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Introduction.

In this note, we shall show a nonexistence result for harmonic forms with values
in a vector bundle equipped with a Riemannian structure over a complete manifold.
Moreover in relation with the result, we shall construct examples of harmonic mappings
offinite total energy. This note is motivated by a recent paper ofElworthy and Rosenberg
[5].

Vanishing theorems and growth properties for such forms (including harmonic
mappings for example) have been investigated extensively by many authors from various
points of views. Donnelly and Xavier [4] studied, for instance, the spectrum of the
Laplacian acting on the square integrable forms on a negatively curved manifold and
showed a sharp lower bound for the spectrum under a certain pinching condition on
curvature. Their result gives in particular vanishing of $L^{2}$ harmonic forms. An integral
identity on differential forms, (1.1) in Section 1, plays a crucial role in their paper. We
remark that this formula was also obtained by Karcher and Wood [8] to study the
growth properties for harmonic forms. In this note, we shall derive a consequence of
the formula, which is stated in the following:

THEOREM 1. Let $M$ be a complete Riemannian manifold of dimension $m$ , and let $E$

be a real vector bundle endowed with a Riemannian structure. Suppose $M$ possesses a pole
$o$ (a point at which the exponential mapping induces a diffeomorphism). Then there are
no nontrivial square integrable, E-valued harmonic q-forms ($q=p$ or $m-p$) for a positive
integer $p$ less than $m/2$ if the radial curvature $K_{r}$ of $M$ satisfies either of the following
conditions:

(1) $-(\frac{m-p-1}{p})^{2}\leq K_{r}\leq-1$ ,
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(2) $-\frac{a}{1+r^{2}}\leq K_{r}\leq\frac{a^{\prime}}{1+r^{2}}$ .
where $a\geq 0$ and $a^{\prime}\in[0,1/4]$ are constants chosen in such a way that

$2+(m-p-1)\{1+(1-4a^{\prime})^{1/2}\}-p\{1+(1+4a)^{1/2}\}\geq 0$ ;

$(m-p)\{1+(1-4a^{\prime})^{1/2}\}-(p-1)\{1+(1+4a)^{1/2}\}-2\geq 0$ .
Using Witten’s deformation of Laplacian on forms, Elworthy and Rosenberg $[5_{-}^{-}$

showed, among other things, vanishing of $L^{2}$ harmonic p-forms under the assumptior
that

$-(\frac{m-p-1}{p})^{2}+\epsilon\leq K_{r}\leq-1$

for some positive $\epsilon$ . In fact, it follows from this pinching condition that the lower bound
of the spectrum of the Laplacian acting on square integrable p-forms is positive. To be
precise, we shall prove the following:

THEOREM 2. Let $M$ and $E$ be as in Theorem 1. Let $\sigma_{p}$ be the lower bound of th‘
spectrum of the Laplacian acting on square integrable, E-valued p-forms ofM. Then

$\sigma_{q}\geq\frac{1}{4}(m-1-p-ap)^{2}>0$ ,

if$p<(m-1)/2$ and the radial curvature $K_{r}$ of $M$ satisfies

$-a^{2}\leq K_{r}\leq-1$ with $1\leq a<\frac{m-1-p}{p}$ ,

where $q=p$ or $q=m-p$ .

We remark that the pinching condition in the case (1) of Theorem 1 is sharp for
$p=1$ . Indeed, a theorem due to Anderson [1] states that for any $m\geq 2,0<p<m$ and
$a>|m-2p|witha\geq 1$ , there exist complete simply connected manifolds $M$ of dimension
$m$ with

$-a^{2}\leq the$ sectional curvature of $M\leq-1$

such that the set of the $L^{2}$ harmonic p-forms on $M$ forms an infinite dimensional space.
As for the case (2) of Theorem 1, it is not clear whether the pinching condition there
could be relaxed. In this regard, we shall construct examples of harmonic mappings of
finite total energy in the last section of this note.

The author would like to thank Professor Steven Rosenberg for sending a preprint
of the paper [5]. A main result of this note, Theorem 1, was obtained after his lectures
at Kanazawa University in June, 1992. Recently the author has been informed that the
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integral formula proves useful in the study on the spectrum of nonnegatively curved
manifolds. The author would like to express his thanks to Professor Jos\’e F. Escobar
for sending a reprint of the paper [6].

