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Introduction.

In this paper, we shall consider the problem whether or not there exists a compact
space-like m-dimensional submanifold in a pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ with
parallel mean curvature vector which is not totally umbilic.

A pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ is an $(m+p)$-dimensional indefinite Rie-
mannian space of index $p$ and with constant curvature $c>0$ , which is constructed
in a pseudo-Euclidean space $R_{p}^{m+1+p}$ as follows. First, a pseudo-Euclidean space
$R_{p}^{m+p+1}$ is of real $(m+p+1)$-tuples $x=(x_{1}, \cdots, x_{m+p+1})$ with scalar product

$\langle x, y\rangle=\sum_{i=1}^{m+1}x_{i}y_{i}-\sum_{\alpha=m+2}^{m+p+1}x_{\alpha}y_{\alpha}$ .

Then

$S_{p}^{m+p}(c)=\{x\in R_{p}^{m+p+1}|\langle x, x\rangle=1/c\}$ .
In the special case $p=1$ , we call $S_{1}^{m+1}(c)$ a de Sitter space.

Let us consider $M$ a compact space-like m-dimensional submanifold in $ffl_{p}^{+p}(c)_{:}$

Then $M$ is diffeomorphic to a Riemannian sphere $S^{m}$ . (See Lemma 1 in \S 1). Here, $M$

is totally umbilic if and only if $M$ is a space-like $(m+1)$-plane section in $S_{p}^{m+p}(c)$ , and
then, $M$ is congruent to a Riemannian sphere $S^{m}(c^{\prime})$ of constant curvature $c^{\prime}$ where
$c\geq c^{\prime}>0$ .

Montiel [9] has proved that a compact space-like hypersurface $M$ in a de Sitter
space $S_{1}^{m+1}(c)$ is totally umbilic if the mean curvature $H$ of $M$ is constant.

So we have been considering the higher codimensional case, and gotten the
following.
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THEOREM. Let $M$ be a compact space-like m-dimensional submanifold in a pseudo-
Riemannian sphere $S_{p}^{m+p}(c)$ with parallel mean curvature vector. If the normal connection
of $M$ is flat, then $M$ is totally umbilic.

It follows from this theorem that if there exis $ts$ a compact space-like m-dimensional
submanifold $M$ in $S_{p}^{m+p}(c)$ with parallel mean curvature vector which is not totally
umbilic, then $m\geq 3,p\geq 3$ and $M$ is not non-negatively curved. (see Corollary 6, Corollary
9 and $T\dot{h}eorem11.$)

Judging from the view mentioned later, I guessed that the answer to our problem
is nonexistence. Recently, Alias and Romero [3] has also considered this problem by
use of their new method. In fact, our Corollary 9 are independently obtained by them.
But the problem remains unsettled.

Pseudo-Riemannian space form $N_{p}^{m+p}(c)$ with constant curvature $c$ is the generic
notation for pseudo-Riemannian sphere $S_{p}^{m+p}(c)(c>0)$ , pseudo-Euclidean space $R_{p}^{m+p}$

$(c=0)$ and pseudo-hyperbolic space $H_{p}^{m+p}(c)(c<0)$ . Here $H_{p}^{m+p}(c)(c<0)$ is constructed
by the connected component of $\{x\in R_{p+1}^{m+p+1}|\langle x, x\rangle=1/c\}$ .

In a pseudo-Riemannian space form, space-like submanifolds with parallel mean
curvature vector have been studied by many mathematicians, since Calabi [4] and S.
Y. Cheng and Yau [8] proved the famous Bemstein type theorem in a Minkowski
space $R_{1}^{m}$

‘ 1. The Bemstein type theorem in pseudo-Riemannian spheres asserts that a
complete maximal space-like m-submanifold in $S_{p}^{m+p}(c)$ is totally geodesic. (See
Ishihara [9]). Here “maximal” means that the mean curvature vanishes identically.

