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Introduction.

Let kK and N, be positive integers with N, > 10, and let p,/q, be the n-th convergent
of tanh(1/k). Let yy,, d,, and y¥, be defined by

log(2k(N, + 1
7~,=2(k+ k+1 )<1+log 0g(2k(N, + )/e))’
N, —1)2 log(N;+1)
5= (k(2n+1)+2)logloggq,
" logg, ’
and
v, =max{é,|1<n<N,},
respectively.

In the previous paper [1], we proved the following.
THEOREM A. Let k>2 be positive integers. Then

loglogg
vq*logq

tanh—l———p—‘>
k q

for all integers p and q with q=>2, where
y=max{yy,, Y¥,}
for any positive integer N, > 10.
COROLLARY A. For all integers p and q with ¢=>2,

loglogg
6q%logq

1
tanh——£l>
2 gq
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COROLLARY B. For all integers p and q with ¢>2,

1
tanh ——

p |> loglogg
g| 94%logqg

The purpose of this paper is to prove the following theorems.

THEOREM 1. For any £>0, there is an infinity of solutions of the inequality
1 1

(L) st
2k q*logq

in integers p and q. Further, there exists a number q' =q'(k, €) such that

tanh—l——ﬂ

k g

tanh—l-——&l>( ! —8) loglogg
k ¢ 2k q*loggq

Sfor all integers p and q with g=>q'.

THEOREM 2. For all integers p and q with g>2,

logloggq
4q*logg

tanhl—£}>
q

§1. Lemmas.

Let N, be a positive integer with N,>30. Let ny,, 0,, and n%, be defined by

_2(1+ 2 ) log(N,+ 1) +1loglog(10(N, +1)/13)
TN N,—1/2 10g(7(N, + 1)/10) ‘
0 — (2n+3)loglogg,
" logg, ’
and
n%,=max{0, | 2<n<N,},
respectively.
- LEMMA 1. For all integers p and q with q>qy,,
!
tanh1 _£|>_1°_g.,ﬂ .
g1 1,9 logg
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PrOOF. We may assume that p/q is a convergent of tanh1, since otherwise

tanhl _r
q

>

2¢%
The continued fraction of tanh1 is
tanhl =[a0, a,, as, as, - ']=[0, 1, 3, 5, . '] .

In other words, a,=0 and aq,=2n—1 for n>1. Since ¢,+1=0p+19n+qu-1=
2n+1)q,+q,-; <2(n+1)q,, we have

> ! .
4(@n+1+4,) (2n+3)q,

Now we must estimate ¢, Suppose that n>N,. Since ¢,>(2n—1)g,_,=>"""
[I:_,(@v—1), we have

Pn
qn

tanh1 —

>

v

logg,= Y. logRv—1)=>(n—1/2)log(2n—1)—n+1
v=1 ’

=(n—1/2)log((2n—1)/e) .

Conversely, since ¢,<2nq,_; <2"n!, we have

logg,<nlog2+ Y logv<nlog2+(n+ log(n+1)—n

v=1

<(n+ Dlog(10(n+1)/13),
loglogg, <log(n+1)+loglog(10(n+1)/13) .

Since
loglog(10(x + 1)/1
1 (x)=—E °f:g?£ﬁ) )
and
_ log(x+1)
L=t e =P

are strictly decreasing functions and 7(x+ 1)/10 <(2x—1)/e (x = 30), we have
loglogg, <(1+I,(N,)log(n+ 1) <L (N,)(1+1,(N,))log((2n—1)/e) .

From these inequalities, we find
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logl 1+, (N
logg, n—1/2 N,—1/2 ] log(7(N,+1)/10)
.(1+ 10g10g(10(N2+1)/13))_. 1 oy,
log(N,+1) 2n+3 2n+43
Therefore,
tanh1— 2 >_lo_glz_ogl_.
4| 1N,9a1089,
This completes the proof.
LEMMA 2. For all integers p and q with ¢>2,
tanhl —~p—|>—l—o—§ligi ,
q| nq°logg

where
n=max{ny,, n¥,}
Sfor any positive integer N, > 30.

Proor. It suffices only to consider that p/q is an n-th convergent of tanh 1. From
the definition of n¥,, we have the following inequalities

1 logl logl
tanh1—2» _=_OB08d , BB (2<n<N,).
gx| (2n+3)q, 06,9;l0gq, n¥.gz:logg,
And from Lemma 1, we have
tanh1—2~ >log—lzogq,,_ (n=N,).
qn 'Inzan)gq’:

This completes the proof.

§2. Proof of Theorem 1.

We prove the first statement. The continued fraction of tanh(1/k) is

1
tanh7=[a03 a,, as, a,, °° .] =[0’ k’ 3k9 Ska °e .] .

In other words, a, =0 and a,=k(2n—1) for n>1. Let n be a sufficiently large integer
to ensure the validity of the later argument.
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Case 1: k>2. Since ¢, 1=08,+14n+qn-1>k(2n+1)gq,, we have

1 1

Dn
< 5 -
qnqn +1 k(2n + l)qn

qn

1
tanh — —

Now we must estimate ¢,. Since logg,>n—1/2, we have loglogg,>log(n—1/2). And
conversely, logg, <(n+ 1)log(2k(n+ 1)/e). From these inequalities, we find

loglogg, S log(n—1/2) S Ky
logg, (n+ Dlog(2k(n+1)/e) k(2n+1)

for any positive x; <2k. Therefore,

1 log.
tanh L _ P logzogq.. .
k dn Ki9n logqn

Case 2: k=1. Since q,+,=a,+19,+gn-1>(2n+1)q,, we have
1

P |< 1, < 5

qn| An9n+1 (2n+ l)qn

Now we must estimate g¢,. Since logg,>n—1/2, we have loglogg,>log(n—1/2). And
conversely, logg, <(n+ 1)log(10(n+ 1)/13). From these inequalities, we find

tanh1l—

loglogg, S log(n—1/2) > K,
logg, (n+ Dlog(10(n+1)/13) 2n+1

for any positive k, <2. Therefore,

Pa . _loglogg,
dn | xaq2logg,

The second statement of Theorem 1 follows immediately from Theorem A and
Lemma 1. This completes the proof.

tanh1—

§3. Proof of Theorem 2.

For N,=30, we have 75,=3.18414- - - and n%,=05=3.55703- - -. Hence we can
choose n so that n=4. Then Theorem 2 follows immediately from Lemma 2. This
completes the proof.
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