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Abstract. Let $p_{1},$ $\rho_{2},$ $\cdots,$ $\rho_{2g+1}$ be rotation vectors for periodic points of a homeomorphism on
an orientable surface of genus $g>1$ . Assume that the convex hull of the set $\{\rho_{1}, \rho_{2}, \cdots, \rho_{2g+1}\}$ ,

Conv$(p_{1}, \rho_{2}, \cdots, \rho_{2g+1})$ , has nonempty interior. We will give a sufficient condition for the existence of a
dense subset of Conv$(\rho_{1}, \rho_{2}, \cdots, \rho_{2g+1})$ that is realized by periodic points.

$0$. Introduction.

Last several years, rotation sets for homeomorphisms on surfaces have been
intensively investigated. Especially for tori and annuli, this investigation has given us
valuable knowledge on chaotic behavior ofhomeomorphisms. In [7] Pollicott introduced
a concept of rotation sets in higher genus case, and obtained a sufficient condition in
terms of this rotation set for a homeomorphism to have positive topological entropy.
In the case of tori, it has been shown that for any rational point in the interior of a
rotation set, there exists a periodic point of which rotation vector is this rational point
[3], however, in the case of a surface of genus greater than 1, there is no corresponding
result.

In this paper, we will show a result on the relation between rational rotation vectors
and periodic points. Here as a concept of rotation sets, we adopt the one introduced
by Pollicott. To state our main theorem, we need some preparation. Let $N$ be a surface
of genus greater than 1, and let $g:N\rightarrow N$ be a homeomorphism of $N$ isotopic to the
identity. Let $P=\{y_{1}, \cdots, y_{n}\}$ be a set of fixed points of $g$ . Isotoping $g$ to leave $P$ fixed,

if necessary, let us assume that $g$ is continuously differentiable and normal at $P$. Then
as in [1], to blow up $N$ at $P$, one obtains a surface $N_{P}$ and an induced $\mu omeomorphism$

$\hat{g}:N_{P}\rightarrow N_{P}$ . We will use the similar symbols for another surface $M$, a homeomorphism
$f$ of $M$ and its fixed point set $Q$ , i.e. $M_{Q},$ $;$. For a set of periodic points $P$, let $k(P)$

denote the least common period of $y_{j},$ $j=1,$ $\cdots,$ $n$ , and for $B\subset R^{m}$ , let Conv $B$ denote
the convex hull of $B$ . Let us call two periodic points of $f$ m-Nielsen equivalent if they

Received December 9, 1993
Revised February 10, 1994



214 EIJIROU HAYAKAWA

are Nielsen equivalent as fixed points of $f^{m}$ for a positive integer $m$ , and let us define
an m-Nielsen class of periodic points by an equivalence class under this equivalence
relation, and for distinct two homeomorphisms $f,$ $g$ , let us also call an $f$-periodic point
and a g-periodic point m-Nielsen equivalent if they are Nielsen equivalent as fixed points
of $f^{m}$ and $g^{m}$ . Now we state the main theorem.

THEOREM. Let $M$ be a connected orientable closed surface of genus $g>1$ , and let
$f:M\rightarrow M$ be a homeomorphism isotopic to the identity. Let $x_{1},$ $x_{2},$ $\cdots,$ $x_{N}$ be periodic
points of $f$, where $N=2g+1$ , and let $\rho_{1},$ $\rho_{2},$ $\cdots,$ $\rho_{N}$ be rotation vectorsfor these periodic
points. Set $P=\{x_{1}, x_{2}, \cdots, x_{N}\}$ .

Assume that Conv$(\rho_{1}, \rho_{2}, \cdots, \rho_{N})$ has an interiorpoint $\rho_{0}$ corresponding to aperiodic
point of the blown up homeomorphism $f$ belonging to an $mk(P)$-Nielsen class ofnon-zero
index for some $m>0$ . Then

i) $f$ is isotopic to a generalized pseudo-Anosov homeomorphism,
ii) there exists a dense subset of Conv$(\rho_{1}, \rho_{2}, \cdots, \rho_{N})$ that consists of rotation

vectors for periodic points.