Let $M$ be a complete space-like hypersurface with constant mean curvature $H$ in
$S_{1}^{m+1}(c)$ . It is known that there exist some noncompact nonmaximal examples of $M$

which is not totally umbilic. (See Akutagawa [2]). However, when $m=2$ and $H^{2}\leq c$

or when $m>2$ and $H^{2}<4(m-1)c/m^{2}$ , it has been proved by Akutagawa [2] that $M$ is
totally umbilic. (Ramanathan [10] has independently proved the case $m=2.$)
Furthermore, Q. M. Cheng [7] has proved that the Akutagawa’s theorem holds in the
case of higher codimension, that is, if $M$ is a complete space-like m-dimensional
submanifold in $S_{p}^{m+p}(c)$ with parallel mean curvature vector $H,$ $M$ is totally umbilic
when $m=2$ and $|H|^{2}\leq c$ or when $m>2$ and $|H|^{2}<4(m-1)c/m^{2}$ .

On the other hand, a part of the Akutagawa’s theorem in $S_{1}^{m+1}(c)$ is contained in
Montiel’s result. In fact, the condition $H^{2}<4(m-1)c/m^{2}$ indicates the compactness of
$M$ by virtue of the Myers theorem combined with the calculus of the Ricci curvature.

At the end of this section, we remark that there exist no compact space-like
m-dimensional submanifolds in a pseudo-Riemannian space form $N_{p}^{m+p}(c)$ with constant
curvature $c\leq 0$ . (See, for example, Aiyama [1].)
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\S 1. An integral equality for compact space-like m-submanifolds in $S_{p}^{m+p}(c)$ and its
applications.

Let $X:M\rightarrow S_{p}^{m+p}(c)$ be a compact space-like m-dimensional submanifold immersed
into a pseudo-Riemannian sphere.

In this section, we introduce an integral equality for the immersion $X$, and give
our main result as its application. This integral equality is gotten by expanding Montiel’s
one in [10] into a higher codimensional case after the method similar to Reilly [12].

First of all, we remark that $M$ is orientable. In fact, $M$ is diffeomorphic to a
Riemannian sphere as follows.

LEMMA 1. There exists a diffeomorphism $\varphi:S^{m}\rightarrow M$ such that $X\circ\varphi:S^{m}\rightarrow S_{p}^{m+p}(c)$

is an embedding prescribed below by (1.1).

$PR\infty F$ . We can define a diffeomorphism $F:S^{m}(1)xH^{p}(-c)\rightarrow S_{p}^{m+p}(c)$ by

$F(x, y)=(\gamma_{p+1}x_{1}, \cdots, y_{p+1}x_{m+1}, y_{1}, \cdots, y_{p})$ ,

where $x=(x_{1}, \cdots, x_{m+1})\in S^{m}\subset R^{m+1}$ and $y=(y_{1}, \cdots, y_{p+1})$ is an element of a
hyperbolic space $H^{p}(-c)=\{y\in R_{1}^{p+1}|\langle y, y\rangle=-1/c, y_{p+1}>0\}$ . Here let $\varpi:S^{m}(1)\times$

$H^{p}(-c)\rightarrow S^{m}(1)$ be the projection. Since $X$ is space-like, the composition
ru $\circ F^{-1}\circ X:M\rightarrow S^{m}(1)$ is a local diffeomorphism. Furthermore, by the compactness of
$M$, it must be a diffeomorphism $\psi$ . Put $\varphi=\psi^{-1}$ . Accordingly, there is a smooth mapping
$u=(u_{1}, \cdots, u_{p+1}):S^{m}(1)\rightarrow H^{p}(-c)$ such that

(1.1) $X\circ\varphi(x)=F(x, u(x))=(u_{p+1}(x)x_{1}, \cdots, u_{p+1}(x)x_{m+1}, u_{1}(x), \cdots, u_{p}(x))$ . $\square $

Our local calculations are done relative to an adapted positively oriented
orthonormal frame field $\{e_{1}, \cdots, e_{m+p}\}$ on $S_{p}^{m+p}(c)$ , that is $e_{1},$ $\cdots,$ $e_{m}$ are space-like
orthonormal local vector fields tangent to $X(M)$ and positively oriented to $M$. We use
the following convention on the range of indices:

