A Sufficient Condition for the Existence of Periodic Points of Homeomorphisms on Surfaces

Eijirou HAYAKAWA
Toyama University
(Communicated by T. Nagano)

Abstract

Let $\rho_{1}, \rho_{2}, \cdots, \rho_{2 g+1}$ be rotation vectors for periodic points of a homeomorphism on an orientable surface of genus $g>1$. Assume that the convex hull of the set $\left\{\rho_{1}, \rho_{2}, \cdots, \rho_{2 g+1}\right\}$, $\operatorname{Conv}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{2 g+1}\right)$, has nonempty interior. We will give a sufficient condition for the existence of a dense subset of $\operatorname{Conv}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{2 g+1}\right)$ that is realized by periodic points.

0. Introduction.

Last several years, rotation sets for homeomorphisms on surfaces have been intensively investigated. Especially for tori and annuli, this investigation has given us valuable knowledge on chaotic behavior of homeomorphisms. In [7] Pollicott introduced a concept of rotation sets in higher genus case, and obtained a sufficient condition in terms of this rotation set for a homeomorphism to have positive topological entropy. In the case of tori, it has been shown that for any rational point in the interior of a rotation set, there exists a periodic point of which rotation vector is this rational point [3], however, in the case of a surface of genus greater than 1 , there is no corresponding result.

In this paper, we will show a result on the relation between rational rotation vectors and periodic points. Here as a concept of rotation sets, we adopt the one introduced by Pollicott. To state our main theorem, we need some preparation. Let N be a surface of genus greater than 1 , and let $g: N \rightarrow N$ be a homeomorphism of N isotopic to the identity. Let $P=\left\{y_{1}, \cdots, y_{n}\right\}$ be a set of fixed points of g. Isotoping g to leave P fixed, if necessary, let us assume that g is continuously differentiable and normal at P. Then as in [1], to blow up N at P, one obtains a surface N_{P} and an induced homeomorphism $\hat{g}: N_{P} \rightarrow N_{P}$. We will use the similar symbols for another surface M, a homeomorphism f of M and its fixed point set Q, i.e. M_{Q}, \hat{f}. For a set of periodic points P, let $k(P)$ denote the least common period of $y_{j}, j=1, \cdots, n$, and for $B \subset \boldsymbol{R}^{m}$, let Conv B denote the convex hull of B. Let us call two periodic points of $f m$-Nielsen equivalent if they

[^0]Revised February 10, 1994
are Nielsen equivalent as fixed points of f^{m} for a positive integer m, and let us define an m-Nielsen class of periodic points by an equivalence class under this equivalence relation, and for distinct two homeomorphisms f, g, let us also call an f-periodic point and a g-periodic point m-Nielsen equivalent if they are Nielsen equivalent as fixed points of f^{m} and g^{m}. Now we state the main theorem.

Theorem. Let M be a connected orientable closed surface of genus $g>1$, and let $f: M \rightarrow M$ be a homeomorphism isotopic to the identity. Let $x_{1}, x_{2}, \cdots, x_{N}$ be periodic points of f, where $N=2 g+1$, and let $\rho_{1}, \rho_{2}, \cdots, \rho_{N}$ be rotation vectors for these periodic points. Set $P=\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}$.

Assume that $\operatorname{Conv}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{N}\right)$ has an interior point ρ_{0} corresponding to a periodic point of the blown up homeomorphism \hat{f} belonging to an $m k(P)$-Nielsen class of non-zero index for some $m>0$. Then
i) f is isotopic to a generalized pseudo-Anosov homeomorphism,
ii) there exists a dense subset of $\operatorname{Conv}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{N}\right)$ that consists of rotation vectors for periodic points.

In §1, we give definitions and preliminary argument, and then two lemmas are shown. $\S 2$ is dovoted to prove the main theorem.

