed,ce{+, —}},
and by we W (&€ 8) we denote w* or w™ (a* or a~), respectively. We can naturally
identify w* with sup{a* €§': [a];,,,=w}, and w™ with inf{a~ €§: [a],,,=w}. Let
eW)=¢(@’)=0 oce{+, -},
and we call e(w’) and e(a°) the sign of w’ and «°. We also use the convention
e(0"x”) =¢&(0"w?) =0, when such an expression appears in below.

LEMMA 2.3. F(&) converges uniformly to F' (d).

PrOOF. For any we W, we extend the map F!*!| !, which is the inverse map of
F!*! restricted to {(w),, as follows:

(1) If there exists y e {w), such that F}*!(y)=x, then we put FI*!|-1(x)=y.

(2) Otherwise,
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wl j—1 — {W+}t if FLW|(w+)<sgnwx
{0 o

Then for any x, x'eI and a word w=a, ‘- a,

| Fply () = Fola ) = Frl o W) = Fily {00 1+ FEL M) — FRo L ()|

=< sup |EYO) ™ =" |+ Fr ™ g, (Fula ' 0) — Fog g, (Fola, ()|

yed{w)e
<Kp"|x=x"|+|F; 7 gt () —Fi - (x|
where x; =F |, '(x) and x} =F,|, '(x). Hence we inductively get

P~ Pl ) <Ky | x—¥ [+ wSHpPY

where

A(t) =sup sup |Fla ') —Fola ')l

acA yel

Since for d=aja, - -

@he U {iw=a, e},
pelan+1de
and A(t) converges to 0 as ¢ — co, this shows that {d}, converges uniformly to {&}, as
t — c0. Then by continuity, it follows, if {&} ., € (&[1]),

| F&) — Fo(@)| = Fi({&})— F'o({8} )|
<|Fi{&}) — Fi{&} ) | +| Fi{&} ) — Fo({8} ) |
sigglF;'(x)ll{a}, { o |+ F{8} o) — F({8} )| »

and other cases can be shown in a similar way. This proves the lemma.

3. Fredholm matrices and Perron-Frobenius operators.

In this section, we fix ¢t (t=1,2, - -, 00) and omit the suffix ¢ and by F, P, we ex-
press F,, P, and so on.

In [10], we characterize the spectrum Spec(F) of the Perron-Frobenius operator P
associated with the piecewise C?> mapping F by eigenvalues of the Fredholm matrix
&(z), and using this result, we also characterize Spec(F) by singularities of the zeta
function {(z). These results are the main tools in the next section. The outlme of [10]
is as follows (for details, refer to [10]):

For a word we W, we consider a generating function for ge L®
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0= 5 2 [1etreas, \

where 1, is the indicator function of {w). Then by expressing this on the signed symbolic
dynamics, we get the renewal equation of the following form (the precise definitions
will be given afterwards):

(I-P(@2)s2)=x,(z) (9eL™).

Hence, the spectrum problem of the Perron-Frobenius operator now turns into the
spectrum problem of the Fredholm matrix &(z) and we get the results which we mentioned
in the introduction (Theorems B and C).
Now we will pick up the notations in [10] which we need in this article.
(1) Definition of &(z): Set for Ge8S or e W, and e W
¢(&, ) ={(Fj,) ™" —(Fiy)-1) =100l v|> U@I}E1] - 5){0[F <()0&] —1/2} ,

where Fy is a formal “derivative” which depends on first N coordinates defined by
F([&x)—F([ay)
Lebes{[&1n)

where LebesJ is the Lebesgue measure of a set J and for a statement L

M@=

b

SLL] ={1 if L is ?rue ,
0 otherwise ,
and
@)= { adeS
mm{K {&}={w}, we Wy} deW.

Then tracing the orbits of the division points of the partition, we define an infinite
dimensional matrix &(z)=®(z; F) on W=\ . W, corresponding to the mapping F by

Y. "*UFY(@) T e(0ma, 9)  if {@) is a division point ,
D(2)z,5=1{ n=0

z(ii, D) otherwise .

