On the Convergence of the Spectrum of Perron-Frobenius Operators

Makoto MORI

National Defense Academy (Communicated by Y. Ito)

1. Introduction.

We will consider $\{F_t\}_{t=1,2,\dots,\infty}$ a family of piecewise C^2 mappings from an interval I into itself. We denote by P_t the Perron-Frobenius operator corresponding to F_t :

$$\int_{I} P_{t} f(x)g(x) dx = \int_{I} f(x)g(F_{t}(x)) dx \quad \text{for } f \in L^{1} \text{ and } g \in L^{\infty},$$

where we denote by L^1 (resp. L^∞) the set of integrable functions (resp. the set of bounded measurable functions). We denote by $Spec(F_t)$ the spectrum of P_t restricted to BV, the set of bounded functions. Here, as usual, we consider BV as a subset of L^1 by taking L^1 -version and the norm

$$V(f) = \inf\{\text{the total variation of } f: f \text{ is a } L^1\text{-version of } f\} + \int_I |f(x)| dx$$
.

We assume that F_t converges to F_{∞} in piecewise C^1 (the definition will be stated in §2). In this situation, though P_t converges to P_{∞} in L^1 , P_t does not necessarily converge to P_{∞} in BV. This means that general perturbation theories cannot be applied. Nevertheless, using Fredholm matrix which is defined in [10], our main theorem (Theorem A) states that $Spec(F_{\infty})$ can be approximated by $Spec(F_t)$.

THEOREM A. Assume that

- (1) each F_t is a piecewise C^2 mapping with positive lower Lyapunov number ξ_t $(t=1,2,\cdots,\infty)$,
- (2) F_t converges to F_{∞} in piecewise C^1 .

Then for z_{∞} which satisfies $|z_{\infty}| < e^{\xi_{\infty}}$, $z_{\infty}^{-1} \in Spec(F_{\infty})$ if and only if there exists a sequence $\{z_t\}$ such that z_t converges to z_{∞} and $z_t^{-1} \in Spec(F_t)$.

Received January 13, 1992 Revised September 18, 1993 This theorem can be applied to calculate $Spec(F_{\infty})$. Take piecewise linear Markov transformations F_t which converges to F_{∞} in piecewise C^1 . Although the Perron-Frobenius operator P_t does not converge to P_{∞} in BV, this theorem states that $Spec(F_{\infty})$ can be approximated by $Spec(F_t)$. Therefore we can approximate $Spec(F_{\infty})$ easily according to the facts:

- (1) the Fredholm matrices of Markov mappings are much simpler than those of non-Markov mappings because we need not to trace the orbits of the division points of the partition,
- (2) the Fredholm matrix of a piecewise linear mapping is a finite dimensional matrix.

 Applying Theorem A also to the perturbation theory (cf. [7]), we can conclude:
- (1) When the dynamical system becomes non-ergodic, then in the neighborhood of the dynamical system there exist eigenvalues which are close to 1. Therefore, as n tends to ∞ , $\int f(x)g(F^n(x))d\mu \int f d\mu \cdot \int g d\mu$ oscillates with long period which decays slowly to zero for $f \in BV$ and $g \in L^{\infty}$.
- (2) When the dynamical system becomes non-mixing but still ergodic, then in the neighborhood of the dynamical system there exist eigenvalues near the some rational root of 1. Therefore, $\int f(x)g(F^n(x))d\mu \int fd\mu \cdot \int gd\mu$ oscillates with period nearly corresponding to the root and decays slowly to zero.

We considered in [7] the perturbation theory for simple cases such as

- (a) β -transformations for which the slopes decrease to 1, and
- (b) unimodal linear transformations for which the slopes decrease to $\sqrt{2}$. The case (a) corresponds to the case (1) and the case (b) to the case (2).

Now we will summarize the results concerning piecewise C^2 mappings. Let F be a piecewise C^2 mapping from an interval I into itself. The spectrum problem of the Perron-Frobenius operator P corresponding to the mapping F as an operator on L^1 is rather trivial: for instance, the unit disk is contained in the spectrum of P (cf. [13]). Hence, we restrict P to BV. This is quite natural, since on the unit circle the spectrum of P as an operator on L^1 coincides with Spec(F) and most of the ergodic properties of the dynamical system can be stated in terms of the spectrum on the unit circle of the Perron-Frobenius operator P (cf. [6], [11]). Moreover, we can study the decay rate of correlation of the dynamical system by Spec(F) (cf. for example [10]).

As proved in [3], all λ such that $|\lambda| < e^{-h(F)}$ are contained in Spec(F), where h(F) is the topological entropy of F. Thus we only need to consider the spectra which satisfies $|\lambda| > e^{-\xi}$, where ξ is the lower Lyapunov number. (Note that ξ equals h(F) when the dynamical system is ergodic.)

In [10], we characterize them in terms of the Fredholm matrix $\Phi(z)$ and its truncation $\Phi_N(z)$:

THEOREM B. Let z_0 be a complex number such that $|z_0| < e^{\xi}$. Then z_0^{-1} belongs to Spec(F) if and only if there exists a sequence $\{z_N\}_{N=1}^{\infty}$ such that $\lim_{N\to\infty} z_N = z_0$ and $\det(I - \Phi_N(z_N)) = 0$.

By Theorem B, we can also characterize Spec(F) by the zeta function $\zeta(z)$ (Ruelle-Artin-Mazur zeta function) as follows:

THEOREM C. The reciprocal $1/\zeta(z)$ of the zeta function has analytic extension to the domain $\{z: |z| < e^{\xi}\}$, and

$$Spec(F) \cap \{\lambda : |\lambda| > e^{-\xi}\} = \{z^{-1} : 1/\zeta(z) = 0, |z| < e^{\xi}\}.$$

The key points of these theorems are as follows (cf. [10]):

- (1) Signed symbolic dynamics: The structure of the dynamical system can be gotten by tracing the orbits of division points. To trace them, usual symbolic dynamics is insufficient.
- (2) Formal piecewise linear transformation: To define a Fredholm matrix, we need piecewise linear transformations which approximates the transformation F, we construct formal piecewise linear transformations on the symbolic dynamics where F is realized.
- (3) Renewal equation: This is a well-known notion in Markov processes. We define the Fredholm matrix by constructing a renewal equation.

Roughly saying, the proofs of Theorem B and Theorem C can be proved as follows. We consider a generating function of the form:

$$(f,g)(z) = \sum_{n=0}^{\infty} z^n \int f(x)g(F^n(x))dx$$
$$= \int \{(I-zP)^{-1} f(x)\}g(x)dx,$$

and construct a renewal equation of (f, g)(z). By this renewal equation we define a Fredholm matrix $\Phi(z)$. The spectrum problem of P becomes first a problem of singularity of (f, g)(z), then by renewal equation it turns out to be an eigenvalue problem of the Fredholm matrix, that is, if 1 is the eigenvalue of $\Phi(z)$, then this shows $z^{-1} \in Spec(F)$. This is the main tool to prove Theorem A. These results will be summarized in §3.

2. Notations.

We will first state the notations and the conditions which the mappings F_t must satisfy. Let I be a bounded interval and each F_t $(t=1, 2, \dots, \infty)$ be a mapping from I into itself. There exists a finite set A which is totally ordered and the mappings $\{F_t\}$ satisfy the following assumptions.

ASSUMPTION (I) Each F_t $(t = 1, 2, \dots, \infty)$ is piecewise C^2 : More precisely, for each F_t , there exists a partition $\{\langle a \rangle_t\}_{a \in A}$ of I into subintervals with the index set A such that (1) for $a, b \in A$ such that a < b, an inequality x < y holds for any $x \in \langle a \rangle_t$ and $y \in \langle b \rangle_t$,

- (2) F_t is monotone on each $\langle a \rangle_t$,
- (3) F_t can extend to $cl\langle a \rangle_t$ as C^2 function, where clJ stands for the closure of a set J.