$i,j,$ $\cdots=1,$ $\cdots,$ $m$ ; $\alpha,$ $\beta,$ $\cdots=m+1,$ $\cdots,$ $m+p$ .
We denote by $h_{ij}^{\alpha}$ the components of the second fundamental form II relative to $e_{i},$ $e_{j}$

and $e_{a}$ , that is, $ h_{ij}^{\alpha}=\langle\nabla_{e_{i}}^{E}e_{j}, e_{\alpha}\rangle$ where $\nabla^{E}$ is the Levi-Civita connection of $E=R_{p}^{\prime\prime r+1+p}$ .
Then the mean curvature vector $H$, its length $H$ and the square of the length $S$ of the
second fundamental form are respectively given below;

$H=-\frac{1}{m}\sum_{\alpha,i}h_{ii}^{\alpha}e_{\alpha}$ , $H=\frac{1}{m}[\sum_{\alpha}(\sum_{i}h_{ti}^{\alpha})^{2}]^{1/2}$ and $S=\sum_{i,j,a}(h_{ij}^{\alpha})^{2}$

We denote by V and $\nabla^{\perp}$ the Levi-Civita connection on $M$ and the normal connection
of $M$ in $S_{p}^{m+p}(c)$ , respectively. The components of the covariant derivative $\nabla\Pi$ of $\Pi$ are
denoted by $h_{ijk}^{\alpha}$ .

For the $(m+1+p)$-dimensional vector space $E=R_{p}^{m+1+p}$, let $\Lambda$ be its exterior
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algebra, and $\Lambda^{p}$ the subspace spanned by p-planes $v=v_{1}\wedge\cdots\wedge v_{p}$ (where $v_{1},$ $\cdots,$ $v_{p}$

are $p$ linearly independent vectors in $E$). It is known that the scalar product $\langle$ . $\rangle$ on
$\Lambda^{p}$ can be induced by the one on $E$ as follows:

$\langle v, w\rangle:=\det((\langle v_{a}, w_{b}\rangle)_{1\leq a.b\leq p})$

for any $v=v_{1}\wedge\cdots\wedge v_{p}$ and $w=w_{1}\wedge\cdots\wedge w_{p}\in\Lambda^{p}$ .
Set $N=e_{m+1}\wedge\cdots\wedge e_{m+p}$ . This means that $N$ is globally defined on $M$ as the smooth

field of oriented unit normal (time-like) p-planes of $M$ in $S_{p}^{m+p}(c)$ . Let $A_{m+1},$ $\cdots,$ $A_{m+p}$

be $p$ orthonormal time-like vectors in $E$, and set $A=A_{m+1}\wedge\cdots\wedge A_{m+p}\in\Lambda^{p}$ . For the
fixed element $A$ of $\Lambda^{p}$, we define the smooth function $U$ on $M$ by $ U=\langle N, A\rangle$ .
Furthermore, set

$V_{\alpha}=$ \langle $ e_{m+1}\wedge$ A $e_{\alpha-1}\wedge X$ A $ e_{\alpha+1}\wedge$ A $e_{m+p},$ $ A\rangle$ ,

$ U_{\alpha\ddagger}=\langle e_{m+1}\wedge\cdots\wedge e_{\alpha-1}\wedge e_{i}\wedge e_{\alpha+1}\wedge\cdots\wedge e_{m+p}, A\rangle$ ,

$U_{\alpha\beta ij}=\left\{\begin{array}{ll}\langle e_{m+1}\wedge\cdots\wedge e_{\alpha-1}\wedge e_{j}\wedge e_{a+1}\wedge\cdots & \\\wedge e_{\beta-1}\wedge e_{j}\wedge e_{\beta+1}\wedge\cdots\wedge e_{m+p}, A\rangle & if \alpha\neq\beta,\\0 & if \alpha=\beta.\end{array}\right.$

Here we note that $U_{\alpha i}$ and $U_{\alpha\beta ij}$ depend on the choice of local frame fields and that
$U_{\alpha\beta ij}=-U_{\beta\alpha ij}=-U_{\alpha\beta ji}$ .