1. An integral identity.

Let $M$ be a smooth m-dimensional Riemannian manifold and $E$ a real vector bundle
equipped with metric $\langle, \rangle$ and metric connection $\nabla$ . These have natural extensions
to E-valued forms and other tensors. Let $C^{\infty}(\wedge^{p}T^{*}M\otimes E)$ be the space of smooth
p-forms on $M$ with values in the vector bundle $E$. Relative to the connection $\nabla$ , we
define the exterior differential and codifferential operators $ d:C^{\infty}(\wedge^{p}T^{*}M\otimes E)\rightarrow$

$C^{\infty}(\wedge^{p+1}T^{*}M\otimes E)$ and $\delta:C^{\infty}(\wedge^{p}T^{*}M\otimes E)\rightarrow C^{\infty}(\wedge^{p-1}T^{*}M\otimes E)$ respectively by

$d\omega(X_{O}, \cdots, X_{p})=\sum_{j=0}^{p}(-1)^{j}(\nabla_{X_{j}}\omega)(X_{0}, \cdots,\hat{X}_{j},\cdots, X_{p})$ ,

$\delta\omega(X_{2}, \cdots, X_{p})=-\sum_{i=1}^{m}(\nabla_{e_{i}}\omega)(e_{i}, X_{2}, \cdots, X_{p})$ ,

where $\{e_{1}, \cdots, e_{m}\}$ is an orthonormal basis of the tangent space at a point of $M$. The
Laplacian on E-valued differential forms on $M$ is given by

$\Delta=d\delta+\delta d:C^{\infty}(\wedge pT^{*}M\otimes E)\rightarrow C^{\infty}(\wedge T^{*}M\otimes E)p$ .

Those $\omega\in C^{\infty}(\wedge^{p}T^{*}M\otimes E)$ such that $\Delta\omega=0$ are called E-valued harmonic p-forms. Let
us denote by $C_{0}^{\infty}(\wedge^{p}T^{*}M\otimes E)$ (resp. $L^{2}(\wedge^{p}T^{*}M\otimes E)$) the space of E-valued smooth
p-forms with compact support (resp. E-valued square integrable p-forms). Then $\Delta$ is a
positive symmetric operator on $C_{0}^{\infty}(\wedge^{p}T^{*}M\otimes E)$ . When $M$ is complete, it is known
that $\Delta$ extends uniquely to a self-adjoint operator, denoted by the same letter $\Delta$ , on
$L^{2}(\wedge^{p}T^{*}M\otimes E)$ , and further that for $\omega\in L^{2}(\wedge^{p}T^{*}M\otimes E),$ $\omega$ is harmonic if and only
if $\omega$ is closed and coclosed, $d\omega=\delta\omega=0$ . See [10] for these facts.

Given an E-valued smooth p-form $\omega$ , we define a symmetric covariant tensor of
degree 2 by

$ S_{\omega}(X, Y)=\neq|\omega|^{2}g_{M}(X, Y)-\langle\iota_{X}\omega, \iota_{Y}\omega\rangle$ .

The divergence of the tensor $S_{\omega}$ is given by

$divS_{\omega}(X)=\langle\iota_{X}(d\omega), \omega\rangle+\langle\iota_{X}\omega, \delta\omega\rangle$ .

Moreover for a vector field $V$, the divergence of the one-fom $\iota_{V}S_{\omega}$ is given by

div $(\iota_{V}S_{\omega})=(divS_{\omega})(V)+\neq|\omega|^{2}divV-\langle\omega^{\nabla V}, \omega\rangle$ .