We express by @y(z) the truncation of &(2) to the index set U
(2) Definition of s,(z): Let for geL® and Ge8§ or Gde W

sg=s;‘(z;F)
= f dxg() Y. Z™[(F™Yw-x)| " a(@{SIw - x < {&}]—1/2}
weW
w)#Q

-olwl1]=a[1], {(Ow)- "} # ],
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and s,(2)=(sDzc w-
(3) Definition of y,(z): Let for ge L® and deS or Ge W
x(@, x)=e@ {o[x<{a}]1—1/2},

Qa0

Y Z(F"Y(&) ! jdx g(x)x{0"a, x) if {&@} is a division point,

n=0

Xg(2)=
de g(x)x(&, x) otherwise ,

and 2,(z)=(2(2))ac w-
LemMMA 3.1. (1) For a word ue W, we get
s;(z)=s;+ +sp .
(2) For u such that the both {u°} are not division points for ce{+, —}, we get

@+ (@)= g(x)dx .
{u)

Proor. The proofs of (1) and (2) are found in Lemma 3.1 and (3.3) of [10],
respectively.

(4) Definition of %(z ; F):  We denote by # the space of vectors s =(s%);e w (s’ C)
which satisfies the following (i)—(iii).
(i) The components of s satisfy the relations

(@) s* = g(D)s°

whenever {ii} ={7} and a[1]=19[1], that is, i and ¥ express the same point with same
first alphabet. :
(ii) The following limit exists for &€ S, and coincides with s* if d=de w:

sf= lim g(a)s!®¥
N—-oo

= — lim g(@)s1O¥ ,
N—- oo

where [41% = {[d1x}".
(iii) Isl=slo+lsl,<co,

where

s llo=sup |s”],
we W

I'sll,=_sup [{f;s>],
V=1
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. dx
S s)=limsu M_S"
o5 N—»oop .,ezu;,v Lebes{u)

We also use the following norm for O0<r<1

Isl,=sup sup {|s®+s?|r": [&]y=[Fly and e@e(B)=—}.
N=>14 fel

We get the relations of the norm:

LEMMA 3.2 (Lemma 4.2 in [10]). (1) If |s2)ll,<o0 for geL®, then
I 54(2) Il < 00.
2) Iflsl,<oo for some O<r<]1, then || s|,< co.

Now let %(z ; F) be the set of s=(s%)e # which satisfies:
u__ i —1 6u
W) sup |s*—z| Fj, (w)]|™"s™| <
ueW Lebes{u)

where s“=s"" +s*" and s%=3s@W" 4 5O~
(5) Definition of &': Let

X=%(z; F)={x(2): ge L~} .

oo,

For a vector s=y(z) € Z, we define norm by
Isleo=1x%2)lc=1lg I|w=eSSS}1P lg(x)| .

Then we get from the definitions:

THEOREM 3.3 ([10]). (I—¥(2)) is a bounded operator from B(z; F) to ¥(z; F) if
lz|<7/p.

The proofs are found in Proposition 4.4 [10].

Then the spectrum problem of the Perron-Frobenius operator can be expressed in

terms of the Fredholm matrix, and one of the aim of [10] is to prove the following
theorem.

THEOREM 3.4 (Theorem 6.3 in [10]). For |z|<é®, the following statements are
equivalent:

(1) z~'eSpec(F),

(2) (I—®y(2))"! is unbounded.

To prove this theorem, we need the following lemmas.

LEMMA 3.5 (Lemma 6.2 in [10]). Suppose that z~' ¢ Spec(F) and there exists
S€B(z; F) such that (I — ®(2))s=y,(2), then s*" +s*~ =sy(z) for any ue W.
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LemMMA 3.6 (Lemma 6.4 in [10]). If (I—®x(z)) ' is unbounded, then there exists
se€%B(z; F) such that | s||=1 and (I —®(z))s=0.