1. Preliminaries.

Let M be a connected orientable closed surface, and let $f: M \rightarrow M$ be a homeomorphism isotopic to the identity. We will give a definition of rotation sets as in [7], but in a slightly modified way. To make the definition, let us give some preparation. Gluing $M \times\{1\} \subset M \times[0,1]$ to $M \times\{0\}$ by identifying $(x, 1)$ with $(f(x), 0)$, the mapping torus V_{f} is obtained, and under this identification, the suspension flow f_{t} on V_{f} with respect to f is defined, i.e. $f_{t}(x, s)=\left(f^{[t+s]}(x), t+s-[t+s]\right)$. Let $C^{0}\left(M, S^{1}\right)$ be the set of continuous maps from M to $S^{1}=\{z \in C| | z \mid=1\}$. Then the set of homotopy equivalence classes of $C^{0}\left(M, S^{1}\right)$ is naturally identified with $H^{1}(M ; Z)$ as follows. For any closed path $\gamma: S^{1} \rightarrow M$ and $[\alpha] \in C^{0}\left(M, S^{1}\right) / \sim$, set $[\alpha]([\gamma])=\operatorname{deg}(\alpha \circ \gamma)$, where $[\gamma]$ denotes an element of $H_{1}(M ; Z)$ represented by γ. Similarly we may regard $H^{1}\left(V_{f} ; Z\right)$ as $C^{0}\left(V_{f}, S^{1}\right) / \sim$.

Set $\pi(t)=e^{2 \pi i t}$ for $t \in R$, then one obtains a universal cover of S^{1}. For any $\alpha \in C^{0}\left(V_{f}, S^{1}\right)$ and $x \in M$, set $\alpha_{x}(t)=\alpha \circ f_{t}(x, 0)$ for $t \geq 0$. Lifting $\alpha_{x}:[0,+\infty) \rightarrow S^{1}$ to R with respect to π, one obtains a function $\tilde{\alpha}_{x}$, and set

$$
\Lambda_{x, T}(\alpha)=\frac{1}{T}\left(\tilde{\alpha}_{x}(T)-\tilde{\alpha}_{x}(0)\right) \quad \text { for } \quad T>0
$$

Thus to assign α to $\Lambda_{x, T}(\alpha)$, one obtains functionals $\Lambda_{x, T}$ on $C^{0}\left(V_{f}, S^{1}\right)$. Let F_{x} be the set of limit points of $\left\{\Lambda_{x, T}\right\}_{T>0}$. As in [7], for each $x, \Lambda_{x} \in F_{x}$ takes constant values
on homotopy equivalence classes. Hence we may consider $\Lambda_{x} \in H_{1}\left(V_{f} ; R\right)$. Here, since f is isotopic to the identity, V_{f} is homeomorphic to $M \times S^{1}$. According to Hamstrom [4], the identity component of the group of the homeomorphisms of an oriented closed surface of genus >1 is contractible. Therefore any two isotopies joining the identity to f are mutually homotopic. Equivalently, the identification of V_{f} with $M \times S^{1}$ is unique up to homotopy. Especially the identification $H_{1}\left(V_{f} ; \boldsymbol{R}\right) \cong H_{1}(M ; \boldsymbol{R}) \oplus R$ is unique, and an easy calculation shows that

$$
\Lambda_{x}=\left(\rho_{x}, 1\right) \in H_{1}(M ; \boldsymbol{R}) \oplus R .
$$

The argument in the last paragraph implies that ρ_{x} depends only on the homeomorphism f, and hence, set

$$
\rho(x, f)=\left\{\rho_{x} \mid \Lambda_{x}=\left(\rho_{x}, 1\right) \in F_{x}\right\},
$$

and let us call $\rho(x, f)$ the rotation set of f at x. Set $\rho(f)=\bigcup_{x \in M} \rho(x, f)$, and let us call this the rotation set of f. By definition, if x is a periodic point, then $\rho(x, f)$ consists of only one point, and thus let us call this point a rotation vector. Note that for the 2-torus case, the Hamstrom's theorem stated above does not hold, and thus in order to define rotation sets, one needs to specify the lift of a homeomorphism to the universal covering (cf. [3]).