PROPOSmON 2. In the notation introduced above, we have the following integral
equality:

(1.2) $0=m\int_{M}(S-mH^{2})UdM-(m-1)\int_{M}\sum_{i.j,\alpha}h_{iij}^{\alpha}U_{aj}dM+m\int_{M}\sum_{i,j.k}\sum_{\alpha\neq\beta}h_{ij}^{\alpha}h_{ik}^{\beta}U_{\alpha\beta jk}dM$ ,

where $dM$ is the Riemannian measure of $M$.
$PR\infty F$ . Define a vector field $W$ on $M$ by the formula $W=\sum_{i}W_{i}e_{i}$, where

$W_{i}=\sum_{j.\alpha}(\sum_{k}h_{kk}^{\alpha}\delta_{ij}-mh_{ij}^{\alpha})U_{\alpha j}$ .

Here it is immediately proved that $W$ does not depend on the choice of orthonormal
frame fields. This integral equality follows by computing $div(W)$ and applying Stokes’
theorem $\int_{M}div(W)=0$ .

By choosing an adapted orthonormal frame field such that $\nabla_{e_{t}}e_{j}=\nabla_{e_{i}}^{\perp}e_{\alpha}=0$ for any
$i,$ $j$ and $\alpha$ at a point $q$ in $M$, the computation of $div(W)$ becomes easier, that is,
$div(W)=\sum_{i}e_{i}(W_{i})$ at $q$ . By using the Codazzi equation $h_{ijk}^{\alpha}=h_{ikj}^{a}$, the symmetry of $h_{ij}^{\alpha}$

in $i$ and $j$, and the above skew-symmetry of $U_{\alpha\beta ij},$ $div(W)$ is calculated as appearing in
(1.2);
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$div(W)=\sum_{i,j,\alpha}(\sum_{k}h_{kki}^{\alpha}\delta_{ij}-mh_{iji}^{\alpha})U_{\alpha j}$

$+\sum_{i,j,\alpha}(\sum_{k}h_{u}^{\alpha}\delta_{ij}-mh_{ij}^{\alpha})(\langle e_{m+1}\wedge\cdots\wedge\nabla_{e_{l}}^{E}e_{j}\wedge\alpha th\ldots\wedge e_{m+p}, A\rangle$

$+\sum_{\beta\neq\alpha}\langle e_{m+1}\wedge\cdots\wedge\alpha e_{j}\iota\wedge\cdots\wedge\nabla_{e_{i}}^{E}e_{\beta}\wedge\cdots\wedge e_{m+p}, A\rangle)$

$=-(m-1)\sum_{i,j}h_{iij}^{\alpha}U_{\alpha j}$

$+\sum_{t,j.\alpha}(\sum_{k}h_{kk}^{\alpha}\delta_{ij}-mh_{ij}^{\alpha})(-\sum_{\beta\neq\alpha}\sum_{k}h_{ik}^{\beta}U_{\alpha\beta jk}-h_{tj}^{\alpha}U-c^{-1}\delta_{ij}V_{\alpha})$

$=-(m-1)\sum_{i,j.\alpha}h_{iij}^{\alpha}U_{\alpha j}+m\sum_{i.j,k}\sum_{\alpha\neq\beta}h_{ij}^{\alpha}h_{ik}^{\beta}U_{\alpha\beta jk}+m(S-mH^{2})U$ . $\square $

As an application of the integral equality, we can explain our main

THEOREM 3. Let $M$ be a compact space-like m-dimensional submanfold in a
pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ with parallel mean curvature vector. If the normal
connection of $M$ in $S_{p}^{m+p}(c)$ isflat, then $M$ is totally umbilic.

In order to prove this theorem, we first prepare the following Lemma 4.