Here we use the following notation:
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$\omega^{\nabla V}(X_{1}, \cdots, X_{p})=\omega(\nabla_{X_{1}}V, X_{2}, \cdots, X_{p})+\cdots+\omega(X_{1}, \cdots, \nabla_{X_{p}}V)$ .
Hence given a compact domain $D$ of $M$ with smooth boundary $\partial D$ , we derive

(1.1) $\int_{\partial D}S_{\omega}(V, v)=\int_{D}((divS_{\omega})(V)+\frac{1}{2}|\omega|^{2}$ div $V-\langle\omega^{\nabla V}, \omega\rangle)$ ,

where $v$ stands for the outer normal to $\partial D$ (cf. [4, (2.6)], [8, Proposition 2.5]). In
particular $fo\grave{r}\omega\in C_{0}^{\infty}(\wedge^{p}T^{*}M\otimes E)$ , this reads as follows:

(1.2) $\int_{M}\langle\iota_{V}d\omega, \omega\rangle+\langle\iota_{V}\omega, \delta\omega\rangle+\frac{1}{2}|\omega|^{2}divV-\langle\omega^{\nabla V}, \omega\rangle=0$ .

Now we shall assume that $M$ is complete and noncompact, $\omega$ is square integrable
and $V$ satisfies

$|V|\leq C_{1}(r+1)$

for some constant $C_{1}$ , where $r$ denotes the distance function to a fixed basepoint of $M$

We take a smooth function $\rho$ on $M$ which approximates the distanoe function $r$ in sucl
a way that

$|\nabla\rho|\leq C_{2}$ , $|\rho-r|\leq C_{2}$

for some constant $C_{2}$ . Then we can choose a divergent sequence $t_{k}$ of regular values $c$

$\rho$ such that

$\lim_{t_{lc^{\rightarrow\infty}}}\int_{\partial D\langle t_{lc})}|V||\omega|^{2}=0$ ,

where we set $D(t)=\{x\in M:\rho(x)\leq t\}$ . Indeed, by the coarea formula and the abov
assumption of $V$, we have

$\int_{-\infty}^{\infty}(t^{2}+1)^{-1/2}\int_{\partial D\{t)}|V||\omega|^{2}dt=\int_{M}\frac{|V||\nabla\rho||\omega|^{2}}{(|\rho|^{2}+1)^{1/2}}\leq C_{3}\int_{M}|\omega|^{2}<+\infty$

for some constant $C_{3}$ . Since

$|\int_{\partial D\langle t_{k})}S_{\omega}(V, v_{k})|\leq 2\int_{\partial D\langle t_{k})}|V||\omega|^{2}$ ,

it follows from (1.1) that

(1.3) $\lim_{t_{k}\rightarrow\infty}\int_{D\langle t_{lc})}((divS_{\omega})(V)+\frac{1}{2}|\omega|^{2}divV-\langle\omega^{\nabla V}, \omega\rangle)=0$ .

Now we shall assume further that $V$ is given by the gradient $\nabla f$ of a smoot
function $f$ on $M$. In this case, taking an orthonormal basis $\{e_{1}, \cdots, e_{m}\}$ so that $t1$
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hessian $\nabla^{2}f$ of $f$ is diagonal with respect to this basis, we have

$\langle\omega^{\nabla V}, \omega\rangle=\sum(\lambda_{i_{1}}+\cdots+\lambda_{i_{p}})|\omega(e_{i_{1}}i_{1}<\cdots<i_{p} e_{i_{p}})|^{2}$ ,

where $\lambda_{i}$ are the eigenvalues of the hessian of $f$ Putting them in order as $\lambda_{1}\geq\lambda_{2}\geq\cdots$

$\geq\lambda_{m}$ , we have

$\langle\omega^{\nabla V}, \omega\rangle\leq(\lambda_{1}+\cdots+\lambda_{p})|\omega|^{2}$

Hence we get

$\frac{1}{2}|\omega|^{2}divV-\langle\omega^{\nabla V}, \omega\rangle\geq\delta_{f,p}|\omega|^{2}$ ,

where we set

$\delta_{f,p}=+\{\lambda_{p+1}+\cdots+\lambda_{m}-\lambda_{1}-\cdots-\lambda_{p}\}$ .
Based on the observations which we have made, we can prove the following:

THEOREM 3. Let $M$ be a complete Riemannian manifold of dimension $m$ and $E$ a
real vector bundle over $M$ endowed with a Riemannian structure. Let $p$ be a positive integer
less than $m/2$ .

