A Note on the Scaling Limit of a Complete Open Surface

Yoshiko KUBO

Japan Women's University
(Communicated by T. Nagano)

1. Introduction.

It is interesting to study the geometric meaning of total curvature of complete open surfaces. The influence of the total curvature of a Riemannian plane on the Lebesgue measure of rays were investigated first by M. Maeda [3], [4], K. Shiga [5] and later by K. Shiohama, T. Shioya and M. Tanaka [6], etc. The author proved in [2] that a pointed Hausdorff approximation map between connected, complete and noncompact Riemannian 2-manifolds with finite total curvature has a natural continuous extension to their ideal boundaries with the Tits metrics. In view of the above results it is natural to expect that the scaling limit of such an M will be a flat cone generated by the ideal boundary $M(\infty)$ of M equipped with the Tits metric d_{∞}.

Let M be a connected, complete and noncompact Riemannian 2-manifold with a finite total curvature. The Huber theorem implies that M is finitely connected. A compact set $C \subset M$ is by definition a core of M iff $M \backslash \operatorname{Int}(C)$ consists of k tubes U_{1}, \cdots, U_{k} such that each U_{i} is homeomorphic to $S^{1} \times[0, \infty)$ and such that each ∂U_{i} is a piecewise smooth simple closed curve. If $\kappa\left(\partial U_{i}\right)$ is the total geodesic curvature of ∂U_{i}, then the Gauss-Bonnet theorem implies $c(C)+\sum_{i=1}^{k} \kappa\left(\partial U_{i}\right)=2 \pi \chi(M)$. Moreover

$$
s_{i}:=\kappa\left(\partial U_{i}\right)-c\left(U_{i}\right)
$$

is nonnegative and independent of the choice of tubes having the same end as U_{i} and

$$
2 \pi \chi(M)-c(M)=\sum_{i=1}^{k} s_{i}
$$

In [9] T. Shioya proved that M admits an ideal boundary $M(\infty)$ with the Tits metric d_{∞} such that ($M(\infty), d_{\infty}$) is the union of circles with lengths s_{1}, \cdots, s_{k}.

Let d be the distance function induced from the Riemannian metric of M. We denote by $\left(M_{t} ; o\right)$ for an arbitrary fixed point $o \in M$ and for $t>0$ the scaling by t of the
pointed metric space ($M, d ; o$), and we write

$$
\left(M_{t} ; o\right):=(M, d / t ; o)
$$

Our result is stated as
Theorem 1.1. The pointed Hausdorff limit of $\left(M_{i} ; o\right)$ as $t \rightarrow \infty$ is isometric to the flat cones $K\left(M(\infty), d_{\infty} ; o^{*}\right)$ having the same vertices at o^{*} and generated by the ideal boundary of M.

Here $K\left(M(\infty), d_{\infty} ; o^{*}\right)$ is the union of k flat cones $K\left(U_{1}(\infty), d_{\infty} ; o^{*}\right), \cdots$, $K\left(U_{k}(\infty), d_{\infty} ; o^{*}\right)$ such that each $K\left(U_{i}(\infty), d_{\infty} ; o^{*}\right)$ is generated by $\left(U_{i}(\infty), d_{\infty}\right)$ which is the circle of length s_{i} and has its vertex at o^{*}.

Theorem 1.1 provides simple and intuitive consequences which have been proved in [7] and [8]. Let $B(p ; t)$ be the metric t-ball around $p \in M$ and $S(p ; t):=$ $\{x \in M: d(x, p)=t\}$. Let $A(t)$ and $L(t)$ be the area and the length of $B(p ; t)$ and $S(p ; t)$ respectively. Theorem 1.1 implies that the scaling limits of $B(p ; t)$ and $S(p ; t)$ are the unit ball and unit circle around o^{*} of $K\left(M(\infty), d_{\infty} ; o^{*}\right)$. Let $S_{p}(1) \subset T_{p} M$ be the unit circle and μ the Lebesgue measure of $S_{p}(1)$. Let $A_{p} \subset S_{p}(1)$ be the set of all unit vectors tangent to rays from p. Noticing that both $\lim _{t \rightarrow \infty} L(t)^{2} / A(t)$ and $\mu\left(A_{p}\right)$ are scaling invariant, we see that the following Corollary 1.2 is direct from Theorem 1.1.