We will show two lemmas. To do this, we need a preliminary argument. Let us give a homeomorphism from V_{f} to $M \times S^{1}$. Let $H_{f}: M \times I \rightarrow M$ be an isotopy from the identity to f, i.e. $H_{f}(x, 0)=x$ and $H_{f}(x, 1)=f(x)$, and for $(x, t) \in M \times I$, set

$$
\tilde{H}_{f}(x, t)=\left(H_{f}(x, t), t\right) .
$$

Then clearly $\tilde{H}_{f}: M \times I \rightarrow M \times I$ is a homeomorphism, and this induces a homeomorphism $\overline{H_{f}}: V_{f} \rightarrow M \times S^{1}$, because $\tilde{H}_{f}(f(x), 0)=(f(x), 0)$ and $\tilde{H}_{f}(x, 1)=$ $(f(x), 1)$. The suspension flow f_{t} induces the flow on $M \times S^{1}$ that is equivalent to f_{t} under $\overline{H_{f}}$. We identify the flow f_{t} on V_{f} with this induced flow on $M \times S^{1}$, and denote this by the same symbol. Thus we may deal with suspension flows for distinct homeomorphisms, both of which are isotopic to the identity, as flows on the same ambient manifold $M \times S^{1}$, and by [4] again, we may culculate rotation sets by using these induced flows on $M \times S^{1}$ instead of suspension flows originally defined on mapping tori.

Let us give the first lemma.
Lemma 1. Let x be a periodic point of f with period n. Then

$$
\rho\left(x, f^{n}\right)=n \rho(x, f) .
$$

The proof of this lemma is an easy exercise. The second lemma is as follows.
Lemma 2. Let f and g be homeomorphisms on M isotopic to the identity, and let x and y be periodic points of f and g with the same least period n. Assume that the f-orbit
of x is globally shadowed by the g-orbit of y. Then $\rho(x, f)=\rho(y, g)$.
Proof. Let us recall that x and y are n-Nielsen equivalent [5]. By Lemma 1, it is sufficient to show that $\rho\left(x, f^{n}\right)=\rho\left(y, g^{n}\right)$.

Let $H_{f^{n}}$ and $H_{g^{n}}$ be isotopies from the identity to f^{n} and g^{n}. As in the argument previous to Lemma 1, one obtains homeomorphisms

$$
\overline{H_{f^{n}}}: V_{f^{n}} \rightarrow M \times S^{1}, \quad \overline{H_{g^{n}}}: V_{g^{n}} \rightarrow M \times S^{1}
$$

Under these homeomorphisms, the closed orbits $f_{[0,1]}^{n}(x, 0)$ and $g_{[0,1]}^{n}(y, 0)$ are regarded as closed paths $C_{f}, C_{g}: I \rightarrow M \times S^{1}$ defined by $C_{f}(s)=\left(H_{f^{n}}(x, s), s\right)$ and $C_{g}(s)=\left(H_{g^{n}}(x, s), s\right)$. Then we will show that C_{f} is homotopic to C_{g}. By the argument previous to Lemma 1 , this implies the lemma.

To do this, we will define paths in M from $H_{f^{n}}(x, t)$ to $H_{g^{n}}(y, t)$. Let γ be a path in M from x to y, and let us define a homotopy from $f^{\boldsymbol{n}}$ to $g^{\boldsymbol{n}}$ by

$$
G(z, s)= \begin{cases}H_{f^{n}}(z, 1-2 s) & \text { if } \quad 0 \leq s \leq 1 / 2 \\ H_{g^{n}}(z, 2 s-1) & \text { if } \quad 1 / 2 \leq s \leq 1\end{cases}
$$

Then the desired paths are given by

$$
p_{t}(s)=\left\{\begin{array}{lll}
H_{f n}(\gamma(s), t) & \text { for } & 0 \leq s \leq(1-t) / 2, \\
G(\gamma(s), s) & \text { for } & (1-t) / 2 \leq s \leq(1+t) / 2, \\
H_{g^{n}}(\gamma(s), t) & \text { for } & (1+t) / 2 \leq s \leq 1
\end{array}\right.
$$

Since $H_{f^{n}}(z, t)=G(z,(1-t) / 2)$ and $\left.H_{g^{n}}(z, t)=G(z,(1+t) / 2)\right), p_{t}$ is well-defined, and moreover p_{t} continuously depends on t.

