On the Rational Approximations to $tanh \frac{1}{k}$

Takeshi OKANO

Saitama Institute of Technology (Communicated by K. Akao)

Introduction.

Let k and N_1 be positive integers with $N_1 \ge 10$, and let p_n/q_n be the n-th convergent of $\tanh(1/k)$. Let γ_{N_1} , δ_n , and $\gamma_{N_1}^*$ be defined by

$$\gamma_{N_1} = 2\left(k + \frac{k+1}{N_1 - 1/2}\right)\left(1 + \frac{\log\log(2k(N_1 + 1)/e)}{\log(N_1 + 1)}\right),$$

$$\delta_n = \frac{(k(2n+1) + 2)\log\log q_n}{\log q_n},$$

and

$$\gamma_{N_1}^* = \max\{\delta_n \mid 1 \le n < N_1\},\,$$

respectively.

In the previous paper [1], we proved the following.

THEOREM A. Let $k \ge 2$ be positive integers. Then

$$\left| \tanh \frac{1}{k} - \frac{p}{q} \right| > \frac{\log \log q}{\gamma q^2 \log q}$$

for all integers p and q with $q \ge 2$, where

$$\gamma \ge \max\{\gamma_{N_1}, \gamma_{N_1}^*\}$$

for any positive integer $N_1 \ge 10$.

COROLLARY A. For all integers p and q with $q \ge 2$,

$$\left|\tanh\frac{1}{2} - \frac{p}{q}\right| > \frac{\log\log q}{6q^2\log q}.$$

COROLLARY B. For all integers p and q with $q \ge 2$,

$$\left|\tanh\frac{1}{3} - \frac{p}{q}\right| > \frac{\log\log q}{9q^2\log q}.$$

The purpose of this paper is to prove the following theorems.

THEOREM 1. For any $\varepsilon > 0$, there is an infinity of solutions of the inequality

$$\left| \tanh \frac{1}{k} - \frac{p}{q} \right| < \left(\frac{1}{2k} + \varepsilon \right) \frac{\log \log q}{q^2 \log q}$$

in integers p and q. Further, there exists a number $q' = q'(k, \varepsilon)$ such that

$$\left|\tanh\frac{1}{k} - \frac{p}{q}\right| > \left(\frac{1}{2k} - \varepsilon\right) \frac{\log\log q}{q^2 \log q}$$

for all integers p and q with $q \ge q'$.

THEOREM 2. For all integers p and q with $q \ge 2$,

$$\left|\tanh 1 - \frac{p}{q}\right| > \frac{\log \log q}{4q^2 \log q}.$$

§1. Lemmas.

Let N_2 be a positive integer with $N_2 \ge 30$. Let η_{N_2} , θ_n , and $\eta_{N_2}^*$ be defined by

$$\eta_{N_2} = 2\left(1 + \frac{2}{N_2 - 1/2}\right) \frac{\log(N_2 + 1) + \log\log(10(N_2 + 1)/13)}{\log(7(N_2 + 1)/10)},$$

$$\theta_n = \frac{(2n + 3)\log\log q_n}{\log q_n},$$

and

$$\eta_{N_2}^* = \max\{\theta_n \mid 2 \le n < N_2\},\,$$

respectively.

LEMMA 1. For all integers p and q with $q \ge q_{N_2}$,

$$\left|\tanh 1 - \frac{p}{q}\right| > \frac{\log \log q}{\eta_{N_2} q^2 \log q}.$$

PROOF. We may assume that p/q is a convergent of tanh 1, since otherwise

$$\left|\tanh 1 - \frac{p}{q}\right| > \frac{1}{2q^2}.$$

The continued fraction of tanh 1 is

$$\tanh 1 = [a_0, a_1, a_2, a_3, \cdots] = [0, 1, 3, 5, \cdots].$$

In other words, $a_0 = 0$ and $a_n = 2n - 1$ for $n \ge 1$. Since $q_{n+1} = a_{n+1}q_n + q_{n-1} = (2n+1)q_n + q_{n-1} \le 2(n+1)q_n$, we have

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| > \frac{1}{q_n(q_{n+1} + q_n)} \ge \frac{1}{(2n+3)q_n^2}$$

Now we must estimate q_n . Suppose that $n \ge N_2$. Since $q_n \ge (2n-1)q_{n-1} \ge \cdots \ge \prod_{\nu=1}^n (2\nu-1)$, we have

$$\log q_n \ge \sum_{\nu=1}^n \log(2\nu - 1) \ge (n - 1/2)\log(2n - 1) - n + 1$$

$$\ge (n - 1/2)\log((2n - 1)/e).$$

Conversely, since $q_n \le 2nq_{n-1} \le 2^n n!$, we have

$$\begin{aligned} \log q_n &\leq n \log 2 + \sum_{\nu=1}^n \log \nu \leq n \log 2 + (n+1) \log(n+1) - n \\ &\leq (n+1) \log(10(n+1)/13) , \\ &\log \log q_n \leq \log(n+1) + \log \log(10(n+1)/13) . \end{aligned}$$

Since

$$l_1(x) = \frac{\log\log(10(x+1)/13)}{\log(x+1)} \qquad (x \ge 25)$$

and

$$l_2(x) = \frac{\log(x+1)}{\log(7(x+1)/10)} \qquad (x \ge 1)$$

are strictly decreasing functions and $7(x+1)/10 \le (2x-1)/e$ $(x \ge 30)$, we have

$$\log \log q_n \le (1 + l_1(N_2)) \log(n+1) \le l_2(N_2) (1 + l_1(N_2)) \log((2n-1)/e)$$
.