In \S 1, we give definitions and preliminary argument, and then two lemmas are
shown. \S 2 is dovoted to prove the main theorem.

1. Preliminaries.

Let $M$ be a connected orientable closed surface, and let $f:M\rightarrow M$ be a homeo-
morphism isotopic to the identity. We will give a definition of rotation sets as in [7],
but in a slightly modified way. To make the definition, let us give some preparation.
Gluing $M\times\{1\}\subset M\times[0,1]$ to $M\times\{0\}$ by identifying $(x, 1)$ with $(f(x), 0)$, the mapping
torus $V_{f}$ is obtained, and under this identification, the suspension flow $f_{t}$ on $V_{f}$ with
respect to $f$ is defined, i.e. $f_{t}(x, s)=(f^{[t+s]}(x), t+s-[t+s])$ . Let $C^{o}(M, S^{1})$ be the set of
continuous maps from $M$ to $S^{1}=\{z\in C||z|=1\}$ . Then the set of homotopy equivalence
classes of $C^{0}(M, S^{1})$ is naturally identified with $H^{1}(M;Z)$ as follows. For any closed
path $\gamma:S^{1}\rightarrow M$ and $[\alpha]\in C^{0}(M, S^{1})/\sim$ , set $[\alpha]([\gamma])=\deg(\alpha\circ\gamma)$, where $[\gamma]$ denotes an
element of $H_{1}(M;Z)$ represented by $\gamma$ . Similarly we may regard $H^{1}(V_{f};Z)$ as
$ C^{o}(V_{f}, S^{1})/\sim$ .

Set $\pi(t)=e^{2\pi it}$ for $t\in R$, then one obtains a universal cover of $S^{1}$ . For any
$\alpha\in C^{0}(V_{f}, S^{1})$ and $x\in M$, set $\alpha_{x}(t)=\alpha\circ f_{t}(x, 0)$ for $t\geq 0$ . Lifting $\alpha_{x}$ : $[0, +\infty$ ) $\rightarrow S^{1}$ to $R$

with respect to $\pi$ , one obtains a function $\tilde{\alpha}_{x}$ , and set

$\Lambda_{x,T}(\alpha)=\frac{1}{T}(\tilde{\alpha}_{x}(T)-\tilde{\alpha}_{x}(0))$ for $T>0$ .

Thus to assign $\alpha$ to $\Lambda_{x.T}(\alpha)$, one obtains functionals $\Lambda_{x,T}$ on $C^{0}(V_{f}, S^{1})$ . Let $F_{x}$ be
the set of limit points of $\{\Lambda_{x,T}\}_{T>0}$ . As in [7], for each $x,$ $\Lambda_{x}\in F_{x}$ takes constant values
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on homotopy equivalence classes. Hence we may consider $\Lambda_{x}\in H_{1}(V_{f};R)$ . Here, since
$f$ is isotopic to the identity, $V_{f}$ is homeomorphic to $M\times S^{1}$ . According to Hamstrom
[4], the identity component of the group of the homeomorphisms of an oriented closed
surface of genus $>1$ is contractible. Therefore any two isotopies joining the identity
to $f$ are mutually homotopic. Equivalently, the identification of $V_{f}$ with $M\times S^{1}$ is
unique up to homotopy. Especially the identification $H_{1}(V_{f};R)\cong H_{1}(M;R)\oplus R$ is
unique, and an easy calculation shows that

$\Lambda_{x}=(\rho_{x}, 1)\in H_{q}(M;R)\oplus R$ .

The argument in the last paragraph implies that $\rho_{x}$ depends only on the
homeomorphism $f$, and hence, set

$\rho(x, f)=\{\rho_{x}|\Lambda_{x}=(\rho_{x}, 1)\in F_{x}\}$ ,

and let us call $p(x, f)$ the rotation set of $f$ at $x$ . Set $\rho(f)=\bigcup_{x\in M}\rho(x,$ $ f\gamma$, and let us call
this the rotation set of $f$ By definition, if $x$ is a periodic point, then $\rho(x, f)$ consists of
only one point, and thus let us call this point $a$ rotation vector. Note that for the 2-torus
case, the Hamstrom’s theorem stated above does not hold, and thus in order to define
rotation sets, one needs to specify the lift of a homeomorphism to the universal covering
(cf. [3]).