Now let us define a continuous map $A: I \times I \rightarrow M \times S^{1}$ by $A(t, s)=\left(p_{t}(s), t\right)$. Then recalling that $H_{f^{n}}(z, 0)=H_{g^{n}}(z, 0)=z$, we have $A(0, s)=(\gamma(s), 0)$ and $A(1, s)=(G(\gamma(s), s), 1)$. Since x and y are n-Nielsen equivalent, and since G is a homotopy from f^{n} to g^{n}, γ is homotopic to $G(\gamma(\cdot), \cdot)$ leaving end points fixed. This implies that the two orbits C_{f}, C_{g} are homotopic, and hence, completes the proof.

Remark. In [6], Jiang shows a similar result. Lemma 2 is a generalization of this Jiang's result.

2. Proof of Theorem.

As stated in the paragraph previous to Lemma 1, we may calculate rotation sets by using a flow f_{t} on $M \times S^{1}$. Here, let us show the calculation. Take $[\alpha] \epsilon$ $H^{1}\left(M \times S^{1} ; Z\right)$, and choose a representative $\alpha^{*}(x, s)=\alpha_{1}(x) \alpha_{2}(s) \in C^{0}\left(M \times S^{1}, S^{1}\right)$. Set $\alpha_{x}^{1}(t)=\alpha_{1} \circ p r_{1} \circ f_{t}(x, 0)$ for $t \geq 0$, where $p r_{1}$ denotes the projection $M \times S^{1} \rightarrow M$. Note that in $\S 1$, we use α^{*} to define the rotation set at x. Let us take a lift $\tilde{\alpha}_{x}^{1}$ of α_{x}^{1} to R with respect to π. Then one obtains functionals

$$
\Lambda_{x, T}^{1}(\alpha)=\frac{1}{T}\left(\tilde{\alpha}_{x}^{1}(T)-\tilde{\alpha}_{x}^{1}(0)\right)
$$

on $C^{0}\left(M, S^{1}\right)$, and as the set of limit points of $\left\{\Lambda_{x, \pi}^{1}\right\}_{T>0}$, which is denoted by F_{x}^{1}, one obtains the rotation set at x, i.e. $\rho(x, f)=F_{x}^{1}$.

Now we have done all preparation, and so we start a proof of the main result.
Proof of Theorem. Let us denote the periodic point with rotation vector ρ_{0} by \bar{z}, and set $g=f^{m k(P)}$. As in §0, one obtains $\hat{g}=\hat{f}^{m k(P)}: M_{P} \rightarrow M_{P}$. Let $\hat{h}: M_{P} \rightarrow M_{P}$ be the Thurston canonical form for \hat{g}. Collapsing each boundary component of M_{P} to a point, M is again obtained, and \hat{h} induces a homeomorphism $h: M \rightarrow M$ with $h|M-P=\hat{h}| \operatorname{Int} M_{P}$ under natural identification.

Let us show that h is generalized pseudo-Anosov. Since $h \simeq f^{m k(P)}$, this implies that f is isotopic to a generalized pseudo-Anosov homeomorphism. The argument in [7] shows that \hat{h} is either pseudo-Anosov or reducible, so let us show that \hat{h} is not reducible. Suppose by contradiction that \hat{h} is reducible. Let γ be one of reducing curves. Then as in [7], γ separates M into two components M_{1}, M_{2}. Since h maps M_{1} and M_{2} into themselves respectively, we have

$$
\begin{equation*}
\rho(h)=\left(\rho(h) \cap H_{1}\left(M_{1}, \partial M_{1} ; R\right)\right) \cup\left(\rho(h) \cap H_{1}\left(M_{2}, \partial M_{2} ; R\right)\right) \tag{*}
\end{equation*}
$$