Assumption (II) The lower Lyapunov number ξ_t corresponding to F_t ($t = 1, 2, \dots, \infty$) is positive:

$$\xi_t = \liminf_{n \to \infty} \operatorname{essinf} \frac{1}{n} \log |(F_t^n)'(x)| > 0.$$

Assumption (III) F_t converges to F_{∞} in piecewise C^1 :

(1) The partition $\{\langle a \rangle_t\}$ converges to $\{\langle a \rangle_{\infty}\}$, that is, for any $a \in A$

$$\lim_{t\to\infty}\inf\{x\in\langle a\rangle_t\}=\inf\{x\in\langle a\rangle_\infty\}\;,$$

$$\lim_{t\to\infty} \sup\{x\in\langle a\rangle_t\} = \sup\{x\in\langle a\rangle_\infty\}.$$

(2) When x is not a division point of the partition $\{\langle a \rangle_{\infty}\}_{a \in A}$,

$$\lim_{t\to\infty} F_t(x) = F_{\infty}(x) ,$$

$$\lim_{t\to\infty} F_t'(x) = F_\infty'(x) .$$

(3) F_t'' is uniformly bounded:

$$\sup_{0 \le t \le \infty} \operatorname{ess\,sup} |F_t''(x)| < \infty.$$

Note that by Assumption (II), we get for $t = 1, 2, \dots, \infty$

$$\operatorname{ess\,inf}_{x\in I}|F_t'(x)|>0.$$

Moreover, to avoid the notational confusion, we only treat, in this article, the cases that $F_t^n(x)$ $(n \ge 0)$ is not a division point (i.e. the endpoint of some $\langle a \rangle_t$, $a \in A$) for each division point x of the partition corresponding to F_t . Even for other cases, we can also prove Theorem A just in a similar way. Note that the assumptions (I)—(II) corresponds to the conditions (A1)—(A3) in [10], therefore each F_t satisfy the theorems in [10], which we will summarize in the next section.

Hereafter we fix ρ ($e^{-\xi_{\infty}} < \rho < 1$) and consider z which satisfies $|z| < 1/\rho$.

The following lemma says that for sufficiently large t each P_t has only isolated eigenvalues in the domain $\{\lambda : |\lambda| > e^{-\xi_{\infty}}\}$ (cf. [3]).

LEMMA 2.1. (1) There exist $K_1 = K_1(\rho)$ and t_0 such that for any $t \ge t_0$ and any n

$$\operatorname{ess\,sup}_{x \in I} |(F_t^n)'(x)|^{-1} < K_1 \rho^n.$$

(2) We also have

$$\liminf_{t\to\infty}\xi_t\geq\xi_\infty.$$

PROOF. Take $\delta > 0$ so small that $\rho - 2\delta > e^{-\xi \infty}$. Then from the definition of ξ_{∞} , we can take $K_1(\infty)$ such that for any n

$$|(F_{\infty}^n)'|^{-1} < K_1(\infty)(\rho - 2\delta)^n$$
.

Take N sufficiently large and ε sufficiently small such that

$$K_1(\infty)e^{\varepsilon}(\rho-2\delta)^N<(\rho-\delta)^N$$
.

Then for any n > N, we get

$$\operatorname{essinf}_{x \in I} \log |(F_t^n)'(x)| \ge \operatorname{essinf}_{x \in I} \log |(F_t^N)'(x)| + \operatorname{essinf}_{x \in I} \log |(F_t^{n-N})'(x)|$$

$$\geq \left[\frac{n}{N}\right] \operatorname{essinf}_{x \in I} \log |(F_t^N)'(x)| + \inf_{1 \leq m \leq N-1} \operatorname{essinf}_{x \in I} \log |(F_t^m)'(x)|.$$

Therefore

$$\frac{1}{n} \operatorname{essinf} \log |(F_t^n)'(x)| \ge \frac{1}{N} \operatorname{essinf} \log |(F_t^n)'(x)| + R(n),$$

where

$$R(n) = \frac{1}{n} \inf_{t} \left\{ \left(\left[\frac{n}{N} \right] - \frac{n}{N} \right) \operatorname{essinf}_{x \in I} \log |(F_{t}^{N})'(x)| + \inf_{1 \le m \le N-1} \operatorname{essinf}_{x \in I} \log |(F_{t}^{m})'(x)| \right\}.$$

Hence for sufficiently large it, we get

$$\frac{1}{n} \operatorname{essinf}_{x \in I} \log |(F_{t}^{n})'(x)| \ge \frac{1}{N} \left\{ \operatorname{essinf}_{x \in I} \log |(F_{\infty}^{N})'(x)| - \varepsilon \right\} + R(n)$$

$$\ge -\frac{1}{N} \left\{ \log [K_{1}(\infty)(\rho - 2\delta)^{N}] + \varepsilon \right\} + R(n)$$

$$\ge -\log(\rho - \delta) + R(n).$$

Since R(n) converges to 0 as $n \to \infty$, there exists a constant K_1 such that

$$\operatorname{ess\,sup}_{x \in I} |(F_t^n)'(x)|^{-1} < K_1 \rho^n$$
.

This proves (1). The assertion (2) follows from (1).

LEMMA 2.2. The following constant K_2 is bounded:

$$K_2 = \limsup_{t \to \infty} \frac{\underset{x \in I}{\text{ess sup } |F'_t(x)|}}{\left(\underset{x \in I}{\text{ess inf } |F'_t(x)|}\right)^2}.$$

PROOF. The boundedness of K_2 follows from the C^1 convergence of F_t to F_{∞} and the uniform boundedness of $|F''_t(x)|$.

2.1. Alphabets, words and sentences. We will define several notations which are almost the same as in [9], [10]. We call each element $a \in A$ an alphabet. For an alphabet a, we set

$$sgn a = sgn F'_t|_{int\langle a \rangle_t}$$

$$= \begin{cases} + & \text{if } F'_t(x) > 0 \text{ for } x \in int\langle a \rangle_t, \\ - & \text{if } F'_t(x) < 0 \text{ for } x \in int\langle a \rangle_t, \end{cases}$$

where int J is the interior of a set J. This definition does not depend on the parameter t.

A finite sequence of alphabets will be called a word and for a word $w = a_1 \cdots a_N$ $(a_i \in A)$ we denote

$$|w| = N$$
 (the length of w),
 $w[K] = a_K$ ($1 \le K \le N$),
 $[w]_M = a_1 \cdots a_M$ ($1 \le M \le N$),
 $sgn w = \prod_{i=1}^N sgn a_i$,
 $\theta_w = a_2 \cdots a_N$.

We denote the empty word by ε and define $|\varepsilon| = 0$, and $sgn \varepsilon = +$.

We call an infinite sequence of alphabets $\alpha = a_1 a_2 \cdots$ a sentence and denote the N-th coordinate by

$$\alpha[N] = a_N$$
,

the initial N-word by

$$[\alpha]_N = a_1 \cdots a_N,$$

and the shifted sequence by

$$\theta \alpha = a_2 a_3 \cdots$$

For words $u = a_1 \cdots a_N$, $v = b_1 \cdots b_M$, and a sentence $\alpha = c_1 c_2 \cdots$, we denote $u \cdot v = a_1 \cdots a_N b_1 \cdots b_M$ and $u \cdot \alpha = a_1 \cdots a_N c_1 c_2 \cdots$.