We will show two lemmas. To do this, we need a preliminary argument. Let us
give a homeomorphism from $V_{f}$ to $M\times S^{1}$ . Let $H_{f}$ : $M\times I\rightarrow M$ be an isotopy from the
identity to $f$, i.e. $H_{f}(x, 0)=x$ and $H_{f}\{x,$ $1$ ) $=f(x)$ , and for $(x, t)\in M\times I$, set

$\tilde{H}_{j}\langle x,$ $t$ ) $=(H_{f}(x, t),$ $t$).

Then clearly $\tilde{H}_{f}$ : $M\times I\rightarrow M\times I$ is a homeomorphism, and this induces a
homeomorphism $\overline{H_{f}}$ : $V_{f}\rightarrow M\times S^{1}$ , because $\tilde{H}_{f}(f(x), 0)=(f(x), 0)$ and $\tilde{H}_{f}(x, 1)=$

$(f(x), 1)$ . The suspension flow $f_{t}$ induces the flow on $M\times S^{1}$ that is equivalent to $f_{t}$

under $\overline{H_{f}}$ . We identify the flow $f_{t}$ on $V_{f}$ with this induced flow on $M\times S^{1}$ , and denote
this by the same symbol. Thus we may deal with suspension flows for distinct
homeomorphisms, both of which are isotopic to the identity, as flows on the same
ambient manifold $M\times S^{1}$ , and by [4] again, we may culculate rotation sets by using
these induced flows on $M\times S^{1}$ instead of suspension flows originally defined on mapping
tori.

Let us give the first lemma.

LEMMA 1. Let $x$ be a periodic point of $f$ with period $n$ . Then

$\rho(x, f^{n})=n\rho(x, f)$ .
The proof of this lemma is an easy exercise. The second lemma is as follows.

LEMMA 2. Let $f$ and $g$ be homeomorphisms on $M$ isotopic to the identity, and let
$x$ and $y$ be periodic points of $f$ and $g$ with the same least period $n$ . Assume that the f-orbit
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of $x$ is globally shadowed by the g-orbit of $y$ . Then $\rho(x, f)=\rho(y, g)$ .
$PR\infty F$ . Let us recall that $x$ and $y$ are n-Nielsen equivalent [5]. By Lemma 1, it

is sufficient to show that $\rho(x, f^{n})=\rho(y, g^{n})$ .
Let $H_{f^{n}}$ and $H_{g^{n}}$ be isotopies from the identity to $f^{n}$ and $g^{n}$ . As in the argument

previous to Lemma 1, one obtains homeomorphisms

$\overline{H_{f^{n}}}:V_{f^{n}}\rightarrow M\times S^{1}$ , $\overline{H_{g^{n}}}:V_{g^{n}}\rightarrow M\times S^{1}$

Under these homeomorphisms, the closed orbits $f_{[0.1]}^{n}(x, 0)$ and $g_{[0.1]}^{n}(y, 0)$ are regarded
as closed paths $C_{f},$ $C_{g}$ : $I\rightarrow M\times S^{1}$ defined by $C_{J}(s)=(H_{f^{n}}(x, s),$ $s$) and $C_{g}(s)=(H_{g^{n}}(x, s),$ $s$).
Then we will show that $C_{f}$ is homotopic to $C_{g}$ . By the argument previous to Lemma
1, this implies the lemma.