where $H_{1}\left(M_{i}, \partial M_{i} ; R\right), i=1,2$, are regarded as subgroups of $H_{1}(M ; R)$. Since the Nielsen class, with respect to \hat{g}, including \bar{z} has non-zero index, there exists a fixed point w of \hat{h} to be Nielsen equivalent to \bar{z} (cf. Theorem 3 in Chapter IV, E [2]). Then by Lemma $2, \rho(g, \bar{z})=\rho(h, w)$, and by Lemma $1, \rho(g, \bar{z})=\left\{m k(P) \rho_{0}\right\}$. Hence we have $\rho(h, w)=$ $\left\{m k(P) \rho_{0}\right\}$. Since h is isotopic to $f^{m k(P)}$ leaving P fixed, it is easy to show that $\rho\left(x_{i}, f^{m k(P)}\right)=\rho\left(x_{i}, h\right)$ with $i=1,2, \cdots, N$. By Lemma 1 again, $\rho\left(x_{i}, h\right)=\left\{m k(P) \rho_{i}\right\}$. This and the assumption that $\rho_{0} \in \operatorname{Int} \operatorname{Conv}\left(\rho_{1}, \rho_{2}, \cdots, \rho_{N}\right)$ imply that $m k(P) \rho_{0} \in$ Int $\operatorname{Conv} \rho(h) \cap \rho(h)$, but this contradicts the equality (*). This completes the proof of i).

We will show the assersion ii). It is sufficient to show that h has a set of periodic points with set of rotation vectors dense in $\operatorname{Conv}\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \cdots, \rho_{N}^{\prime}\right)$, where $\rho_{i}^{\prime}=$ $m k(P) \rho_{i}, i=1,2, \cdots, N$. Because by Handel's result [5], there exist periodic points of $f^{m k(P)}$ that are globally shadowed by periodic points of h, and then Lemmas 1 and 2 imply the assertion ii).

Let us show that for any vector ρ with rational coordinate $\in \operatorname{Int} \operatorname{Conv}\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \cdots\right.$, ρ_{N}^{\prime}), there exists a convergent sequence $\left\{v_{n}\right\}$ to ρ such that there exist periodic points y_{n} of h with rotation vectors v_{n}. Since $\rho \in \operatorname{Int} \operatorname{Conv}\left(\rho_{1}^{\prime}, \rho_{2}^{\prime}, \cdots, \rho_{N}^{\prime}\right)$, there exist positive integers $m_{1}, m_{2}, \cdots, m_{N}$ with

$$
\rho=\frac{1}{\sum_{i=1}^{N} m_{i}} \sum_{j=1}^{N} m_{j} \rho_{j}
$$

Let us take a Markov partition for the pseudo-Anosov map $\hat{h}: M_{P} \rightarrow M_{P}$. Recalling
that components of ∂M_{P} correspond to the fixed points $x_{1}, x_{2}, \cdots, x_{N}$, and that \hat{h} preserves components of ∂M_{P}, for each x_{j} there exists a finite symbol sequence C_{j} such that $C_{j}^{\infty}=\cdots C_{j} C_{j} C_{j} \cdots$ corresponds to x_{j} under the composite of the semi-conjugacy, that is between the symbolic dynamics and \hat{h}, and the natural projection from M_{P} to M. Let us denote the m times repeat of C_{j} by C_{j}^{m}. By the transitivity of pseudoAnosov homeomorphisms, there exist symbol sequences D_{i} such that $C_{i} D_{i} C_{i+1}$ for $i=1,2, \cdots, N-1$ and $C_{N} D_{N} C_{1}$ are admissible. Let us take infinitely repeated sequences

$$
E_{r}=\left(C_{1}^{r m_{1}} D_{1} C_{2}^{r m_{2}} D_{2} \cdots D_{N-1} C_{N}^{r m_{N}} D_{N}\right)^{\infty}
$$

and let us take periodic points y_{r} of h that correspond to the sequences E_{r}. Then we assert that the sequence of the rotation vectors v_{r} for y_{r} converges to ρ. This assertion implies ii) as stated above.