We introduce orders in the following way. For $x, y \in I$, by the expression $x <_{\sigma} y$ $(\sigma \in \{+, -\})$ we mean x < y if $\sigma = +$ and x > y if $\sigma = -$. We also use this expression

for alphabets, words and sentences in a natural way.

(i) For words w_1 , w_2 ,

$$w_1 < w_2$$
 if $[w_1]_N = [w_2]_N$ and $w_1[N+1] <_{\sigma} w_2[N+1]$ for some N,

where $\sigma = sgn[w_1]_N$.

(ii) For sentences α_1 , α_2 ,

$$\alpha_1 < \alpha_2$$
 if $[\alpha_1]_N < [\alpha_2]_N$ for some N.

Until now, the notations mentioned above do not depend on the parameter t. Now let for a word $w = a_1 \cdots a_N$

$$\langle w \rangle_t = \bigcap_{i=1}^N F_t^{-i+1} (\langle a_i \rangle_t)$$

and for a sentence α

$$\{\alpha\}_t = \bigcap_{N=1}^{\infty} cl \langle [\alpha]_N \rangle_t.$$

Thus $\langle w \rangle_t$ (resp. $\{\alpha\}_t$) is the subinterval (resp. the point) corresponding to a word w (resp. a sentence α) with respect to the mapping F_t .

We denote by $W_N = A^N$ the set of all words with length N and set $W = \bigcup_{N=0}^{\infty} W_N$, where $W_0 = \{\varepsilon\}$. We denote by S the set of all sentences. By the assumption $\xi_t > 0$ the set $\{\alpha\}_t$ consists of exactly one point if $\{\alpha\}_t \neq \emptyset$. In [10], we restrict W_N , W and S the set of words or sentences for which $\langle w \rangle_t \neq \emptyset$ or $\{\alpha\}_t \neq \emptyset$. But in our situation, we need to consider w or α for which $\langle w \rangle_t = \emptyset$ and $\{\alpha\}_t = \emptyset$, because the symbolic dynamics may change with F_t .

2.2. Plus and minus expansions. As we discussed in [9], [10], the structure of the dynamics becomes much clearer if it is considered on the signed symbolic dynamics. In [10], we did not treat signed words $\tilde{\alpha}$ for which $\{\tilde{\alpha}\} = \emptyset$. But for later use, we need to define such signed sentences. Thus we slightly change the definitions, nevertheless the results in [10] still hold in our new definitions.

For each $x \in I$, we define a sentence $\alpha_t^x = a_1^x a_2^x \cdots \in S$, called the expansion of x, by the condition $F_t^{i-1}(x) \in \langle a_i^x \rangle_t$ for all i. Then, $x = \{\alpha_t^x\}_t$ since $\xi_t > 0$. For a sentence α we consider signed sentences α^+ , α^- and denote by \tilde{S} the set of all signed sentences. We can consider F as a shift operator on \tilde{S} . We define for a sentence $\alpha \in S$ and $\sigma \in \{+, -\}$:

(1)
$$\{\alpha^{\sigma}\}_{t} = \begin{cases} \sup\{x \in \langle \alpha[1] \rangle_{t}\} & \text{if } \alpha > \sup\{\alpha_{t}^{x} : x \in \langle \alpha[1] \rangle_{t}\}, \\ \inf\{x \in \langle \alpha[1] \rangle_{t}\} & \text{if } \alpha < \inf\{\alpha_{t}^{x} : x \in \langle \alpha[1] \rangle_{t}\}, \end{cases}$$

(2) otherwise

$$\{\alpha^{\sigma}\}_{t} = \begin{cases} \sup\{x \in I : \alpha_{t}^{x} < \alpha^{\sigma}, \alpha_{t}^{x}[1] = \alpha[1]\} & \text{if } \sigma = +, \\ \inf\{x \in I : \alpha_{t}^{x} > \alpha^{\sigma}, \alpha_{t}^{x}[1] = \alpha[1]\} & \text{if } \sigma = -, \end{cases}$$

where we consider the topology on S induced from the order. Note that if $\{\alpha\}_t \neq \emptyset$, then $\{\alpha^{\sigma}\}_t$ equals $\{\alpha\}_t$ as an expansion.

We can define F'_t on \tilde{S} :

(3)
$$F'_{t}(\alpha^{\sigma}) = \begin{cases} \lim_{\substack{x \uparrow \sup \langle \alpha[1] \rangle_{t} \\ x \downarrow \inf \langle \alpha[1] \rangle_{t}}} F'_{t}(x) & \text{if } \alpha > \sup \{\alpha^{x}_{t} : x \in \langle \alpha[1] \rangle_{t} \}, \end{cases}$$

(4) otherwise

$$F'_{t}(\alpha^{\sigma}) = \begin{cases} \lim_{x \uparrow \{\alpha^{\sigma}\}_{t}} F'_{t}(x) & \text{if } \sigma = +, \\ \\ \lim_{x \downarrow \{\alpha^{\sigma}\}_{t}} F'_{t}(x) & \text{if } \sigma = -. \end{cases}$$

We define order on \tilde{S} by

- (1) if $\alpha < \beta$, then $\alpha^{\sigma} < \beta^{\tau}$ $(\sigma, \tau \in \{+, -\})$, and
- (2) $\alpha^+ < \alpha^-$.

The condition (2) may seem unnatural, but as we explained in [10], when α^+ (resp. α^-) is realized by some F_t , then α^+ (resp. α^-) is the limit of the expansion of the points from below (resp. upper).

We also consider w^+ and w^- for $w \in \bigcup_{N=1}^{\infty} W_N$ and we define $|w^+| = |w^-| = |w|$. We denote

$$\begin{split} \tilde{W}_{N} &= \left\{ w^{\sigma} : |w| = N, \, \sigma \in \left\{ +, \, - \right\} \right\}, \\ \tilde{W} &= \bigcup_{N=1}^{\infty} \tilde{W}_{N}, \\ \tilde{A} &= \tilde{W}_{1} = \left\{ a^{\sigma} : \, a \in A, \, \sigma \in \left\{ +, \, - \right\} \right\}, \end{split}$$

and by $\tilde{w} \in \tilde{W}$ ($\tilde{\alpha} \in \tilde{S}$) we denote w^+ or w^- (α^+ or α^-), respectively. We can naturally identify w^+ with $\sup\{\alpha^+ \in \tilde{S} : [\alpha]_{|w|} = w\}$, and w^- with $\inf\{\alpha^- \in \tilde{S} : [\alpha]_{|w|} = w\}$. Let

$$\varepsilon(w^{\sigma}) = \varepsilon(\alpha^{\sigma}) = \sigma \qquad \sigma \in \{+, -\},$$

and we call $\varepsilon(w^{\sigma})$ and $\varepsilon(\alpha^{\sigma})$ the sign of w^{σ} and α^{σ} . We also use the convention $\varepsilon(\theta^n \alpha^{\sigma}) = \varepsilon(\theta^n w^{\sigma}) = \sigma$, when such an expression appears in below.

LEMMA 2.3. $F'_t(\tilde{\alpha})$ converges uniformly to $F'_{\infty}(\tilde{\alpha})$.