(I) Suppose there exists a smooth function $f$ on $M$ such that (i) $\delta_{f,p}$ is nonnegative
everywhere on $M$ andpositive somewhere; (ii) $|\nabla f|\leq C_{1}(r+1)$ for a positive constant $C_{1}$ ,
where $r$ stands for the distance to afixedpoint of M. Then there are no nontrivial square
integrable, E-valued harmonic q-forms, where $q=p$ or $q=m-p$ .

(II) Suppose there exists a smooth function $f$ on $M$ such that (iii) $\delta_{f,p}\geq C_{2}$ for a
positive constant $C_{2}$ ; (iv) $|\nabla f|\leq C_{3}$ for a positive constant $C_{3}$ . Then the lower bound $\sigma_{q}$

of the spectrum of the Laplacian $\Delta$ on $L^{2}(\wedge^{q}T^{*}M\otimes E)$ ($q=p$ or $m-p$) is boundedfrom
below by $(C_{2}/C_{3})^{2}$ .

PROOF. Without loss of generality, we may assume $q=p$ . (Otherwise we consider
$*\omega.)$ We shall first prove the assertion (I). Let $\omega$ be a square integrable, E-valued
harmonic p-form. Since $M$ is complete, $\omega$ is closed and coclosed. In particular, div $S_{\omega}$

vanishes identically. Hence by the assumption (ii) and (1.3), we have

$\lim\sup_{k}\int_{D_{k}}\delta_{f,p}|\omega|\leq 0$

for some sequence of domains $D_{k}$ which exhausts $M$. This implies together with the
assumption (i) that $\omega$ must vanish on an open set and hence everywhere on $M$, since $\omega$

is harmonic. This completes the proof of (I).
So far as the proof of the second assertion (II) is concerned, we apply (1.2) and

obtain

$\int_{M}(|d\omega|+|\delta\omega|)|\omega||\nabla f|^{2}\geq\int_{M}\delta_{f,p}|\omega|^{2}$
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for compactly supported $\omega$ . Therefore we have by the assumptions (iii), (iv) and the
Cauchy-Schwartz inequality

$\int_{M}\langle\omega, \Delta\omega\rangle=\int_{M}|d\omega|^{2}+|\delta\omega|^{2}\geq(\frac{C_{2}}{C_{3}})^{2}\int_{M}|\omega|^{2}$

for compactly supported $\omega$ . This holds for $\omega$ which belongs to the domain $D(\Delta)$ of $\Delta$

in $L^{2}(\wedge^{p}T^{*}M\otimes E)$ . This proves the assertion (II).

The differential $ d\phi$ of a smooth mapping $\phi$ of $M$ into another Riemannian manifold
$N$ is considered as a $\phi^{*}TN$-valued l-form over $M$. In this case, the tensor $S_{d\phi}$ is called
the stress-energy tensor of $\phi$ and the divergence is given by

$divS_{d\phi}=-\langle\tau_{\phi}, d\phi\rangle$ ,

where $\tau_{\phi}$ denotes the tension field of the mapping $\phi$ (cf. [2]). Therefore if $\phi$ is harmonic
namely, $\tau_{\phi}\equiv 0$ , then $divS_{d\phi}\equiv 0$ . Thus we have the following.

COROLLARY 4. Let $M$ be a complete Riemannian manifold of dimension $m$ whid
admits a smooth function $f$ as in Theorem 3 (I) with $p=1$ . Then any harmonic $mappin\mathfrak{x}$

of $M$ into another Riemannian mamfold has infinite total energy unless the mapping $i!$

constant.

REMARK. The identity (1.1) still holds for the case $p=0$ , namely, for a smootl
section $\omega$ of $E$, if we understand $\omega^{\nabla V}=0$ . Therefore Theorem 3 is true for this case. W$

note that $\delta_{f,O}=(1/2)\Delta f$.