To do this, we will define paths in $M$ from $H_{f^{n}}(x, t)$ to $H_{g^{n}}(y, t)$ . Let $\gamma$ be a path
in $M$ from $x$ to $y$, and let us define a homotopy from $f^{n}$ to $g^{n}$ by

$G(z, s)=\left\{\begin{array}{l}H_{f^{n}}(z,1-2s)\\H_{g^{n}}(z,2s-1)\end{array}\right.$ $ifif$ $0\leq s\leq 1/21/2\leq s\leq 1$

.
Then the desired paths are given by

$p_{t}(s)=\left\{\begin{array}{l}H_{f^{n}}(\gamma(s),t)\\G(\gamma(s),s)\\H_{g^{n}}(\gamma(s),t)\end{array}\right.$
$forforfor$ $(1+t)/2\leq s\leq 1(1-t)/2\leq s\leq(1+t)/20\leq s\leq(1-t)/2.$

’

Since $H_{f^{n}}(z, t)=G(z, (1-t)/2)$ and $H_{g^{n}}(z, t)=G(z, (1+t)/2)),$ $p_{t}$ is well-deflned, and
moreover $p_{t}$ continuously depends on $t$ .

Now let us define a continuous map $A:I\times I\rightarrow M\times S^{1}$ by $A(t, s)=(p_{t}(s), t)$ . Then
recalling that $H_{f^{n}}(z, 0)=H_{g^{n}}(z, 0)=z$ , we have $A(O, s)=(\gamma(s), 0)$ and $A(1, s)=(G(\gamma(s), s),$ $1$ ).
Sinoe $x$ and $y$ are n-Nielsen equivalent, and since $G$ is a homotopy from $f^{n}$ to $g^{n},$

$\gamma$ is
homotopic to $G(\gamma(\cdot), \cdot)$ leaving end points fixed. This implies that the two orbits $C_{f}$ ,
$C_{g}$ are homotopic, and hence, completes the proof. $\square $

REMARK. In [6], Jiang shows a similar result. Lemma 2 is a generalization of this
Jiang’s result.

2. Proof of Theorem.

As stated in the paragraph previous to Lemma 1, we may calculate rotation sets
by using a flow $f_{t}$ on $M\times S^{1}$ . Here, let us show the calculation. Take $[\alpha]\in$

$H^{1}(M\times S^{1};Z)$ , and choose a representative $\alpha^{*}(x, s)=\alpha_{1}(x)\alpha_{2}(s)\in C^{0}(M\times S^{1}, S^{1})$ . Set
$\alpha_{x}^{1}(t)=\alpha_{1}\circ pr_{1}\circ f_{t}(x, 0)$ for $t\geq 0$ , where $pr_{1}$ denotes the projection $M\times S^{1}\rightarrow M$. Note
that in \S 1, we use $\alpha^{*}$ to define the rotation set at $x$ . Let us take a lift $\tilde{\alpha}_{x}^{1}$ of $\alpha_{x}^{1}$ to $R$ with
respect to $\pi$ . Then one obtains functionals
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$\Lambda_{x,T}^{1}(\alpha)=\frac{1}{T}(\tilde{\alpha}_{x}^{1}(T)-\tilde{\alpha}_{x}^{1}(0))$

on $C^{0}(M, S^{1})$ , and as the set of limit points of $\{\Lambda_{x,T}^{1}\}_{T>0}$ , which is denoted by $F_{x}^{1}$ , one
obtains the rotation set at $x$, i.e. $\rho(x, f)=F_{x}^{1}$ .

Now we have done all preparation, and so we starta proof of the main result.

$PR\infty F$ OF THEOREM. Let us denote the periodic point with rotation vector $\rho_{0}$ by
$\overline{z}$, and set $g=f^{mk\langle P)}$ . As in \S 0, one obtains $\hat{g}=f^{mk\langle P)}$ : $M_{P}\rightarrow M_{P}$ . Let $h:M_{P}\rightarrow M_{P}$ be the
Thurston canonical form for $\hat{g}$ . Collapsing each boundary component of $M_{P}$ to a point,
$M$ is again obtained, and $\hat{h}$ induces a homeomorphism $h:M\rightarrow M$with $h|M-P=\hat{h}|IntM_{P}$

under natural identification.
Let us show that $h$ is generalized pseudo-Anosov. Since $h\simeq f^{mk\langle P)}$ , this implies that