PROOF. For any $w \in W$, we extend the map $F_t^{|w|} \downarrow_w^{-1}$, which is the inverse map of $F_t^{|w|}$ restricted to $\langle w \rangle_t$, as follows:

- (1) If there exists $y \in \langle w \rangle_t$ such that $F_t^{|w|}(y) = x$, then we put $F_t^{|w|} \downarrow_w^{-1}(x) = y$.
- (2) Otherwise,

$$F_t^{|w|} \downarrow_w^{-1}(x) = \begin{cases} \{w^+\}_t & \text{if } F_t^{|w|}(w^+) <_{sgnw} x, \\ \{w^-\}_t & \text{if } F_t^{|w|}(w^-) >_{sgnw} x. \end{cases}$$

Then for any $x, x' \in I$ and a word $w = a_1 \cdot \cdot \cdot \cdot a_n$

$$|F_{t}^{n}\downarrow_{w}^{-1}(x') - F_{\infty}^{n}\downarrow_{w}^{-1}(x)| = |F_{t}^{n}\downarrow_{w}^{-1}(x') - F_{t}^{n}\downarrow_{w}^{-1}(x)| + |F_{t}^{n}\downarrow_{w}^{-1}(x) - F_{\infty}^{n}\downarrow_{w}^{-1}(x)|$$

$$\leq \sup_{y \in \langle w \rangle_{t}} |(F_{t}^{n})'(y)|^{-1} |x - x'| + |F_{t}^{n-1}\downarrow_{[w]_{n-1}}^{-1}(F_{t}\downarrow_{a_{n}}^{-1}(x)) - F_{\infty}^{n-1}\downarrow_{[w]_{n-1}}^{-1}(F_{\infty}\downarrow_{a_{n}}^{-1}(x))|$$

$$\leq K_{1}\rho^{n} |x - x'| + |F_{t}^{n-1}\downarrow_{[w]_{n-1}}^{-1}(x'_{1}) - F_{\infty}^{n-1}\downarrow_{[w]_{n-1}}^{-1}(x_{1})|,$$

where $x_1 = F_{\infty} \downarrow_{a_m}^{-1}(x)$ and $x'_1 = F_t \downarrow_{a_m}^{-1}(x)$. Hence we inductively get

$$|F_t^n \downarrow_w^{-1}(x') - F_\infty^n \downarrow_w^{-1}(x)| \le K_1 \rho^n |x - x'| + \frac{K_1}{1 - \rho} \Delta(t),$$

where

$$\Delta(t) = \sup_{a \in A} \sup_{y \in I} |F_t \downarrow_a^{-1}(y) - F_\infty \downarrow_a^{-1}(y)|.$$

Since for $\tilde{\alpha} = a_1 a_2 \cdots$

$$\{\tilde{\alpha}\}_t \in \bigcup_{p \in (a_{n+1})_t} \{y : \alpha_t^y = a_1 \cdot \cdot \cdot \cdot a_n \alpha_t^p\},$$

and $\Delta(t)$ converges to 0 as $t \to \infty$, this shows that $\{\tilde{\alpha}\}_t$ converges uniformly to $\{\tilde{\alpha}\}_{\infty}$ as $t \to \infty$. Then by continuity, it follows, if $\{\tilde{\alpha}\}_{\infty} \in \langle \tilde{\alpha}[1] \rangle_t$

$$\begin{split} |F'_{t}(\tilde{\alpha}) - F'_{\infty}(\tilde{\alpha})| &= |F'_{t}(\{\tilde{\alpha}\}_{t}) - F'_{\infty}(\{\tilde{\alpha}\}_{\infty})| \\ &\leq |F'_{t}(\{\tilde{\alpha}\}_{t}) - F'_{t}(\{\tilde{\alpha}\}_{\infty})| + |F'_{t}(\{\tilde{\alpha}\}_{\infty}) - F'_{\infty}(\{\tilde{\alpha}\}_{\infty})| \\ &\leq \sup_{x \in I} |F''_{t}(x)| |\{\tilde{\alpha}\}_{t} - \{\tilde{\alpha}\}_{\infty}| + |F'_{t}(\{\tilde{\alpha}\}_{\infty}) - F'_{\infty}(\{\tilde{\alpha}\}_{\infty})|, \end{split}$$

and other cases can be shown in a similar way. This proves the lemma.

3. Fredholm matrices and Perron-Frobenius operators.

In this section, we fix t ($t=1, 2, \dots, \infty$) and omit the suffix t and by F, P, we express F_t , P_t and so on.

In [10], we characterize the spectrum Spec(F) of the Perron-Frobenius operator P associated with the piecewise C^2 mapping F by eigenvalues of the Fredholm matrix $\Phi(z)$, and using this result, we also characterize Spec(F) by singularities of the zeta function $\zeta(z)$. These results are the main tools in the next section. The outline of [10] is as follows (for details, refer to [10]):

For a word $w \in W$, we consider a generating function for $g \in L^{\infty}$

$$s_g^w(z) = \sum_{n=0}^{\infty} z^n \int 1_w(x) g(F^n(x)) dx ,$$

where 1_w is the indicator function of $\langle w \rangle$. Then by expressing this on the signed symbolic dynamics, we get the renewal equation of the following form (the precise definitions will be given afterwards):

$$(I - \Phi(z)) s_o(z) = \chi_o(z) \qquad (g \in L^{\infty}) .$$

Hence, the spectrum problem of the Perron-Frobenius operator now turns into the spectrum problem of the Fredholm matrix $\Phi(z)$ and we get the results which we mentioned in the introduction (Theorems B and C).

Now we will pick up the notations in [10] which we need in this article.

(1) Definition of $\Phi(z)$: Set for $\tilde{\alpha} \in \tilde{S}$ or $\tilde{\alpha} \in \tilde{W}$, and $\tilde{v} \in \tilde{W}$

$$\phi(\tilde{\alpha}, \tilde{v}) = \{ (F'_{|v|})^{-1} - (F'_{|v|-1})^{-1} \delta[|v| > l(\tilde{\alpha})] \} (\tilde{\alpha}[1] \cdot \tilde{v}) \{ \delta[\tilde{v} \leq_{\varepsilon(\tilde{\alpha})} \theta\tilde{\alpha}] - 1/2 \} ,$$

where F'_N is a formal "derivative" which depends on first N coordinates defined by

$$F'_{N}(\tilde{\alpha}) = \frac{F([\tilde{\alpha}]_{N}^{+}) - F([\tilde{\alpha}]_{N}^{-})}{Lebes\langle [\tilde{\alpha}]_{N}\rangle},$$

where Lebes J is the Lebesgue measure of a set J and for a statement L

$$\delta[L] = \begin{cases} 1 & \text{if } L \text{ is true,} \\ 0 & \text{otherwise,} \end{cases}$$

and

$$l(\tilde{\alpha}) = \begin{cases} 1 & \tilde{\alpha} \in \tilde{S} \\ \min\{K : \{\tilde{\alpha}\} = \{\tilde{w}\}, \, \tilde{w} \in \tilde{W}_K\} \end{cases} \quad \tilde{\alpha} \in \tilde{W}.$$

Then tracing the orbits of the division points of the partition, we define an infinite dimensional matrix $\Phi(z) = \Phi(z; F)$ on $\tilde{W} = \bigcup_{k=1}^{\infty} \tilde{W}_k$ corresponding to the mapping F by

$$\Phi(z)_{\tilde{u},\,\tilde{v}} = \begin{cases} \sum_{n=0}^{\infty} z^{n+1} F^{n'}(\tilde{u})^{-1} \phi(\theta^n \tilde{u},\,\tilde{v}) & \text{if } \{\tilde{u}\} \text{ is a division point }, \\ z\phi(\tilde{u},\,\tilde{v}) & \text{otherwise }. \end{cases}$$

We express by $\Phi_N(z)$ the truncation of $\Phi(z)$ to the index set $\bigcup_{k=1}^N \widetilde{W}_k$. (2) Definition of $s_g(z)$: Let for $g \in L^{\infty}$ and $\tilde{\alpha} \in \widetilde{S}$ or $\tilde{\alpha} \in \widetilde{W}$

$$\begin{split} s_{\theta}^{\tilde{\alpha}} &= s_{\theta}^{\tilde{\alpha}}(z; F) \\ &= \int \!\! dx \, g(x) \sum_{\substack{w \in W \\ \langle w \rangle \neq \emptyset}} z^{|w|} |(F^{|w|})'(w \cdot x)|^{-1} \varepsilon(\tilde{\alpha}) \{ \delta[w \cdot x < \{\tilde{\alpha}\}] - 1/2 \} \\ &\cdot \delta[w[1] = \tilde{\alpha}[1], \{ (\theta w) \cdot \alpha^x \} \neq \emptyset] , \end{split}$$

and $s_g(z) = (s_g^{\tilde{u}})_{\tilde{u} \in \tilde{W}}$.