2. Proofs of Theorems 1 and 2.

Let $M=(M, g)$ be a complete Riemannian manifold of dimension $m$ with a pole $0$

We take first two continuous functions $k_{1}$ and $k_{2}$ on $[0, \infty$ ) in such a way that

$k_{2}\circ r\leq the$ radial curvature $ K_{r}\leq k_{1}\circ\gamma$ ,

where $r$ stands for the distance function to the pole $0$ and the radial curvature is $b\rceil$

definition the sectional curvature ofplanes tangent to the radial vector $\nabla r$ . Let $J_{i}(i=1,2$

be the solutions of the classical Jacobi equations:

$J_{i}^{\prime\prime}+k_{i}J_{i}=0$ ,

subject to the initial conditions:

$J_{i}(0)=0$ , $J_{i}^{\prime}(0)=1$ .
We assume that $J_{1}$ is positive on $(0, \infty)$ . Then it follows from the hessian compariso]
theorem (cf. [7]) that



$L^{2}$ HARMONIC FORMS 461

$\frac{J_{1}^{\prime}(r)}{J_{1}(r)}(g-dr\otimes dr)\leq\nabla^{2}r\leq\frac{J_{2}^{\prime}(r)}{J_{2}(r)}(g-dr\otimes dr)$

on $M\backslash \{0\}$ . Hence if we take $f=\neq r^{2}$ , we can derive a lower bound for $\delta_{f,p}$ as follows:

$\delta_{J,p}\geq\frac{1}{2}\min\{1+(m-1-p)r\frac{J_{1}^{\prime}\circ r}{J_{1}\circ r}pr\frac{J_{2}^{\prime}\circ r}{J_{2}\circ r},$ $-1+(m-p)r\frac{J_{1}^{\prime}\circ r}{J_{1}\circ r}(p-1)r\frac{J_{2}^{\prime}\circ r}{J_{2}\circ r}\}$ .

Now in the case:

$k_{1}(t)\equiv-1$ , $k_{2}(t)=-(\frac{m-1-p}{p}I^{2}$

it is easy to see that $\delta_{f,p}>1$ . As for the case:

$k_{1}(r)=\frac{a^{\prime}}{1+r^{2}}$ $(0\leq a^{\prime}\leq\frac{1}{4})$ ,

we can deduce that

$k_{2}(r)=-\frac{a}{1+r^{2}}$ $(a\geq 0)$ ,

$\frac{J_{1}^{\prime}(r)}{J_{1}(r)}>\frac{A^{\prime}}{r}$ if $0<a^{\prime}\leq\frac{1}{4}$ ; $\frac{J_{1}^{\prime}(r)}{J_{1}(r)}=\frac{1}{r}$ if $a^{\prime}=0$ ,

where we set $A^{\prime}=\neq\{1+(1-4a^{\prime})^{1/2}\}$ , and also that

$\frac{J_{2}^{\prime}(r)}{J_{2}(r)}<\frac{A}{r}$ if $a>0$ ; $\frac{J_{2}^{\prime}(r)}{J_{2}(r)}=\frac{1}{r}$ if $a=0$ ,

where we set $A=\neq\{1+(1+4a)^{1/2}\}$ . Therefore we see that

$\delta_{f,p}>+$ min $\{1+(m-1-p)A^{\prime}-pA, -1+(m-p)A^{\prime}-(p-1)A\}$ .

Hence if $a$ and $a^{\prime}$ satisfy the condition that the right-hand side of this inequality is
non-positive, then $\delta_{f,p}$ is positive on $M$ . Thus Theorem 1 follows from Theorem 3 (I).
This completes the proof of Theorem 1.

Suppose now that $p<(m-1)/2$ and

$-a^{2}\leq K_{r}\leq-1$ with $1\leq a<\frac{m-1-p}{p}$ .

Then choosing $f=r$ in the above proof, we have

$\delta_{r,p}\geq\frac{1}{2}\{(m-1-p)\frac{\cosh r}{\sinh r}ap\frac{\cosh ar}{\sinh ar}\}$

on $M\backslash \{0\}$ . Since the right-hand side of this inequality is bounded from below by
$(m-1-p-ap)/2$ , we obtain
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$\delta_{r,p}>\neq(m-1-p-ap)>0$ .
Although the distance function $r$ is not smooth at the pole $0$ , it is easy to see that tht
identity (1.2) still holds with $V=\nabla r$, because $|\nabla r|=1$ on $M\backslash \{0\}$ . Hence we have

$\int_{M}\langle\omega, \Delta\omega\rangle=\int_{M}|d\omega|^{2}+|\delta\omega|^{2}\geq\frac{1}{4}(m-1-p-ap)^{2}\int_{M}|\omega|^{2}$

for $\omega\in D(\Delta)\subset L^{2}(\wedge^{p}T^{*}M\otimes E)$ . This proves Theorem 2.