$f$ is isotopic to a generalized pseudo-Anosov homeomorphism. The argument in [7]
shows that $\hat{h}$ is either pseudo-Anosov or reducible, so let us show that $\hat{h}$ is not reducible.
Suppose by contradiction that $\hat{h}$ is reducible. Let $\gamma$ be one of reducing curves. Then as
in [7], $\gamma$ separates $M$ into two components $M_{1},$ $M_{2}$ . Since $h$ maps $M_{1}$ and $M_{2}$ into
themselves respectively, we have

$\rho(h)=(\rho(h)\cap H_{1}(M_{1}, \partial M_{1};R))\cup(\rho(h)\cap H_{1}(M_{2}, \partial M_{2};R))$ $(*)$

where $H_{1}(M_{i}, \partial M_{i};R),$ $i=1,2$ , are regarded as subgroups of $H_{1}(M;R)$ . Since the Nielsen
class, with respect to $\hat{g}$ , including $\overline{z}$ has non-zero index, there exists a fixed point $w$

of $k$ to be Nielsen equivalent to $\overline{z}$ (cf. Theorem 3 in Chapter IV, $E[2]$ ). Then by Lem-
ma 2, $\rho(g,\overline{z})=\rho(h, w)$ , and by Lemma 1, $\rho(g,\overline{z})=\{mk(P)\rho_{0}\}$ . Hence we have $\rho(h, w)=$

$\{mk(P)p_{0}\}$ . Since $h$ is isotopic to $f^{mk\langle P)}$ leaving $P$ fixed, it is easy to show that
$p(x_{i}, f^{mk(P)})=p(x_{i}, h)$ with $i=1,2,$ $\cdots,$ $N$. By Lemma 1 again, $\rho(x_{i}, h)=\{mk(P)p_{i}\}$ .
This and the assumption that $\rho_{0}\in IntConv(\rho_{1}, \rho_{2}, \cdots, \rho_{N})$ imply that $ mk(P)\rho_{0}\in$

Int Conv $\rho(h)\cap\rho(h)$, but this contradicts the equality $t*$ ). This completes the proof
of i).

We will show the assersion ii). It is sufficient to show that $h$ has a set of periodic
points with set of rotation vectors dense in Conv$(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \cdots, \rho_{N}^{\prime})$ , where $\rho_{i}^{\prime}=$

$mk(P)\rho_{i},$ $i=1,2,$ $\cdots,$ $N$. Because by Handel’s result [5], there exist periodic points
of $f^{mk(P)}$ that are globally shadowed by periodic points of $h$ , and then Lemmas 1 and 2
imply the assertion ii).

Let us show that for any vector $\rho$ with rational $coordinate\in IntConv(\rho_{1}^{\prime},$ $\rho_{2}^{\prime},$ $\cdots$ ,
$\rho_{N}^{\prime})$ , there exists a convergent sequence $\{v_{n}\}$ to $p$ such that there exist periodic
points $y_{n}$ of $h$ with rotation vectors $v_{n}$ . Since $\rho\in IntConv(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \cdots, \rho_{N}^{\prime})$ , there exist
positive integers $m_{1},$ $m_{2},$ $\cdots,$ $m_{N}$ with

$\rho=\frac{1}{\sum_{i=1}^{N}m_{i}}\sum_{j=1}^{N}m_{j}\rho_{j}$ .

Let us take a Markov partition for the pseudo-Anosov map $\hslash;M_{P}\rightarrow M_{P}$ . Recalling
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that components of $\partial M_{P}$ correspond to the fixed points $x_{1},$ $x_{2},$ $\cdots,$ $x_{N}$ , and that $\acute{k}$

preserves components of $\partial M_{P}$, for each $x_{j}$ there exists a finite symbol sequence $C_{j}$ such
that $ C_{j}^{\infty}=\cdots C_{j}C_{j}C_{j}\cdots$ corresponds to $x_{j}$ under the composite of the semi-conjugacy,
that is between the symbolic dynamics and $h$, and the natural projection from $M_{P}$ to
$M$. Let us denote the $m$ times repeat of $C_{j}$ by $C_{j}^{m}$ . By the transitivity of pseudo-
Anosov homeomorphisms, there exist symbol sequences $D_{i}$ such that $C_{i}D_{i}C_{i+1}$ for
$l=1,2,$ $\cdots,$ $N-1$ and $C_{N}D_{N}C_{1}$ are admissible. Let us take infinitely repeated sequences