(3) Definition of $\chi_g(z)$: Let for $g \in L^{\infty}$ and $\tilde{\alpha} \in \tilde{S}$ or $\tilde{\alpha} \in \tilde{W}$ $\chi(\tilde{\alpha}, x) = \varepsilon(\tilde{\alpha}) \{\delta[x < \{\tilde{\alpha}\}] - 1/2\},$

$$\chi_g^{\tilde{\alpha}}(z) = \begin{cases} \sum_{n=0}^{\infty} z^n ((F^n)'(\tilde{\alpha}))^{-1} \int dx \, g(x) \chi \{\theta^n \tilde{\alpha}, \, x) & \text{if } \{\tilde{\alpha}\} \text{ is a division point ,} \\ \int dx \, g(x) \chi(\tilde{\alpha}, \, x) & \text{otherwise ,} \end{cases}$$

and $\chi_g(z) = (\chi_g^{\tilde{u}}(z))_{\tilde{u} \in \tilde{W}}$.

LEMMA 3.1. (1) For a word $u \in W$, we get

$$S_g^u(z) = S_g^{u^+} + S_g^{u^-}$$
.

(2) For u such that the both $\{u^{\sigma}\}$ are not division points for $\sigma \in \{+, -\}$, we get

$$\chi_g^{u^+}(z) + \chi_g^{u^-}(z) = \int_{\langle u \rangle} g(x) dx .$$

PROOF. The proofs of (1) and (2) are found in Lemma 3.1 and (3.3) of [10], respectively.

- (4) Definition of $\mathcal{B}(z; F)$: We denote by \mathcal{B} the space of vectors $s = (s^{\tilde{v}})_{\tilde{v} \in \tilde{W}} (s^{\tilde{v}} \in C)$ which satisfies the following (i)—(iii).
- (i) The components of s satisfy the relations

$$\varepsilon(\tilde{u})s^{\tilde{u}} = \varepsilon(\tilde{v})s^{\tilde{v}}$$

whenever $\{\tilde{u}\} = \{\tilde{v}\}$ and $\tilde{u}[1] = \tilde{v}[1]$, that is, \tilde{u} and \tilde{v} express the same point with same first alphabet.

(ii) The following limit exists for $\tilde{\alpha} \in \overline{S}$, and coincides with $s^{\tilde{u}}$ if $\tilde{\alpha} = \tilde{u} \in \tilde{W}$:

$$s^{\tilde{\alpha}} = \lim_{N \to \infty} \varepsilon(\alpha) s^{[\tilde{\alpha}]_{N}^{+}}$$
$$= -\lim_{N \to \infty} \varepsilon(\alpha) s^{[\tilde{\alpha}]_{N}^{-}},$$

where $[\tilde{\alpha}]_N^{\sigma} = \{ [\tilde{\alpha}]_N \}^{\sigma}$.

(iii)
$$||s|| = ||s||_{\infty} + ||s||_{v} < \infty$$
,

where

$$\|s\|_{\infty} = \sup_{\tilde{w} \in \tilde{W}} |s^{\tilde{w}}|,$$

$$\|s\|_{v} = \sup_{V(f)=1} |\langle f, s \rangle|,$$

$$\langle f, s \rangle = \limsup_{N \to \infty} \sum_{u \in W_N} \frac{\int_{\langle u \rangle} f dx}{Lebes \langle u \rangle} s^u$$
.

We also use the following norm for 0 < r < 1

$$\|s\|_{r} = \sup_{N \ge 1} \sup_{\tilde{\alpha}, \ \tilde{\beta} \in \tilde{S}} \{|s^{\tilde{\alpha}} + s^{\tilde{\beta}}| r^{-N} : [\tilde{\alpha}]_{N} = [\tilde{\beta}]_{N} \text{ and } \varepsilon(\tilde{\alpha})\varepsilon(\tilde{\beta}) = -\}.$$

We get the relations of the norm:

LEMMA 3.2 (Lemma 4.2 in [10]). (1) If $||s_g(z)||_v < \infty$ for $g \in L^\infty$, then $||s_g(z)||_\infty < \infty$.

(2) If $||s||_r < \infty$ for some 0 < r < 1, then $||s||_v < \infty$.

Now let $\mathcal{B}(z; F)$ be the set of $s = (s^{\tilde{u}}) \in \mathcal{B}$ which satisfies:

(iv)
$$\sup_{u \in W} \frac{|s^{u}-z| F'_{|u|}(u)|^{-1} s^{\theta u}|}{Lebes\langle u \rangle} < \infty ,$$

where $s^{u} = s^{u^{+}} + s^{u^{-}}$ and $s^{\theta u} = s^{(\theta u)^{+}} + s^{(\theta u)^{-}}$

(5) Definition of \mathcal{X} : Let

$$\mathcal{X} = \mathcal{X}(z; F) = \{\chi_g(z) : g \in L^{\infty}\}.$$

For a vector $s = \chi_a(z) \in \mathcal{X}$, we define norm by

$$|| s ||_{\infty} = || \chi_g(z) ||_{\infty} = || g ||_{\infty} = \operatorname{ess \, sup} |g(x)|.$$

Then we get from the definitions:

THEOREM 3.3 ([10]). $(I - \Phi(z))$ is a bounded operator from $\mathcal{B}(z; F)$ to $\mathcal{X}(z; F)$ if $|z| < r/\rho$.

The proofs are found in Proposition 4.4 [10].

Then the spectrum problem of the Perron-Frobenius operator can be expressed in terms of the Fredholm matrix, and one of the aim of [10] is to prove the following theorem.

THEOREM 3.4 (Theorem 6.3 in [10]). For $|z| < e^{\xi}$, the following statements are equivalent:

- $(1) \quad z^{-1} \in Spec(F),$
- (2) $(I-\Phi_N(z))^{-1}$ is unbounded.

To prove this theorem, we need the following lemmas.

LEMMA 3.5 (Lemma 6.2 in [10]). Suppose that $z^{-1} \notin Spec(F)$ and there exists $s \in \mathcal{B}(z; F)$ such that $(I - \Phi(z))s = \chi_a(z)$, then $s^{u^+} + s^{u^-} = s_a^u(z)$ for any $u \in W$.

LEMMA 3.6 (Lemma 6.4 in [10]). If $(I - \Phi_N(z))^{-1}$ is unbounded, then there exists $s \in \mathcal{B}(z; F)$ such that ||s|| = 1 and $(I - \Phi(z))s = 0$.

LEMMA 3.7 (cf. the proof of Lemma 6.5 in [10]). Suppose that $(I - \Phi_N(z))^{-1}$ is bounded, then there exists $s \in \mathcal{B}(z; F)$ such that $||s||_r < \infty$ for some 0 < r < 1 and $(I - \Phi(z))s = \chi_a(z)$.