Corollary 1.2. Let M be as in Theorem 1.1. Then

$$
\lim _{t \rightarrow \infty} \frac{L(t)^{2}}{A(t)}=2(2 \pi \chi(M)-c(M))
$$

and

$$
\lim _{j \rightarrow \infty} \mu\left(A_{p_{j}}\right)=s_{i}
$$

for all divergent sequence $\left\{p_{j}\right\} \subset U_{i}$.
For the notion of (pointed) Hausdorff limit, see [1].
I would like to express my thanks to Professor K. Shiohama for his valuable advices and his encouragement.

2. Preliminaries.

If M is as in our Theorem 1.1 we observe, by taking the scaling limit, that a core C shrinks to a point, say, o^{*}. The pointed Hausdorff limit of $\left(M_{i} ; o\right)$ at $t \rightarrow \infty$ is obtained by taking the limit $t \rightarrow \infty$ in the scaling by t of the pointed metric space ($M, d ; o$). We want to show that the Hausdorff limit of each U_{i} is the flat cone generated by $\left(U_{i}(\infty), d_{\infty}\right)$, which is a circle of length s_{i}. Because each U_{i} can be embedded isometrically into a Riemannian plane having total curvature $2 \pi-s_{i}$, we only need to consider a Riemannian
plane M with finite total curvature.
From now on let M be a Riemannian plane with finite total curvature. We define the ideal boundary $M(\infty)$ of a Riemannian plane M and the Tits metric d_{∞} of $M(\infty)$. Let $\gamma, \sigma:[0, \infty) \rightarrow M$ be arbitrary rays and $D(\gamma, \sigma) \subset M$ be the half plane bounded by γ, σ and a piecewise smooth curve c joining points on γ and σ such that c intersects orthogonally to γ and σ. Then $D(\sigma, \gamma)=M \backslash D(\gamma, \sigma)$. We put

$$
\begin{equation*}
L(\gamma, \sigma):=-c(D(\gamma, \sigma))-k(\partial D(\gamma, \sigma)) \tag{2.1}
\end{equation*}
$$

where $c(D(\gamma, \sigma))$ is the total curvature of $D(\gamma, \sigma)$ and $\kappa(\partial D(\gamma, \sigma))$ is the total geodesic curvature of c. Notice that $L(\gamma, \sigma)$ does not depend on the choice of the curve c. We also define $L(\sigma, \gamma)$ by the same way. It is proved in [10] that if γ is asymptotic to σ, then $L(\gamma, \sigma)=0$. Two rays γ and σ are called equivalent if $L(\gamma, \sigma)=0$ or $L(\sigma, \gamma)=0$. We denote the equivalent class of a ray γ by $\gamma(\infty)$ and the set of all equivalent classes by $M(\infty)$ which is called the ideal boundary of M. The Tits metric d_{∞} of $M(\infty)$ is given

$$
d_{\infty}(x, y)=\min \{L(\gamma, \sigma), L(\sigma, \gamma)\}, \quad x, y \in M(\infty)
$$

such that $\gamma(\infty)=x$ and $\sigma(\infty)=y$ respectively. The following facts proved by T. Shioya [10] and used here will be prepared. These facts are valid not only for Riemannian planes but for more general Riemannian 2-manifolds. Let M be a finitely connected compact complete noncompact Riemannian 2-manifold having finite total curvature with one end.

FACT 1. $\left(M(\infty), d_{\infty}\right)$ is isometric to a circle of the total length $2 \pi \chi(M)-c(M)$. In particular, $M(\infty)$ is a single point if $c(M)=2 \pi \chi(M)$.