LemMA 3.7 (cf. the proof of Lemma 6.5 in [10]). Suppose that (I —Dp(2) " is

bounded, then there exists s€ B(z; F) such that |s|,<oo for some 0<r<1 and
(I — P(2))s =1,4(2)-

LemMma 3.8. (1) For sep,
{&(2)s}"
z lim Y Fyw[119) " Y{o[v* <,u08]—1/2}{s"" +5""} ii¢A,

N—o ve WN

$ lim Y (FY @ Fywlnld) {005 <qm 0" —1/2}s°
n=1N~w 5y

8
m
AN

(2) Let $=(I1—®(z))s for s€ B. Then §e€ & and for deAd
§3=Y z'e(@F™@ ' lim §%,
n=0 i —0ra
where for ii which appears in lim; _, gnz {#i} is not a division point.
(3) For s such that || s|,<oo and |z|<r/p,

I —D@)s | <K Ky(1—|z|p)"'A=1)"" s, /p .
Proor. (1) For iie W such that {ii} is not a division point,

{D(2)s}i=z Z (i, 9)s’®

N

=z lim ) Y o, d)s’

N-ow k=1 ge

N

=zlim ) Y {(Fj,)" ' —Fly,-0)7 ollv|>I@1}@EL]- D)

N=o k@) e Wk

(O[5 <, 081 —1/2}5°

=z lim Y, (Fy) '@[1]-9{s[s

< . 0i]—1/2}s%.
N-=o je WN 8(u) ] / }
Since 6[v" <, 0d]=0[v" <, 0] if |#|<N, we get the proof of (1) for the case i
which is not a division point. The proof of another case is almost the same.
(2) For i which is not a division point and &(#) = &(d),
Y Fy@~t lim g7

n=0 i—0"a
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=3 Y@ lim (s“—z lim Y FM“[IJﬁ)_l{é[ﬁﬁa(a)oﬁ]—1/2}56)

@ —0"a N-o 5e Wy

=3 AFY@-! lim (s“_z lim Y e@Fy@[119)" {6[F<0d]—1/2}s’
n=0 N

ii—0"a N-ow 5o,

—zF'(G)~* s“)

N-w ve WN

= i z"(F")'(a)-l(s""ﬂ— im ¥ s(&)F}.,(a[n]ﬁ)“{é[ﬁ<0"+1&]—1/2}s'7>

— i Zne(&')(Fn)/(a-)—lsO"&
n=1
=s—{d(z)s}?=484%.

Thus we get the proof of (2).
(3) For i such that {@i} is not a division point, we get from (1)

{D(z)s}" = P}im z Y, Fyu[1]o)~{s[v* <081 —1/2}(s*" +5°7)

—“®© peWn

=1lim z Y Fy@[1]0)"{6[v* <,u00]—1/2}s"

N—-wo peWy

= lim X[N] .

N—=wo
Then, we get by Lemma 2.2

IXIN]=xIN—1]|=| 3 z{(F¥)~'—(Fy_1)" ' }ul1] - 0){0[v <, 081 — 1/2}s*

veWn

<lz| Y, K,Lebes{v)|s"|

IJEWN

<K,”|sl./p,
and this shows
1{®(z)s}? | <K,(1—1) " |Isl,/p .

In a similar way, using Lemma 2.1, we get | z"(F"))~!| < Kr". Therefore by (2) we get
the evaluation for & when {i} is a division point. This proves (3).

The outline of the proof of Theorem 3.4 is as follows:
If (I — ®x(z)) ! is unbounded, then by Lemma 3.6, there exists se%B(z ; F) such that
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| s|l=1and (I — ®(z))s=0. Suppose that z~! ¢ Spec(F). Then by Lemma 3.5, s*” +s*" =0
for all ue W. Therefore by Lemma 3.8 (1)

{U—D(2)s}i=5"—(D(2)s)z=5""