LEMMA 3.8. (1) For $s \in \beta$,

$$\{\Phi(z)s\}^{\tilde{u}}$$

$$= \begin{cases} z \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} F'_{N}(u[1]\tilde{v})^{-1} \{ \delta [v^{+} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} \{ s^{v^{+}} + s^{v^{-}} \} & \tilde{u} \notin \tilde{A}, \\ \sum_{n=1}^{\infty} \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} (F^{n-1})'(\tilde{u})^{-1} F'_{N}(u[n]\tilde{v})^{-1} \{ \delta [\tilde{v} \leq_{\varepsilon(\tilde{u})} \theta^{n} \tilde{u}] - 1/2 \} s^{\tilde{v}} & \tilde{u} \in \tilde{A}. \end{cases}$$

(2) Let $\hat{s} = (I - \Phi(z))s$ for $s \in \mathcal{B}$. Then $\hat{s} \in \mathcal{S}$ and for $\tilde{a} \in \tilde{A}$

$$\hat{S}^{\tilde{a}} = \sum_{n=0}^{\infty} z^n \varepsilon(\tilde{a}) F^{n'}(\tilde{a})^{-1} \lim_{\tilde{u} \to \theta^n \tilde{a}} \hat{S}^{\tilde{u}},$$

where for \tilde{u} which appears in $\lim_{\tilde{u} \to \theta^n \tilde{a}} {\{\tilde{u}\}}$ is not a division point.

(3) For s such that $||s||_r < \infty$ and $|z| < r/\rho$,

$$|| (I - \Phi(z)) s ||_{\infty} \le K_1 K_2 (1 - |z| \rho)^{-1} (1 - r)^{-1} || s ||_r / \rho$$
.

PROOF. (1) For $\tilde{u} \in \tilde{W}$ such that $\{\tilde{u}\}$ is not a division point,

$$\begin{split} \{\varPhi(z)s\}^{\tilde{u}} &= z \sum_{\tilde{v}} \phi(\tilde{u}, \tilde{v}) s^{\tilde{v}} \\ &= z \lim_{N \to \infty} \sum_{k=1}^{N} \sum_{\tilde{v} \in \tilde{W}_{k}} \phi(\tilde{u}, \tilde{v}) s^{\tilde{v}} \\ &= z \lim_{N \to \infty} \sum_{k=l(\tilde{u})}^{N} \sum_{\tilde{v} \in \tilde{W}_{k}} \{(F'_{|v|})^{-1} - (F'_{|v|-1})^{-1} \delta[|v| > l(\tilde{u})]\} (\tilde{u}[1] \cdot \tilde{v}) \\ & \cdot \{\delta[\tilde{v} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2\} s^{\tilde{v}} \\ &= z \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} (F'_{N})^{-1} (\tilde{u}[1] \cdot \tilde{v}) \{\delta[\tilde{v} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2\} s^{\tilde{v}} \,. \end{split}$$

Since $\delta[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] = \delta[v^- \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}]$ if $|\tilde{u}| \leq N$, we get the proof of (1) for the case \tilde{u} which is not a division point. The proof of another case is almost the same.

(2) For \tilde{u} which is not a division point and $\varepsilon(\tilde{u}) = \varepsilon(\tilde{a})$,

$$\sum_{n=0}^{\infty} z^n (F^n)'(\tilde{a})^{-1} \lim_{\tilde{u} \to \theta^n \tilde{a}} \hat{s}^{\tilde{u}}$$

$$\begin{split} &=\sum_{n=0}^{\infty} z^{n} (F^{n})'(\tilde{a})^{-1} \lim_{\tilde{u} \to \theta^{n} \tilde{a}} \left(s^{\tilde{u}} - z \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} F'_{N}(u[1]\tilde{v})^{-1} \{ \delta [\tilde{v} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} s^{\tilde{v}} \right) \\ &= \sum_{n=0}^{\infty} z^{n} (F^{n})'(\tilde{a})^{-1} \lim_{\tilde{u} \to \theta^{n} \tilde{a}} \left(s^{\tilde{u}} - z \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} \varepsilon(\tilde{a}) F'_{N}(u[1]\tilde{v})^{-1} \{ \delta [\tilde{v} < \theta \tilde{u}] - 1/2 \} s^{\tilde{v}} \right) \\ &= \sum_{n=0}^{\infty} z^{n} (F^{n})'(\tilde{a})^{-1} \left(s^{\theta^{n} \tilde{a}} - \lim_{N \to \infty} \sum_{\tilde{v} \in \tilde{W}_{N}} \varepsilon(\tilde{a}) F'_{N}(a[n]\tilde{v})^{-1} \{ \delta [\tilde{v} < \theta^{n+1} \tilde{a}] - 1/2 \} s^{\tilde{v}} \right) \\ &- \sum_{n=1}^{\infty} z^{n} \varepsilon(\tilde{a}) (F^{n})'(\tilde{a})^{-1} s^{\theta^{n} \tilde{a}} \\ &= s^{\tilde{a}} - \{ \Phi(z) s \}^{\tilde{a}} = \hat{s}^{\tilde{a}} \,. \end{split}$$

Thus we get the proof of (2).

(3) For \tilde{u} such that $\{\tilde{u}\}$ is not a division point, we get from (1)

$$\begin{split} \{ \Phi(z)s \}^{\tilde{u}} &= \lim_{N \to \infty} z \sum_{v \in W_N} F'_N(u[1]v)^{-1} \{ \delta[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} (s^{v^+} + s^{v^-}) \\ &= \lim_{N \to \infty} z \sum_{v \in W_N} F'_N(u[1]v)^{-1} \{ \delta[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} s^v \\ &= \lim_{N \to \infty} x[N] \; . \end{split}$$

Then, we get by Lemma 2.2

$$\begin{split} |x[N] - x[N-1]| &= \left| \sum_{v \in W_N} z \{ (F_N')^{-1} - (F_{N-1}')^{-1} \} (u[1] \cdot v) \{ \delta[v \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} s^v \right| \\ &\leq |z| \sum_{v \in W_N} K_2 Lebes \langle v \rangle |s^v| \\ &\leq K_2 r^N \|s\|_{r} / \rho \;, \end{split}$$

and this shows

$$|\{\Phi(z)s\}^{\tilde{u}}| \leq K_2(1-r)^{-1} ||s||_r/\rho$$
.

In a similar way, using Lemma 2.1, we get $|z^n((F_t^n)')^{-1}| < K_1 r^n$. Therefore by (2) we get the evaluation for \tilde{u} when $\{\tilde{u}\}$ is a division point. This proves (3).

The outline of the proof of Theorem 3.4 is as follows:

If $(I - \Phi_N(z))^{-1}$ is unbounded, then by Lemma 3.6, there exists $s \in \mathcal{B}(z; F)$ such that

||s|| = 1 and $(I - \Phi(z))s = 0$. Suppose that $z^{-1} \notin Spec(F)$. Then by Lemma 3.5, $s^{u^+} + s^{u^-} = 0$ for all $u \in W$. Therefore by Lemma 3.8 (1)

$$\{(I-\Phi(z))s\}_{\tilde{u}}=s^{\tilde{u}}-(\Phi(z)s)_{\tilde{u}}=s^{\tilde{u}}.$$

Hence we get s=0. This is the contradiction. Hence if $(I-\Phi_N(z))^{-1}$ is unbounded, then $z^{-1} \in Spec(F)$. On the contrary, if $(I-\Phi_N(z))^{-1}$ is bounded, then by Lemma 3.7, there exists $s \in \mathcal{B}(z; F)$ such that $||s||_r < \infty$ and $(I-\Phi(z))s = \chi_g(z)$. Since the eigenvalues of the Perron-Frobenius operator is isolated in $|z| > e^{-\xi}([3])$, $\mathscr{C} = \{z : (I-\Phi_N(z))^{-1} \text{ is unbounded}\}$ is also isolated. At the same time, $s_g(z; F_N)$ converges to $s_g(z; F)$ in |z| < 1, this shows the existence of $s_g(z; F) \in \mathcal{B}(z; F)$ in $z \in \mathcal{C}$. Therefore, if $(I-\Phi_N(z))^{-1}$ is bounded, for any $f \in BV$, there exists

$$\int \{ (I - zP)^{-1} f(x) \} g(x) dx = \sum_{u \in W} C_u s_g^u(z; F) ,$$

where $f(x) = \sum_{u \in W} C_u 1_u(x)$ and $\sum_{u \in W} |C_u| r^{|u|} < \infty$. This proves the theorem.