LEMMA 4. $U>0$ on all $M$ or $U<0$ on all $M$.
$PR\infty F$ . Since $U$ is the determinant of the $p\times p$-matrix $(\langle e_{\alpha}, A_{\beta}\rangle),$ $U=0$ if and

only if there exists a time-like vector $A_{*}$ on the p-plane spanned by $\{A_{m+1}, \cdots, A_{m+p}\}$

which is perpendicular to all $e_{\alpha}(m+1\leq\alpha\leq m+p)$ . However, all vectors perpendicular
to the p-plane spanned by $\{e_{m+1}, \cdots, e_{m+p}\}$ are space-like. Thus the smooth function
$U$ never vanishe $s$ . $\square $

REMARK. In fact, the smooth function $U$ on $M$ satisfies $|U|\geq 1$ . This is proved,
for example, by using ”angles” between two space-like $(m+1)$-planes in $R_{p}^{m+p+1}$ (cf.
[1]).

$PR\infty F$ OF THEOREM 3. Parallelism of the mean curvature vector asserts that
$\sum_{l}\lambda_{iij}^{\alpha}=0$ for all $j$ and $\alpha$ . Furthermore, it is well known that the normal connection of
a space-like submanifold in a pseudo-Riemannian space form is flat if and only if
$\sum_{k}h_{ik}^{\alpha}h_{kj}^{\beta}=\sum_{k}h_{ik}^{\beta}h_{kj}^{\alpha}$ for all $i,j,$ $\alpha$ and $\beta$ . From the integral equality (1.2) combined with
these assumptions and the skew-symmetry of $U_{\alpha\beta ij}$, it follows that $\int_{M}(S-mH^{2})UdM=0$ .
Moreover, $S\geq mH^{2}$ from Schwarz’s inequality, and the equality holds only when $M$ is
totally umbilic. Therefore, by virtue of Lemma 4, we have completed the proof of the
theorem. $\square $
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At the end of this section, we mention a trivial case when the normal connection
is flat.

LAMMA 5. Let $M$ be a submanifold in a semi-Riemannian manifold $N$ with non-null
and non-zero parallel mean curvature vector. If the codimension is less than 3, then the
normal connection of $M$ in $N$ isflat.

REMARK. When the direction normal to a submanifold $M$ in a semi-Riemannian
manifold $N$ is not definite, a normal vector field $\eta$ may be null (i.e. $\langle\eta,$ $\eta\rangle=0$ and $\eta\neq 0$)
at some points of $M$. In our proof of thi$s$ lemma, we need to assume that the mean
curvature vector is not null everywhere.

$PR\infty F$ . The following property is well known: The normal connection of an
m-dimensional submanifold in an $(m+p)$-dimensional semi-Riemannian manifold is flat
if and only if there exist locally $p$ orthonormal parallel normal vector fields. If $p=2$
and the non-nuU and non-zero mean curvature vector $H$ is parallel, then the unit normal
$v\infty torfieldperpendiculartoHalsoisparallel$ . Then the normal connection is flat. $\square $

Therefore, we immediately get the following corollary of Theorem 3.

COROLLARY 6. Let $M$ be a compact space-like m-dimensional submamfold in a
pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ withparallelmean curvature vector. Ifthe codimension
$p$ is less than 3, then $M$ is totally umbilic.

\S 2. Space-like surfacns with paraUel mran curvature vector in a $\mu eIr$ -Riemannian
space form.

In this section, we explain that the answer to our problem in the case $m=2$ is
nonexistence. This result is proved as the corollary ofTheorem 3 in the previous section,
by virtue of the following Lemma 7 and Proposition 8. The method in this section is
similar to Chen’s one in [5].

LEMMA 7. Let $M$ be a space-like surface in a semi-Riemannian space form $N$ with
parallel non-null mean curvature vector H. If $M$ is neither minimal (i.e., maximal) nor
pseudo-umbilic, then the normal connection of $M$ in $N$ is flat.