Fact 2.

$$
\lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\gamma, \sigma))}{t}=L(\gamma, \sigma) .
$$

FACT 3. If $D(\gamma, \sigma)$ dose not have any ray emanating from p, then

$$
\lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\gamma, \sigma))}{t}=0 .
$$

Fact 4.

$$
d_{\infty}(\gamma(\infty), \sigma(\infty))=\min \left\{\lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\gamma, \sigma))}{t}, \lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\sigma, \gamma))}{t}\right\} .
$$

3. Proof of Theorem 1.1.

As stated at the beginning of Preliminaries, we only need for the proof of Theorem 1.1 to show that the Hausdorff limit of U_{i} is the cone $K\left(U_{i}(\infty), d_{\infty} ; o^{*}\right)$. This is equivalent
to show that a Riemannian plane M with finite total curvature has its scaling limit $K\left(M(\infty), d_{\infty} ; o^{*}\right.$). Rays on M are still rays on M_{t} for all $t>0$, and A_{p} for every fixed $p \in M$ leaves invariant under the scaling of metrics. Metrics ρ_{t} on A_{p} are induced in Lemma 3.1 such that $\lim _{t \rightarrow \infty}\left(A_{p}, \rho_{t}\right)$ is isometric to $\left(M(\infty), d_{\infty}\right)$. We then conclude the proof of Theorem 1.1 by showing in Proposition 3.2 that the pointed Hausdorff limit of $\left(M_{t} ; o\right)$ at $t \rightarrow \infty$ is isometric to $K\left(A_{p}, \rho_{\infty} ; p\right)$. We induce a metric ρ_{t} on A_{p} by

$$
\rho_{t}(\dot{\gamma}(0), \dot{\sigma}(0)):=\min \left\{\frac{L(S(p, t) \cap D(\gamma, \sigma))}{t}, \frac{L(S(p, t) \cap D(\sigma, \gamma))}{t}\right\}
$$

where γ and σ are rays emanating from p.
Lemma 3.1. The limit $\left(A_{p}, \rho_{\infty}\right)$ of $\left(A_{p}, \rho_{t}\right)$ as $t \rightarrow \infty$ is isometric to ($\left.M(\infty), d_{\infty}\right)$.
Proof. From Fact 2, we see that $\left(A_{p}, \rho_{t}\right)$ has a limit as $t \rightarrow \infty$. We have a natural correspondence between A_{p} and $M(\infty)$ by assigning $u \in A_{p}$ to $\gamma(\infty)$, where γ is a ray from p with $\dot{\gamma}(0)=u$. For $x, y \in M(\infty)$, let $\gamma(\infty)=x$ and $\sigma(\infty)=y$. From Fact 4, we get

$$
\begin{aligned}
\rho_{\infty}(\dot{\gamma}(0), \dot{\sigma}(0)) & =\min \left\{\lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\gamma, \sigma))}{t}, \lim _{t \rightarrow \infty} \frac{L(S(p, t) \cap D(\sigma, \gamma))}{t}\right\} \\
& =d_{\infty}(\gamma(\infty), \sigma(\infty))=d_{\infty}(x, y) .
\end{aligned}
$$

Proposition 3.2. For a base point $o \in M$ and for an arbitrary fixed point p, the pointed Hausdorff limit of $\left(M_{i} ; o\right)$ as $t \rightarrow \infty$ is isometric to the cone $K\left(A_{p}, \rho_{\infty} ; p\right)$ with the vertex at p generated by $\left(A_{p}, \rho_{\infty}\right)$.

Proof. For arbitrary points $x, y \in K\left(A_{p}, \rho_{\infty} ; p\right)$, there exist $u, v \in A_{p}$ and $a, b>0$ such that $x=a u$ and $y=b v$ respectively. On the cone $K\left(A_{p}, \rho_{\infty} ; p\right)$ we have

$$
\rho_{\infty}(x, y)^{2}=a^{2}+b^{2}-2 a b \cos \rho_{\infty}(u, v) .
$$

On the other hand, for sufficiently large $t>0$ we take rays γ and σ emanating from p such that $\dot{\gamma}(0)=u$ and $\dot{\sigma}(0)=v$ on M_{t}. Let τ_{t} be a minimizing geodesic joining $\gamma(t a)$ and $\sigma(t b)$, where we assume $a<b$. Let D_{t} be a disk bounded by the triangle whose vertices are at $p, \gamma(t a)$ and $\sigma(t a)$. If