4. The proof of Theorem A.

We need the following theorem for the proof of Theorem A.

THEOREM 4.1.

$$n(z; F) = \limsup_{t \to \infty} \inf_{0 < r < 1} \sup_{\|g\| = 1} \| s_g(z; F_t) \|_r$$

is bounded in some neighborhood of $z_{\infty}(|z_{\infty}| < e^{\xi})$, if and only if $z_{\infty}^{-1} \notin Spec(F_{\infty})$.

We will prove Theorem 4.1 after the proof of Theorem A.

PROOF OF THEOREM A. Since the eigenvalues of the Perron-Frobenius operator P_{∞} has no accumulation point in $|z| < e^{\xi_{\infty}}$ (cf. [3]), n(z; F) is uniformly bounded in wider sense in the domain $\mathscr{D} = \{z : |z| < e^{\xi_{\infty}}, z^{-1} \notin Spec(F_{\infty})\}$. Moreover $s_g(z; F_t)$ converges to $s_g(z; F_{\infty})$ as $t \to \infty$ in the unit disk, therefore the above convergence still holds with respect to $\|\cdot\|_r$ for some r in the domain \mathscr{D} . Let for $f \in BV$

$$(f,g)(z; F_t) = \sum_{n=0}^{\infty} z^n \int_{I} f(x)g(F_t^n(x))dx$$

$$= \int_{I} \{ (I - zP_t)^{-1} f(x) \} g(x)dx$$

$$= \sum_{w \in W} C_w s_g^w(z; F_t) ,$$

where $f = \sum_{w \in W} C_w 1_w$. Note that for $f \in BV$ there exists a decomposition such that $f = \sum_{w \in W} C_w 1_w$ satisfies $\sum_{w \in W} |C_w| r^{|w|} < \infty$ for any 0 < r < 1 (cf. [10]). Therefore

 $(f,g)(z\,;\,F_\infty)$ is bounded in wider sense and $(f,g)(z\,;\,F_t)$ converges to $(f,g)(z\,;\,F_\infty)$ as $t\to\infty$ in the domain \mathscr{D} . Therefore by Rouche's theorem, for any U such that $(f,g)(z\,;\,F_\infty)\neq 0$ on ∂U the number of singularities of $(f,g)(z\,;\,F_t)$ in U equals that of $(f,g)(z\,;\,F_\infty)$ for sufficiently large t. Now suppose that $z_\infty^{-1}\in Spec(F_\infty)$. Then there exists $f\in BV$ such that $(f,g)(z\,;\,F_\infty)$ has a singularity at z_∞ for some $g\in L^\infty$. Therefore in any neighborhood U of z_∞ , there exists a singularity of $(f,g)(z\,;\,F_t)$ for sufficiently large t. This proves the existence of a sequence $\{z_t\}$ such that z_t converges to z_∞ and $z_t^{-1}\in Spec(F_t)$. On the contrary, if $z_\infty^{-1}\notin Spec(F_\infty)$, then $\|s_g(z\,;\,F_\infty)\|_r$ is bounded in some neighborhood U of z_∞ for some r. Therefore $(f,g)(z\,;\,F_\infty)$ has no singularity in U for any $f\in BV$ and $(f,g)(z\,;\,F_t)$ has also no singularity in U for sufficiently large t. Hence there exists no $z_t\in U$ such that $z_t^{-1}\in Spec(F_t)$. This completes the proof of Theorem A.

PROOF OF THEOREM 4.1. We only need to show:

- (1) if n(z; F) is unbounded in any neighborhood of z_{∞} , then there exists $s \in \mathcal{B}(z; F_{\infty})$ such that $s \neq 0$ and $(I \Phi(z; F_{\infty})) s = 0$,
- (2) if n(z; F) is bounded in some neighborhood of z_{∞} , then for any $g \in L^{\infty}$ there exists $s_{q}(z; F_{\infty}) \in \mathcal{B}(z; F_{\infty})$.

Because if there exists $s \in \mathcal{B}(z; F_{\infty})$ such that $s \neq 0$ and $(I - \Phi(z; F_{\infty})) s = 0$, and if we assume that $z^{-1} \notin Spec(F)$, this contradicts Lemma 3.5. Therefore if n(z; F) is unbounded, then $z^{-1} \in Spec(F_{\infty})$. On the contrary, if $s_g(z; F_{\infty}) \in \mathcal{B}(z; F_{\infty})$, then (f, g)(z) exists for any $f \in BV$. Therefore $z^{-1} \notin Spec(F_{\infty})$.

Now we will prove (1). From the assumption, there exist sequences $\{z_t\}$ and $\{g_t\}$ such that

(i)
$$\lim_{t\to\infty}z_t=z_\infty,$$

(ii)
$$g_t \in L^{\infty}$$
, $\lim_{t \to \infty} \|g_t\|_{\infty} = 0$ and $\inf_{0 < r < 1} \|s_{g_t}(z_t; F_t)\|_r = 1$.

Then there exists a subsequence, which we also denote with suffix t, such that there exists a limit

$$s_{\infty}^{\tilde{w}} = \lim_{t \to \infty} s_{\theta_t}^{\tilde{w}}(z; F_t)$$
 for any $\tilde{w} \in \tilde{W}$,

and by (ii) it follows $s_{\infty} \neq 0$. It also holds $||s_{\infty}||_{r} \leq 1$, because for α^{-} , β^{+} such that $\alpha^{-} < \beta^{+}$ and $[\alpha^{-}]_{N} = [\beta^{+}]_{N}$

$$| s_{\infty}^{\alpha^{-}} + s_{\infty}^{\beta^{+}} | = \lim_{t \to \infty} | s_{g_{t}}^{\alpha^{-}}(z; F_{t}) + s_{g_{t}}^{\beta^{+}}(z; F_{t}) |$$

$$\leq r^{N} \lim_{t \to \infty} | s_{g_{t}}(z; F_{t}) | |_{r}.$$

Then by Lemma 3.2, we get $||s_{\infty}||_{\infty} < \infty$. Thus we only need to prove

$$(I - \Phi(z_{\infty}; F_{\infty}))s_{\infty} = 0$$
.