Let c_{i} and d_{i} denote the length of C_{i} and D_{i}. For each i, let us consider an admissible sequence $C_{i}^{p m_{i}} C_{i}^{(r-2 p) m_{i}} C_{i}^{p m_{i}} F$, where F is any positively infinite sequence, and let us take a point $z \in M$ corresponding to this sequence. Then for any $\varepsilon>0$, there exists a positive integer p_{0} such that for any $p \geq p_{0}$,

$$
d\left(h^{n}(z), h^{n}\left(x_{i}\right)\right)<\varepsilon \quad \text { for } \quad p m_{i} c_{i} \leq n \leq(r-p) m_{i} c_{i}
$$

Let us take $[\alpha] \in H^{1}\left(M \times S^{1} ; Z\right)$ and choose a representative $\alpha^{*}(x, s)=\alpha_{1}(x)$ $\alpha_{2}(s) \in C^{0}\left(M \times S^{1}, S^{1}\right)$. As stated in the first paragraph of this section, let us define a map α_{x}^{1} and its lift $\tilde{\alpha}_{x}^{1}$. Then there exists a constant $K>0$ such that for any $x \in M$,

$$
\left|\tilde{\alpha}_{x}^{1}(1)-\tilde{\alpha}_{x}^{1}(0)\right|<K,
$$

and for any $\varepsilon>0$, by the argument in the previous paragraph, one can choose a positive integer p_{1} such that for any $p>p_{1}$,

$$
\left|\tilde{\alpha}_{z}^{1}(n)-\tilde{\alpha}_{x_{i}}^{1}(n)\right|<\varepsilon \quad \text { for } \quad p m_{i} c_{i} \leq n \leq(r-p) m_{i} c_{i}
$$

for z as taken in the previous paragraph. Thus, recalling that

$$
\sum_{j=1}^{N} m_{j} \rho=\sum_{j=1}^{N} m_{j} \rho_{j}^{\prime}
$$

and

$$
\rho_{j}^{\prime}([\alpha])=\tilde{\alpha}_{x_{j}}^{1}(m)-\tilde{\alpha}_{x_{j}}^{1}(m-1) \quad \text { for any } m
$$

then, for $r>2 p_{1}$ and $n=k \sum_{j=1}^{N}\left(r m_{j} c_{j}+d_{j}\right)$, we have

$$
\begin{aligned}
& \frac{1}{n}\left|\left(\tilde{\alpha}_{y_{r}}^{1}(n)-\tilde{\alpha}_{y_{r}}^{1}(0)\right)-n \rho([\alpha])\right| \\
< & \frac{2 k\left(\sum_{j=1}^{N}\left(r-2 p_{1}\right) m_{j} c_{j}\right)}{n} \varepsilon+\frac{k\left(\sum_{j=1}^{N}\left(2 p_{1} m_{j} c_{j}+d_{j}\right)\right)}{n}(K+|\rho([\alpha])|)
\end{aligned}
$$

$$
<2 \varepsilon+\frac{\left(\sum_{j=1}^{N}\left(2 p_{1} m_{j} c_{j}+d_{j}\right)\right)}{\sum_{j=1}^{N}\left(r m_{j} c_{j}+d_{j}\right)}(K+|\rho([\alpha])|)
$$

This inequality implies that $v_{r} \rightarrow \rho$ as $r \rightarrow \infty$. This completes the proof.

References

[1] R. Bowen, Entropy and the fundamental group, Lecture Notes in Math. 668 (1978), Springer, 21-29.
[2] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Company (1970).
[3] J. Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), 107-115.
[4] M.-E. Hamstrom, Homotopy groups of the space of homeomorphisms on a 2-manifold, Illinois J. Math. 10 (1966), 563-573.
[5] M. Handel, Global shadowing of pseudo-Anosov homeomorphisms, Ergod. Th. Dynam. Sys. 5 (1985), 373-377.
[6] B. Jiang, A characterization of fixed point classes, Contemp. Math. Amer. Math. Soc. 72 (1988), 157-160.
[7] M. Pollicott, Rotation sets for homeomorphisms and homology, Trans. Amer. Math. Soc. 331 (1992), 881-894.

Present Address:

Faculty of Engineering, Toyama University, Gofuku, Toyama, 930 Japan.

[^0]: Received December 9, 1993