REMARK. The estimate in Theorem 2 is sharper than that in Theorem 3.201
Donnelly and Xavier [4], because they use $(\neq)\{\sum_{1}^{m}\lambda_{i}-2p\lambda_{1}\}$ instead of $\delta_{r,p}$, whert
$\lambda_{i}$ : $\lambda_{m}=0<\lambda_{m-1}\leq\cdots\leq\lambda_{1}$ are as before the eigenvalues of the hessian of $r$ .

3. Examples.

In relation to Corollary 4, we first show examples of harmonic maps with finitt
total energy.

We shall denote by $g_{\xi}$ a rotationally symmetric Riemannian metric on $R^{m}$ which
can be expressed as

$g_{\xi}=dt^{2}+\xi(t)^{2}d\theta^{2}$

in polar coordinates $(t, \theta)$ , where $\xi$ is a smooth function on $[0, \infty$ ) such that

(3.1) $\xi(0)=0$ , $\xi^{\prime}(0)=1$ and $\xi>0$ on $(0, \infty)$ .
We write $R_{\xi}^{m}$ for the Riemannian manifold $(R^{m}, g_{\xi})$ . Let $\{Z_{i}\}_{i=1,2,3}$ be a left invari
ant orthonormal frame field on the unit 3-sphere $S^{3}$ such that $[Z_{1}, Z_{2}]=2Z_{3}$

$[Z_{2}, Z_{3}]=2Z_{1}$ , and $[Z_{3}, Z_{1}]=2Z_{2}$ . We denote by $\Omega_{i}$ the dual forms of $Z_{i}$ and conside
a (unitary symmetric) Riemannian metric $g_{\eta,\lambda}$ on $R^{4}$ of the form:

$g_{\eta,\lambda}=dt^{2}+\eta(t)^{2}(\Omega_{1}^{2}+\Omega_{2}^{2})+\lambda(t)^{2}\Omega_{3}^{2}$ ,

where $\eta$ and $\lambda$ also satisfy (3.1). Let $\psi:S^{3}\rightarrow S^{2}$ be the Hopf fibering and assume tha
$Ker(d\psi)=Z_{3}$ . Given a smooth function $\alpha:(0, T)\rightarrow(O, \infty)$ , define a map $\Psi:R_{\eta,\lambda}^{4}(T)^{1}$

$\{0\}\rightarrow R_{\xi}^{3}$ by

$\Psi(t, \theta)=(\alpha(t), \psi(\theta))$ ,

where $0<T\leq+\infty,$
$R_{\eta,\lambda}^{4}=(R^{4}, g_{\eta.’\lambda})$ and $R_{\eta,\lambda}^{4}(T)$ stands for the metric ball around th $($

origin of radius $T$. Then the condltion that $\Psi$ be harmonic is described in the followin $\{$

equation on $\alpha$ :

(3.2) $\alpha^{\prime\prime}(t)+p(t)\alpha^{\prime}(t)-q(t, \alpha)=0$ on $(0, T)$ ,

where we set
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$p(t)=2\frac{\eta^{\prime}}{\eta}+\frac{\lambda^{\prime}}{\lambda}$ ,

Since the energy density of $\Psi$ is given by

$q(t, s)=8\frac{\xi^{\prime}(s)\xi(s)}{\eta(t)^{2}}$ .

$e(\Psi)=\alpha^{\prime}(t)^{2}+4\frac{\xi(\alpha(t))^{2}}{\eta(t)^{2}}$ ,

$\Psi:R_{\eta,\lambda}^{4}(T)\backslash \{0\}\rightarrow R_{\xi}^{3}$ has finite total energy if and only if

$\int_{0}^{T}\alpha^{\prime}(t)^{2}\eta(t)^{2}\lambda(t)dt<+\infty$ , $\int_{0}^{T}\xi(\alpha(t))^{2}\lambda(t)dt<+\infty$ .