$E_{r}=(C_{1}^{rm_{1}}D_{1}C_{2}^{m_{2}}D_{2}\cdots D_{N-}{}_{1}C_{N}^{m_{N}}D_{N})^{\infty}$ ,

and let us take periodic points $y_{r}$ of $h$ that correspond to the sequences $E_{r}$ . Then we
assert that the sequence of the rotation vectors $v_{r}$ for $y_{r}$ converges to $\rho$ . This assertion
implies ii) as stated above.

Let $c_{i}$ and $d_{i}$ denote the length of $C_{i}$ and $D_{i}$ . For each $i$, let us consider an admissible
sequence $C_{i}^{pm}{}^{t}C_{i}^{\langle r-2p)m_{l}}C_{i}^{pm_{1}}F$, where $F$ is any positively infinite sequence, and let us take
a point $z\in M$ corresponding to this sequence. Then for any $\epsilon>0$, there exists a positive
integer $p_{0}$ such that for any $p\geq p_{0}$ ,

$ d(h^{n}(z), h^{n}(x_{i}))<\epsilon$ for $pm_{i}c_{i}\leq n\leq(r-p)m_{i}c_{i}$ .
Let us take $[\alpha]\in H^{1}(M\times S^{1};l$ and choose a representative $\alpha^{*}(x, s)=\alpha_{1}(x)$

$\alpha_{2}(s)\in C^{O}(M\times S^{1}, S^{1})$ . As stated in the first paragraph of this section, let us define a
map $\alpha_{x}^{1}$ and its lift $\tilde{\alpha}_{x}^{1}$ . Then there exists a constant $K>0$ such that for any $x\in M$,

$|\tilde{\alpha}_{x}^{1}(1)-\tilde{\alpha}_{x}^{1}(0)|<K$ ,

and for any $\epsilon>0$, by the argument in the previous paragraph, one can choose a positive
integer $p_{1}$ such that for any $p>p_{1}$ ,

$|\tilde{\alpha}_{z}^{1}(n)-\tilde{\alpha}_{x_{1}}^{1}(n)|<\epsilon$ for $pm_{i}c_{i}\leq n\leq(r-p)m_{i}c_{i}$

for $z$ as taken in the previous paragraph. Thus, recalling that

$\sum_{j=1}^{N}m_{j}\rho=\sum_{j=1}^{N}m_{j}\rho_{j}^{\prime}$

and

$\rho_{\acute{j}}([\alpha])=\tilde{\alpha}_{x_{j}}^{1}(m)-\tilde{\alpha}_{x_{j}}^{1}(m-1)$ for any $m$ ,

then, for $r>2p_{1}$ and $n=k\sum_{j=1}^{N}(rm_{j}c_{j}+d_{j})$, we have

$\frac{1}{n}|(\tilde{\alpha}_{y_{r}}^{1}(n)-\tilde{\alpha}_{y,}^{1}(0))-np([\alpha])|$

$<\frac{2k(\sum_{j=1}^{N}(r-2p_{1})m_{j}c_{j})}{n}\epsilon+\frac{k(\sum_{j=1}^{N}(2p_{1}m_{j}c_{j}+d_{j}))}{n}(K+|\rho([\alpha])|)$
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$<2\epsilon+\frac{(\sum_{j=1}^{N}(2p_{1}m_{j}c_{j}+d_{j}))}{\sum_{j=1}^{N}(rm_{j}c_{j}+d_{j})}(K+|\rho([\alpha])|)$ .

This inequality implies that $v,\rightarrow p$ as $ r\rightarrow\infty$ . This completes the proof. $\square $
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