$PR\infty F$ . Let $\{e_{i}, e.\}(1\leq i\leq m=2,3\leq\alpha\leq n)$ be a local orthonormal frame field such
that, at each point of $M,$ $e_{i}$ are tangent to $M$ and $e_{3}=H/H$. We denote the components
of the normal curvature of $M$ in $N$ by $R_{\alpha’ ij}$ . It follows from the equation of Ricci
combined with the parallelism of $e_{3}$ that

(2.1) $0=R_{3\alpha ij}=\sum_{k}h_{a}^{\alpha}h_{kj}^{3}-\sum_{k}h_{il}^{3}h_{kj}^{\alpha}$ .

We can choose a local frame field $\{e_{1}, e_{2}\}$ such that $h_{ij}^{3}=\lambda_{i}\delta_{ij}$ . Then the equality (2.1)
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indicates that

(2.2) $(\lambda_{j}-\lambda_{i})h_{ij}^{\alpha}=0$ for any $i,j$ and $\alpha$

at the points of $M$ where $\lambda_{1}\neq\lambda_{2}$ . That is, at not pseudo-umbilic points of $M$, the normal
curvature of $M$ in $N$ vanishes.

On the other hand, the points of $M$ which are umbilic with respect to a normal
direction in $N$ are isolated. This is proved by applying the fact that a complex analytic
function $\varphi$ on a Riemann surface has only isolated zero points unle$ ss\varphi$ is identically
zero. In fact, on the Riemann surface $M$ with complex isothermal coordinate $z=$

$x_{1}+ix_{2}$ , the complex valued function $\varphi=(h_{11}^{3}-h_{22}^{3})/2-ih_{12}^{3}$ (where $e_{i}=\partial/\partial x_{i}$) is complex
analytic (from the Coddazi equation and the parallelizm of $e_{3}$), and the zero points
of $\varphi$ are umbilic with respect to the normal direction $e_{3}$ .

Accordingly, the normal curvature is identically zero, that is, the normal connection
is flat. $\square $

PROPOSmON 8. (Chen [6]) Let $M$ be a submanifold in a pseudo-Riemannian space
form $N_{q}^{n}(c)$ with non-null parallel mean curvature vector H. If $M$ is pseudo-umbilic, then
$M$ is a mininal (i.e., naximal) submanifold of a totally umbilic hypersurface $N_{q’}^{n-1}(c^{\prime})$

in $N_{q}^{n}(c)$ , where $q^{\prime}$ is $q$ when $H$ is space-like or $q-1$ when $H$ is time-like.

COROLLARY 9. Only compact space-like surfaces in a pseudo-Riemannian sphere
$S_{p}^{2+p}(c)$ with parallel mean curvature vector are totally umbilical ones.

$PR\infty F$ . Let $M$ be a compact space-like surface in $S_{p}^{2+p}(c)$ with parallel mean
curvature vector.

If $M$ is neither maximal nor pseudo-umbilic, since the normal connection of
$MinS_{p}^{2+p}(c)$ is $flatbyvirtueofLemma7$ , the proof is obtained by Theorem3in \S 1.

Then we first consider the maximal case. In this case, by the Ishihara’s theorem
in [9], we know that $M$ is totally geodesic. Next, suppose that $M$ is pseudo-umbilic.
Using Proposition 8, we can assert that $M$ is a maximal surfaoe in a pseudo-Riemannian
space form $N_{p-1}^{p+1}(c^{\prime})$ with constant curvature $c^{\prime}$ . If $c^{\prime}\geq 0$ , by applying the Ishihara’s
theorem again, it immediately follows that $M$ is a totally umbilic surface in $S_{p}^{2+p}(c)$ .
Furthermore, in the case $c^{\prime}<0$ , we know that there exist no compact space-like surfaces
in $N_{p-1}^{p+1}(c^{\prime})$ .

This completes the proof of this corollary. $\square $

Furthermore, we remark that the following theorem analogous to the Chen and
Yau’s one explained in [5] holds.