From these inequalities, we find

$$\frac{\log \log q_n}{\log q_n} \le l_2(N_2) \cdot \frac{1 + l_1(N_2)}{n - 1/2} \le 2 \left(1 + \frac{2}{N_2 - 1/2} \right) \frac{\log(N_2 + 1)}{\log(7(N_2 + 1)/10)} \cdot \left(1 + \frac{\log \log(10(N_2 + 1)/13)}{\log(N_2 + 1)} \right) \cdot \frac{1}{2n + 3} = \frac{\eta_{N_2}}{2n + 3}.$$

Therefore,

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| > \frac{\log \log q_n}{\eta_{N,q} q_n^2 \log q_n}$$
.

This completes the proof.

LEMMA 2. For all integers p and q with $q \ge 2$,

$$\left|\tanh 1 - \frac{p}{q}\right| > \frac{\log \log q}{\eta q^2 \log q}$$

where

$$\eta \ge \max\{\eta_{N_2}, \eta_{N_2}^*\}$$

for any positive integer $N_2 \ge 30$.

PROOF. It suffices only to consider that p/q is an *n*-th convergent of tanh 1. From the definition of $\eta_{N_2}^*$, we have the following inequalities

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| > \frac{1}{(2n+3)q_n^2} = \frac{\log \log q_n}{\theta_n q_n^2 \log q_n} \ge \frac{\log \log q_n}{\eta_{N_2}^* q_n^2 \log q_n} \qquad (2 \le n < N_2).$$

And from Lemma 1, we have

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| > \frac{\log \log q_n}{\eta_{N_2} q_n^2 \log q_n} \qquad (n \ge N_2).$$

This completes the proof.

§2. Proof of Theorem 1.

We prove the first statement. The continued fraction of tanh(1/k) is

$$\tanh \frac{1}{k} = [a_0, a_1, a_2, a_3, \cdots] = [0, k, 3k, 5k, \cdots].$$

In other words, $a_0 = 0$ and $a_n = k(2n-1)$ for $n \ge 1$. Let n be a sufficiently large integer to ensure the validity of the later argument.

Case 1: $k \ge 2$. Since $q_{n+1} = a_{n+1}q_n + q_{n-1} > k(2n+1)q_n$, we have

$$\left| \tanh \frac{1}{k} - \frac{p_n}{q_n} \right| < \frac{1}{q_n q_{n+1}} < \frac{1}{k(2n+1)q_n^2}$$

Now we must estimate q_n . Since $\log q_n > n-1/2$, we have $\log \log q_n > \log(n-1/2)$. And conversely, $\log q_n \le (n+1)\log(2k(n+1)/e)$. From these inequalities, we find

$$\frac{\log \log q_n}{\log q_n} > \frac{\log(n-1/2)}{(n+1)\log(2k(n+1)/e)} > \frac{\kappa_1}{k(2n+1)}$$

for any positive $\kappa_1 < 2k$. Therefore,

$$\left|\tanh\frac{1}{k} - \frac{p_n}{q_n}\right| < \frac{\log\log q_n}{\kappa_1 q_n^2 \log q_n}.$$

Case 2: k=1. Since $q_{n+1}=a_{n+1}q_n+q_{n-1}>(2n+1)q_n$, we have

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| < \frac{1}{q_n q_{n+1}} < \frac{1}{(2n+1)q_n^2}$$

Now we must estimate q_n . Since $\log q_n > n-1/2$, we have $\log \log q_n > \log(n-1/2)$. And conversely, $\log q_n \le (n+1)\log(10(n+1)/13)$. From these inequalities, we find

$$\frac{\log \log q_n}{\log q_n} > \frac{\log(n-1/2)}{(n+1)\log(10(n+1)/13)} > \frac{\kappa_2}{2n+1}$$

for any positive $\kappa_2 < 2$. Therefore,

$$\left|\tanh 1 - \frac{p_n}{q_n}\right| < \frac{\log \log q_n}{\kappa_2 q_n^2 \log q_n}.$$

The second statement of Theorem 1 follows immediately from Theorem A and Lemma 1. This completes the proof.

§3. Proof of Theorem 2.

For $N_2 = 30$, we have $\eta_{30} = 3.18414 \cdots$ and $\eta_{30}^* = \theta_5 = 3.55703 \cdots$. Hence we can choose η so that $\eta = 4$. Then Theorem 2 follows immediately from Lemma 2. This completes the proof.

ACKNOWLEDGMENT. The author would like to thank Professor M. Toyoizumi for several helpful discussions.

References

- [1] T. OKANO, A note on the rational approximations to $\tanh(1/k)$, Proc. Japan Acad. Ser. A 69 (1993), 161-163.
- [2] O. PERRON, Die Lehre von den Kettenbrüchen, Band I, Teubner (1954).

Present Address:

DEPARTMENT OF MATHEMATICS, SAITAMA INSTITUTE OF TECHNOLOGY, OKABE-MACHI, SAITAMA, 369–02 JAPAN.