Hence we get s=0. This is the contradiction. Hence if (I — ®,(z)) ! is unbounded, then
z~ Y e Spec(F). On the contrary, if (I —®,(z)) ! is bounded, then by Lemma 3.7, there
exists se #(z ; F) such that || s ||, < oo and (I — ®(z))s =y,(2). Since the eigenvalues of the
Perron-Frobenius operator is isolated in |z|>e %([3]), ¥={z: (I—DPy(z) ! is
unbounded} is also isolated. At the same time, s5,(z ; Fy) converges to s,(z; F)in |z|<1,
this shows the existence of s,(z; F)e%(z; F) in ze%. Therefore, if (I—®x(z))” s
bounded, for any fe BV, there exists

f{(l —zP)™ ! f(x)}g(x)dx = ZW Csyz; F),

where f(x)=Y ., C,1(x) and ¥, _, | C,|r!*! < co. This proves the theorem.

4. The proof of Theorem A.

We need the following theorem for the proof of Theorem A.

THEOREM 4.1.

n(z; Fy=limsup inf sup | s, z; F)l,

t—+o 0<r<l1 |g|=1
is bounded in some neighborhood of z (| z, | <€®), if and only if z_,' ¢ Spec(F ).
We will prove Theorem 4.1 after the proof of Theorem A.

ProoF oF THEOREM A. Since the eigenvalues of the Perron-Frobenius operator
P, has no accumulation point in |z|<e*= (cf. [3]), n(z; F) is uniformly bounded in
wider sense in the domain 2={z:|z|<e*~, z7 ' ¢Spec(F,)}. Moreover s,z; F,)
converges to s,(z; F,) as t — co in the unit disk, therefore the above convergence still
holds with respect to || - ||, for-some r in the domain 2. Let for fe BV

(f.oke: F)= X 2" | S(aFIE0)ds

~ f (U—zP)" f(0)}g()dx
I

=2 C,s}(z; F),
weW

where f=)  _, C,l,. Note that for fe BV there exists a decomposition such that
f=Y.,..wCuwl, satisfies > __|C,Ir'*'<oo for any O<r<1 (cf. [10]). Therefore
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(f,9Xz; F) is bounded in wider sense and (f, g)z; F,) converges to (f, gXz; F) as
t—oo in the domain 2. Therefore by Rouché’s theorem, for any U such that
(f>9)z; F)#0 on dU the number of singularities of (f, gXz; F,) in U equals that of
(f, 9)(z;; F ) for sufficiently large r. Now suppose that z ! € Spec(F ). Then there exists
JS€ BV such that (f, gXz; F,) has a singularity at z,, for some ge L. Therefore in any
neighborhood U of z,,, there exists a singularity of (f, g)z ; F,) for sufficiently large ¢.
This proves the existence of a sequence {z,} such that z, converges to z,, and z,” ! € Spec(F)).
On the contrary, if z* ¢ Spec(F ), then || s,(z ; F,) ||, is bounded in some neighborhood
U of z,, for some r. Therefore (f, gXz ; F) has no singularity in U for any fe BV and
(f, 9}z ; F,) has also no singularity in U for sufficiently large z. Hence there exists no
z,€ U such that z;” € Spec(F,). This completes the proof of Theorem A.

PROOF OF THEOREM 4.1. We only need to show:

(1) if n(z; F) is unbounded in any neighborhood of z_, then there exists se%#B(z; F,)
such that s#0 and (I—®(z; F_))s=0,

(2) if n(z; F) is bounded in some neighborhood of z, then for any ge L* there exists
S(z; Fo)e®B(z; F).

Because if there exists se #(z; F,) such that s#0 and I—&(z; F ©))$=0, and
if we assume that z~ !¢ Spec(F), this contradicts Lemma 3.5. Therefore if n(z; F) is
unbounded, then z~! € Spec(F ;). On the contrary, if Sz, F,)e®B(z; F,), then (f, g)z)
exists for any fe BV. Therefore z~* ¢ Spec(F ).