THEOREM 10. Suppose that $M$ is a space-like surface in a pseudo-Riemannian space
form $N_{p}^{2+p}(c)$ withparallelmean curvature vector. Then $M$ is one ofthefollowing surfaces:

(1) maximal space-like surfaces of $N_{p}^{2+p}(c)$ ,
(2) maximal space-like surfaces of a totally umbilic hypersurface $N_{p-1}^{p+1}(c^{\prime})$ in
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$N_{p}^{2+p}(c)$ ,
(3) space-like surfaces with constant mean curvature of a totally umbilic

3-dimensional submanifold $N_{1}^{3}(c^{\prime})$ in $N_{p}^{2+p}(c)$ .

\S 3. Non-negatively curved space-like m-submanifolds with parallel mean curvature
vector in $S_{p}^{m+p}(c)$.

In this last section, we assert that flatness of the normal connection is implied in
non-negativity of the sectional curvatures on compact space-like m-submanifold with
parallel mean curvature vector in $S_{p}^{m+p}(c)$ . Then we get the following theorem as the
corollary of Theorem 3.

THEOREM 11. Let $M$ be a compact space-like m-dimensional submanifold in a
pseudo-Riemannian sphere $S_{p}^{m+p}(c)$ with parallel mean curvature vector. If the sectional
curvature of $M$ is non-negative, then $M$ is totally umbilic.

$PR\infty F$. We may prove only for $p\geqq 2$ .
Let $\{e_{i}, e_{\alpha}\}(i=1, \cdots, m, \alpha=m+1, \cdots, m+p)$ be any local orthonormal frame field

on $M$ such that $e_{i}$ are tangent to $M$ and $e_{\alpha}$ are normal to $M$ in $S_{p}^{m+p}(c)$ . Put $S_{\alpha}=\sum_{i,\dot{j}}(h_{ij}^{\alpha})^{2}$ ,
that is, $S_{a}$ is the square norm of the second fundamental form II directed to $e_{\alpha}$ .
Furthermore, put $S=\sum_{\alpha}S_{\alpha}$ . We remark that each $S_{\alpha}$ is a locally defined function, but
$S$ is defined on all $M$.

The Laplacian of $S_{\alpha}$ is calculated from the Codazzi equation, the Ricci formula
for the second fundamental form and parallelism ofthemean curvature vector as follows:

$*\Delta S_{\alpha}=\sum_{i,j.k}(h_{ijk}^{\alpha})^{2}+\sum_{i.j.k}h_{i}^{\alpha}fl_{iju}^{\alpha}=\sum_{i.j.k}(h_{ifl}^{\alpha})^{2}+\sum_{i.j.k}h_{i}^{\alpha}fi_{kijk}^{\alpha}$

$=\sum_{i.j,k}(h_{ijk}^{\alpha})^{2}+\sum_{i.j}h_{ij}^{\alpha}\{\sum_{k}h_{\iota u_{J}}^{\alpha}-\sum_{k,i}(h_{u}^{\alpha}R_{iijk}+h_{it}^{\alpha}R_{lkjk})+$
$\sum_{k,\beta\neq\alpha}ht_{\iota^{R}\propto lJt}\}$

$=\sum_{\iota.i}(h_{ifl}^{\alpha})^{2}-\sum_{i,j.ki},h_{i}^{\alpha}flh_{u}^{\alpha}R_{iijk}+h_{ii}^{\alpha}R_{lkfl})-\sum_{\dot{\beta}\neq\alpha},h_{i}^{\alpha}\mu t_{i}(h_{r^{h^{\alpha}-h_{u}^{\beta}h_{ji}^{\alpha})}}^{\iota_{\iota u}}iij.kl$

where $h_{ijk}^{\alpha}$ (resp. $h_{iju}^{a}$) are the components of the covariant derivative $\nabla\Pi$ (resp. $\nabla\nabla\Pi$)

of the second fundamental form $\Pi$, and $R_{\iota_{J}u}$ and $R_{\alpha\beta ij}$ are the components of the
Riemannian curvature tensor and the normal curvature tensor of $M$ in $S_{p}^{m+p}(c)$ ,
respectively.