$$
\alpha_{t}:=\angle(p, \gamma(t a), \sigma(t a)) \quad \text { and } \quad \beta_{t}:=\angle(p, \sigma(t a), \gamma(t a)),
$$

then $\lim _{t \rightarrow \infty} \alpha_{t}=\lim _{t \rightarrow \infty} \beta_{t}$ holds, see T. Shioya [10]. From Gauss-Bonnet theorem for D_{t} we get

$$
\alpha_{t}+\beta_{t}+\angle(u, v)-\pi=c\left(D_{t}\right) .
$$

Setting $\lim _{t \rightarrow \infty} D_{t}=D_{\infty}$, (2.1) gives

$$
I(\gamma, \sigma)=-c\left(D_{\infty}\right)+\angle(u, v),
$$

and we obtain

$$
\omega:=\lim _{t \rightarrow \infty} \alpha_{t}=\lim _{t \rightarrow \infty} \beta_{t}=\frac{1}{2}\left\{\pi-\left(\angle(u, v)-c\left(D_{\infty}\right)\right)\right\}=\frac{1}{2}\left(\pi-\rho_{\infty}(u, v)\right)
$$

Moreover, we have

$$
\lim _{t \rightarrow \infty} \frac{d(\gamma(t a), \sigma(t a))}{t}=2 a \cos \omega=2 a \sin \frac{\rho_{\infty}(u, v)}{2}
$$

The triangle $\Delta(\gamma(t a), \sigma(t a), \sigma(t b))$ on M_{t} converges as $t \rightarrow \infty$ to a plane triangle with two edge lengths $b-a, 2 a \sin \rho_{\infty}(u, v) / 2$ making an angle $\pi-\omega$ between them. Thus we get

$$
\begin{aligned}
\lim _{t \rightarrow \infty} d_{t}(\gamma(t a), \sigma(t b))^{2} & =(b-a)^{2}+4 a^{2} \sin ^{2} \frac{\rho_{\infty}(u, v)}{2}-4 a(b-a) \sin \frac{\rho_{\infty}(u, v)}{2} \cos (\pi-\omega) \\
& =a^{2}+b^{2}-2 a b \cos \rho_{\infty}(u, v)
\end{aligned}
$$

Noticing that for an arbitrary fixed point $p \in M \lim _{t \rightarrow \infty}(1 / t) d(o, p)=0$, we complete the proof.

References

[1] M. Gromov, J. Lafontaine and P. Pansu, Structures Métriques pour les Variétés Riemanniennes, Cedic-Nathan, Paris (1980).
[2] Y. Kubo, The extension of pointed Hausdorff approximation maps to the ideal boundaries of complete open surfaces, Japanese J. Math. 19 (1993), 343-351.
[3] M. Maeda, On existence of rays, Sci. Rep. Yokohama Nat. Univ. Sect. I 26 (1979), 1-4.
[4] M. Maeda, A geometric significance of total curvature on complete open surfaces, Geometry of Geodesics and Related Topics, Advanced Studies in Pure Math. 3 (1984), Kinokumiya, 451-458.
[5] K. Shiga, On a relation between the total curvature and the measure of rays, Tôhoku Math. J. 36 (1984), 149-157.
[6] K. Shiohama, T. Shioya and M. Tanaka, Mass of rays on complete open surfaces, Pacific J. Math. 143 (1990), 349-358.
[7] K. Shiohama, Total curvature and minimal areas of complete open surfaces, Proc. Amer. Math. Soc. 94 (1985), 310-316.
[8] K. Shiohama, An integral formula for the measure of rays on complete open surfaces, J. Differential Geom. 23 (1986), 197-205.
[9] T. Shioya, The ideal boundaries and global geometric properties of complete open surfaces, Nagoya Math. J. 120 (1990), 181-204.
[10] T. Shioya, The ideal boundaries of complete open surfaces, Tôhoku Math. J. 43 (1991), 37-59.

Present Address:
Department of Mathematics, Japan Women's University,
Mejirodai, Bunkyo-ku, Tokyo, 112 Japan.