In what follows, we assume that $0\leq\xi^{\prime}<C$ for some constant $C$ . Then given two
positive numbers $t_{0}$ and $s_{0}$ , there exists a monotone increasing solution $\alpha:(0, \infty)\rightarrow(0, \infty)$

of equation (3.2) with $ T=\infty$ such that $\alpha(t_{0})=s_{0}$ and $\lim_{t\rightarrow 0}\alpha(t)=0$ (cf. [9]). Hence the
fundamental regularity theory of harmonic mappings asserts that $\Psi$ defines a harmonic
map of $R_{\eta,\lambda}^{4}$ into $R_{\xi}^{3}$ .

Now in the following two cases, the harmonic map $\Psi:R_{\eta,\lambda}^{4}\rightarrow R_{\xi}^{3}$ has finite total
energy.

Case 1: $\eta(t)=c_{1}t^{a}$ and $\lambda(t)=c_{2}t^{b}$ for large $t$ , where $a,$
$b$ and $c_{*}$ are constants chosen

in such a way that

$c_{*}>0$ , $2a+b-1>0$ , $b+1<0$ .
Case 2: $\eta(t)=c_{1}e^{at}$ and $\lambda(t)=c_{2}e^{bt}$ for large $t$ , where $a,$

$b$ and $c_{*}$ are constants
chosen in such a way that

$c_{*}>0$ , $2a+b>0$ , $b<0$ .
REMARKS. (i) In the both cases, the harmonic maps have bounded images. We

recall here a result by Cheng and Yau [3] saying that a complete Riemannian manifold
admits no nonconstant subharmonic functions bounded from above, if the volume of
the metric ball of radius $r$ around a basepoint is bounded from above by $Cr^{2}$ for some
constant $C$ .

(ii) The radial curvature $K_{r}$ of the plane spanned by the radial vector $\partial/\partial r$ and a
vector $ X=x_{1}Z_{1}/\eta+x_{2}Z_{2}/\eta+x_{3}Z_{3}/\lambda$ is given by

$K_{r}=-\frac{\eta^{\prime\prime}}{\eta}(x_{1}^{2}+x_{2}^{2})-\frac{\lambda^{\prime\prime}}{\lambda}x_{3}^{2}$ .

Hence in Case 1, the radial curvature $K_{r}$ satisfies

$-\frac{\max\{a(a-1),b(b-1)\}}{r^{2}}\leq K_{r}\leq-\frac{\min\{a(a-1),b(b-1)\}}{r^{2}}$
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outside a compact set. Moreover, the sectional curvature of $R_{\eta,\lambda}^{4}$ decays to zero at a
quadratic rate $O(r^{-2})$ . As for Case (2), the radial curvature $K_{r}$ satisfies

$-\max\{a^{2}, b^{2}\}\leq K_{r}\leq$ -min $\{a^{2}, b^{2}\}$

outside a compact set.

Finally we shall consider a warped product $M=R\times_{\nu^{2}}N$ of $R$ and a compacl
Riemannian manifold $N$ of dimension $m-1$ with warping function $w,$ $0<w\in C^{\infty}(R)$

Then we have a harmonic function $h$ on $M$ defined by

$h(t, x)=a+b\int_{0}^{t}\frac{ds}{w^{m-1}(s)}$

for $(t, x)\in M$, where $a$ and $b$ are constants. The Dirichlet integral of $h$ is given by

$\int_{M}|\nabla h|^{2}=Vol(N)\int_{-\infty}^{\infty}|\frac{du}{dt}|^{2}w^{m-1}(t)dt=Vol(N)\int_{-\infty}^{\infty}\frac{dt}{w^{m-1}(t)}$ .

Hence $M$ admits nontrivial square integrable harmonic one-forms if

$\int_{-\infty}^{\infty}\frac{dt}{w^{m-1}(t)}dt<+\infty$ .

We observe that the eigenvalues of the hessian of a function $f(t, x)=t$ are given b3
$\{0, w^{\prime}(t)/w(t), \cdots, w^{\prime}(t)/w(t)\}$ , and hence those of the hessian of $f(t, x)=|t|$ or
$M\backslash \{0\}\times N$ are $0,$ $sign(t)w^{\prime}(t)/w(t),$ $\cdots,$ $sign(t)w^{\prime}(t)/w(t)$ .
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