If, for a fixed $\alpha$, we choose a local frame field $\{e_{i}\}$ as $h_{tj}^{\alpha}=\lambda_{i}^{\alpha}\delta_{ij}$, the above equation is
rewritten as follows:

(3.1) $\Delta S_{\alpha}=2\sum_{t.Jt}(h_{ijk}^{\alpha})^{2}+\sum_{i,k}(\lambda_{i}^{\alpha}-\lambda_{l}^{\alpha})^{2}R_{kiik}+$
$\sum_{i.k,\beta\neq\alpha}(\lambda_{i}^{\alpha}-\lambda_{k}^{\alpha})^{2}(hf_{k})^{2}$
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Then non-negativity of the sectional curvatures $R_{ijji}$ implies that $\Delta S_{\alpha}\geqq 0$ for any
$\alpha$ and $\Delta S\geqq 0$ (on $M$). It follows from compactness of $M$ that $\Delta S=0$ . It means that
$\Delta S_{\alpha}=0$ for any $\alpha$ .

Now we choose orthonormal tangent vectors $e_{i}$ at a point $x$ in $M$ as $h_{ij}^{m+1}=\lambda_{i}^{m+1}\delta_{ij}$ .
It follows from (3.1) and $\Delta S_{\alpha}=0$ that

$(\lambda_{i}^{m+1}-\lambda_{j}^{m+1})^{2}(h_{ij}^{\beta})^{2}=0$ for any $i,j$ and $\beta\neq m+1$ .
So $h_{ij}^{\beta}=0$ for any triple $\{\beta, i,j\}$ such that $\beta\neq m+1$ and $\lambda_{i}^{m+1}\neq\lambda_{j}^{m+1}$ . This implies that
the $m\times m$-matrices $(h_{ij}^{m+1})$ and $(h_{ij}^{m+2})$ are simultaneously diagonalizable, that is, we can
choose orthonormal tangent vectors $e_{i}$ at $x$ as $h_{ij}^{m+1}=\lambda_{i}^{m+1}\delta_{tj},$ $h_{ij}^{m+2}=\lambda_{i}^{m+2}\delta_{ij}$ . Again
from (3.1) and $\Delta S_{\alpha}=0$ it follows that $h_{ij}^{\beta}=0$ for any triple $\{\beta, i,j\}$ such that $\beta\neq m+1$ ,
$m+2$ and, either $\lambda_{i}^{m+1}\neq\lambda_{j}^{m+1}$ or $\lambda_{i}^{m+2}\neq\lambda_{j}^{m+2}$ . Then also $(h_{ij}^{m+1}),$ $(h_{ij}^{m+2})$ and $(h_{ij}^{m+3})$ are
simultaneously diagonalizable. Iterating this procedure, we can prove that the all
$m\times m$-matrices $(h_{ij}^{\alpha})$ are simultaneously diagonalizable.

This means that for any local orthonormal frame field $\{e_{i}\}$ ,

$\sum_{k}h_{ik}^{\alpha}h_{kj}^{\beta}=\sum_{k}h_{ik}^{\beta}h_{kj}^{\alpha}$ for any $i,j$ and $\alpha,$
$\beta$ ,

and then, the normal connection of $M$ in $S_{p}^{m+p}(c)$ is flat. Using this fact in Theorem 3,
we obtain that $M$ is totally umbilic. $[]$

As mentioned in \S 1, we can regard an immersion from a compact space-like
m-dimensional submanifold into a semi-Riemannian sphere $S_{p}^{m+p}(c)$ as an emkdding
of $S^{m}$ in $S_{p}^{m+p}(c)$ . This proposition includes the following: If the mean curvature vector
of an isometric immersions from $S^{m}(c^{\prime})$ into $S_{p}^{m+p}(c)$ is parallel, the immersion is totally
umbilic.
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