Let $s \in \mathcal{B}(z; F)$ such that $||s||_r < \infty$. Then for \tilde{u} such that $\{\tilde{u}\}_{\infty}$ is not a division point of the partition, since $\{\tilde{u}\}_t$ is not also a division point for the partition corresponding to F_t for sufficiently large t, we get

$$\begin{split} (\sharp) & \quad \{ [\Phi(z_t\,;\,F_t) - \Phi(z_\infty\,;\,F_\infty)] \, s \}^{\tilde{u}} \\ & = \lim_{N \to \infty} \sum_{|v| = N} \big[z_t F'_{t,N}(u[1] \cdot v)^{-1} - z_\infty F'_{\infty,N}(u[1] \cdot v)^{-1} \big] \\ & \quad \cdot \big\{ \delta \big[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u} \big] - 1/2 \big\} (s^{v^+} + s^{v^-}) \\ & = \lim_{N \to \infty} \sum_{|v| = N} (z_t - z_\infty) F'_{t,N}(u[1] \cdot v)^{-1} \big\{ \delta \big[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u} \big] - 1/2 \big\} (s^{v^+} + s^{v^-}) \\ & \quad + \lim_{N \to \infty} \sum_{|v| = N} z_\infty \big[F'_{t,N}(u[1] \cdot v)^{-1} - F'_{\infty,N}(u[1] \cdot v)^{-1} \big] \\ & \quad \cdot \big\{ \delta \big[v^+ \leq_{\varepsilon(\tilde{u})} \theta \tilde{u} \big] - 1/2 \big\} (s^{v^+} + s^{v^-}) \,. \end{split}$$

Now we will show (#) tends to 0 as $t \to \infty$. By Lemma 3.8 (3),

the first term of the right hand term of (#)

$$= \left| \frac{z_t - z_{\infty}}{z_t} \{ \Phi(z_t; F_t) s \}^{\tilde{u}} \right| \leq \left| \frac{z_t - z_{\infty}}{z_t} \right| K_1 K_2 \| s \|_r (1 - r)^{-1}.$$

Therefore this term converges to zero as $t \to \infty$. To prove the second term of the right hand term of (#) converges to 0, let

$$y[N] = \sum_{|v|=N} z_{\infty} [|F'_{t,N}(u[1] \cdot v)|^{-1} - |F'_{\infty,N}(u[1] \cdot v)|^{-1}]$$
$$\cdot \{\delta[v^{+} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2\} (s^{v^{+}} + s^{v^{-}}).$$

Then the second term of (#) equals $\lim_{N\to\infty} y[N]$. We get

$$\begin{split} y[N+1] - y[N] \\ &= \sum_{|v|=N+1} z_{\infty} \{ \delta[v^{+} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} (s^{v^{+}} + s^{v^{-}}) \\ & \cdot [(|F'_{t, N+1}(u[1] \cdot v)|^{-1} - |F'_{t, N}(u[1] \cdot v)|^{-1}) \\ & - (|F'_{\infty, N+1}(u[1] \cdot v)|^{-1} - |F'_{\infty, N}(u[1] \cdot v)|^{-1})] \\ &= \sum_{|v|=N+1} z_{\infty} \{ \delta[v^{+} \leq_{\varepsilon(\tilde{u})} \theta \tilde{u}] - 1/2 \} (s^{v^{+}} + s^{v^{-}}) \\ & \cdot |(F'_{t, N+1} F'_{t, N} F'_{\infty, N+1} F'_{\infty, N}) (u[1] \cdot v)|^{-1} \\ & \cdot |(\{(F_{\infty} - F_{t})'_{N+1} - (F_{\infty} - F_{t})'_{N}\} F'_{t, N} F'_{\infty, N}) (u[1] \cdot v) \end{split}$$

+
$$((F'_{\infty,N}-F'_{t,N})\{(F'_{t,N}-F'_{t,N+1})F'_{\infty,N} + F'_{t,N+1}(F'_{\infty,N}-F'_{\infty,N+1})\})(u[1]\cdot v)|.$$

Then $|(s^{v^+} + s^{v^-})| \le ||s||, r^N$ and noticing for example

$$|F'_{\infty,N}-F'_{\infty,N+1}|(u[1]\cdot v)\leq \sup_{x\in I}|F''_{\infty}(x)|Lebes\langle u[1]\cdot v\rangle$$
,

we get $\lim_{t\to\infty}$ (the second term of (#))=0. Therefore (#) tends to 0 as $t\to\infty$. Now

$$(I - \Phi(z_{\infty}; F_{\infty}))s_{\infty}$$

$$= \lim_{t \to \infty} \{ (I - \Phi(z_{t}; F_{t}))s_{g_{t}}(z_{t}; F_{t}) + (\Phi(z_{t}; F_{t}) - \Phi(z_{\infty}; F_{\infty}))s_{g_{t}}(z_{t}; F_{t}) + \Phi(z_{\infty}; F_{\infty})(s_{g_{t}}(z_{t}; F_{t}) - s_{\infty}) \}$$

$$= 0.$$

By Lemma 3.8 (2), we can prove (1) for \tilde{u} which is not a division point. This proves (1).

Since $Spec(F_{\infty})$ has no accumulation point in $|z| < e^{\xi_{\infty}}$, the set of z which satisfies the condition (1) has also no accumulation point. Therefore, as in the proof of Theorem 3.4, since n(z; F) is uniformly bounded in wider sense in \mathscr{D} and $s_g^{\tilde{\alpha}}(z; F_t)$ converges to $s_g^{\tilde{\alpha}}(z; F_{\infty})$ in the unit disk for any $\tilde{\alpha} \in \tilde{S}$, we can prove

- (i) $s_q^{\tilde{\alpha}}(z; F_t)$ converges to $s_q^{\tilde{\alpha}}(z; F_{\infty})$ in \mathcal{D} ,
- (ii) for any $\tilde{\alpha}$, $\tilde{\beta}$ which satisfies $(\tilde{\alpha}, \tilde{\beta}) = \emptyset$ we get

$$\varepsilon(\tilde{\alpha})s_{g}^{\tilde{\alpha}}(z; F_{\infty}) = \varepsilon(\tilde{\beta})s_{g}^{\tilde{\beta}}(z; F_{\infty}),$$

(iii) $||s_a(z; F_\infty)||_r$ is bounded for some 0 < r < 1.

Thus $s_q(z; F_\infty) \in \mathcal{B}(z; F_\infty)$. This proves (2), hence the theorem is proved.

References

- [1] F. HOFBAUER and G. KELLER, Zeta functions and transfer operators, J. Reine Angew. Math. 352 (1984), 100-113.
- [2] Sh. Ito and Y. Takahashi, Markov subshifts and realization of β -transformations, J. Math. Soc. Japan 26 (1974), 33–35.
- [3] G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys. 96 (1984), 33-35.
- [4] ——, Generalized bounded variation and applications to piecewise monotonic transformations, Z. Wahrsch. Verw. Gebiete 69 (1985), 461–478.
- [5] ——, Markov extensions, zeta functions and Fredholm theory for piecewise invertible dynamical systems, preprint.
- [6] A. LASOTA and J. A. YORKE, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc. 186 (1973), 481–488.
- [7] M. Mori, On the decay of correlation for piecewise monotonic mappings I, Tokyo J. Math. 8 (1985), 389-414.

- [8] ——, On the decay of correlation for piecewise monotonic mappings II, Tokyo J. Math. 9 (1986), 135–161.
- [9] ——, Fredholm determinant for piecewise linear transformations, Osaka J. Math. 27 (1990), 81–116.
- [10] ——, Fredholm determinant for piecewise monotonic transformations, Osaka J. Math. 29 (1992), 497–529.
- [11] T. Morita, Random iteration of one-dimensional transformations, Osaka J. Math. 22 (1985), 489-518.
- [12] Y. Oono and Y. Takahashi, Chaos, external noise and Fredholm theory, Progr. Theoret. Phys. 63 (1980), 1804–1807.
- [13] Y. TAKAHASHI, Fredholm determinant of unimodal linear maps, Sci. Papers Coll. Arts Sci. Univ. Tokyo 31 (1981) 61-87.
- [14] ——, Shift orbit basis and realization of one dimensional maps, Osaka J. Math. 20 (1983), 599–629.
- [15] ——, Gibbs variational principle and Fredholm theory for one dimensional maps, Chaos and Statistical Methods, Springer (1983), 14–22.

Present Address:

DEPARTMENT OF MATHEMATICS, NATIONAL DEFENSE ACADEMY, YOKOSUKA, 239 JAPAN.