Now we will prove (1). From the assumption, there exist sequences {z,} and {g,}
such that

(i) limz=z,,
“t=— o0

() g.eL®, lim|g,|,=0 and inf |s,(z;F)|,=1.
t—* o0 0o<r<1

Then there exists a subsequence, which we also denote with suffix t, such that there
exists a limit

sk =lim s¥(z; F)  for any we W,
t— oo

and by (i) it follows s, #0. It also holds || s, ||,<1, because for o, B* such that
a” <B* and [a”]y=[B"1y

|s% +sB' |=’lim |85, (z; F)+sb'(z; F))|
=
<rVlim | s, (z; F)|, .
t—

Then by Lemma 3.2, we get || s, ||, < 0. Thus we only need to prove
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(I_¢(Zoo > Foo))soozo .

Let se %(z ; F) such that | s|,<co0. Then for @ such that {ii}, is not a division point

of the partition, since {ii}, is not also a division point for the partition corresponding
to F, for sufficiently large 7, we get

M [P F)—P(z, 5 Fo)ls)*

=lim Y [z,F, yu[1]-0)" ' =z F, y@[1]-v)" 1]

N-w lv|=N

{olvT < . 03] —1/2}(s°" +5°7)

&(fd)
=lm Y (z,—z,)F; yu[1]-0) " {0[0" <001 —1/2}(s"" +5°7)

N—- oo Ipl:N

+1lim Yz [F, yu[1]:0)" ' —F, yu[1]-v)" 1]

N-w |p|=N
0" <,00]—1/2}(s*" +5°7).
Now we will show (#) tends to 0 as t —» co. By Lemma 3.8 3),
| the first term of the right hand term of ()|

24— 2y 24— 2y

{¢(Zt 5 Ft)s}ﬁ

:

KK, | sll{t—r)"".

t t

Therefore this term converges to zero as t — co. To prove the second term of the right
hand term of (¥) converges to 0, let

y[N]=| ZN Zo | Fi nul1] " 0) |71 —| Fo pu[1]0)|"1]

v|=
{0[v" <,50d]—1/2}(s*" +5°7).
Then the second term of (#) equals limy_, , y[N]. We get
yIN +1]—-y[N]

= Y 2,{0[v" <uu0d]—1/2)("" +5°)

lv|=N+1
"L Fe wa @11 0) |7 =] F; pu[1] - 0)|™Y)
—( Fo,n+1[1]-0)| 7' —| Fiy yu[1]-v)|~1)]

= Z Zw{5[1)+ S_e(,;)eﬁ]—-l/Z}(s"+ +Sv—)

|lv|=N+1
: ’(F;,N-l-1F;,NF,00,N+1F,00,N)(u[1] : U)l_l
N{Fo—F)ys1—Fo—F )y} Fi nFly xNul1] - v)
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+(Fon—Ft W{(Fin—Fi n+1)F o 5
+F:,N+1(F100,N_F:=0,N+1)})(u[1] ‘v)]|.

Then |(s*" +5°7)|<| s |, and noticing for example

| Foo,n—Foo w41 (u[l] ") <sup | Foo(x)| LebesCu[1] - v) ,

we get lim,_,  (the second term of (#))=0. Therefore (#) tends to 0 as t — co. Now

(I_q)(zoo 5 Foo))soo

=lim {(I_¢(zt; Ft))sg,(zt; Ft)+(¢(zt; Ft)—¢(zw > Foo))sg,(zt; Ft)

t— o0

+¢(zoo > Foo)(sgt(zt; Ft)_soo)}
=0.

By Lemma 3.8 (2), we can prove (1) for & which is not a division point. This proves (1).

Since Spec(F ) has no accumulation point in | z| <e®=, the set of z which satisfies
the condition (1) has also no accumulation point. Therefore, as in the proof of Theorem
3.4, since n(z ; F) is uniformly bounded in wider sense in 2 and si(z ; F,) converges to
sdz; F) in the unit disk for any d@eS, we can prove

(i) sXz; F,) converges to s¥z; F,) in 2,

(ii) for any &, f which satisfies (&, f)= & we get

e(@)si(z; Fo)=e(B)skz; Fo),

(iii)) |l s (z; Fo)ll, is bounded for some 0<r<1.
Thus s (z; F,)e%(z; F,). This proves (2), hence the theorem is proved.
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